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Abstract

Background: With the rapid development of high-throughput sequencing technology, the proteomics research
becomes a trendy field in the post genomics era. It is necessary to identify all the native-encoding protein
sequences for further function and pathway analysis. Toward that end, the Human Proteome Organization
lunched the Human Protein Project in 2011. However many proteins are hard to be detected by experiment
methods, which becomes one of the bottleneck in Human Proteome Project. In consideration of the complicatedness
of detecting these missing proteins by using wet-experiment approach, here we use bioinformatics method
to pre-filter the missing proteins.

Results: Since there are analogy between the biological sequences and natural language, the n-gram models
from Natural Language Processing field has been used to filter the missing proteins. The dataset used in this
study contains 616 missing proteins from the “uncertain” category of the neXtProt database. There are 102
proteins deduced by the n-gram model, which have high probability to be native human proteins. We perform a detail
analysis on the predicted structure and function of these missing proteins and also compare the high probability
proteins with other mass spectrum datasets. The evaluation shows that the results reported here are in good
agreement with those obtained by other well-established databases.

Conclusion: The analysis shows that 102 proteins may be native gene-coding proteins and some of the missing
proteins are membrane or natively disordered proteins which are hard to be detected by experiment methods.
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Background
Proteins play important roles in biology. The Human
Genome Sequence Project [1] provides a comprehensive
compendium about all the human protein encoding
genes. However, due to the diversity of proteins and the
under-development of current proteomics technology,
there are many proteins which have not been identified
and annotated.
The Human Proteome Project (HPP) [2] was launched

by the Human Proteome Organization (HUPO) in 2011,

which contains the Chromosome-centric HPP (C-HPP)
[3] and Biology/Disease-Driven HPP (B/DHPP) [4]. This
project tries to identify as more proteins as possible with
the goal of covering all human protein-encoding genes.
This great goal is cooperated by an international associa-
tions contains 25 members [5]. The baseline metrics for
the HPP contains five annually updated data resources
[5]: the Ensembl database [6] provides the possible genes
coding proteins; Peptide Atlas [7] and GPMdb [8] separ-
ately screen high confident proteins from mass spec-
trometry data; the Human Protein Atlas [9] is in charge
of extracting proteins by antibody-based research; and
finally neXtProt [10] collects all human proteins and
assigns confidence level (PE 1-5) by protein expres-
sion evidence. Proteins at the PE1 level are identified
at protein expression level by mass spectrometry,
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immunohistochemistry, 3D structure, and/or amino acid
sequencing. The proteins at PE2 level is detected by tran-
script expression but not by protein expression. At PE3
level, there are no protein or transcript evidence, but have
homologies represented in related species. Proteins at PE4
level are speculated from gene models. Finally, the protein
sequences at PE5 level are generated from “dubious” or
“uncertain” genes which seemed to have some protein-
level evidence in the past but such identifications are
doubtful by curation.
Much progress has been achieved since 2011 by the

proteomics community and the HPP. Based on the cur-
ation of neXtProt [11] database, currently 82% of the
protein-coding genes in human have protein expressions
with high-confidence. However, there are 3, 564 genes at
levels PE2-5 which have no or insufficient evidence of
identification by any experimental methods and are thus
named as “missing proteins” [11]. Many of these missing
proteins are hard to be detected because of low abun-
dance, poor solubility, or indistinguishable peptide se-
quences within protein families. The missing of such a
significant amount of proteins marks a significant
problem about our current understanding of the hu-
man proteome, with particularly important questions
including, e.g., whether these proteins are essential to
the cell functions and if yes what biological roles they
play in cell and why they are not detectable by the
current instruments of both transcription and transla-
tion levels. Thus identifying the missing proteins will
be a challenging task.
Previous study has shown that there are analogies

between biological sequences and natural language. In
linguistics, some words and phrases can form a mean-
ingful sentence; in biology, the tactic nucleotides
denote gene, and the fixed protein sequences can deter-
mine its structure and function. Tsonis [12] discussed
that whether DNA is a language or not. Many linguistic
approaches have been used in computational biology
[13–15]. Ganapathiraju et al. [16] analyzed the language
feature of whole-genome protein sequence. Many tech-
niques of Natural Language Pprocess have been used in
bioinformatics, such as protein domain recognition
based on language modeling [17], dictionary-driven
protein annotation [18], protein remote homology de-
tection by latent semantic analysis [19–22], identifica-
tion of DNA-binding protein [23, 24], and so on.
In this study, the missing proteins in human proteome

are identified by using biological language model. The
amino acid n-gram models for human and non-human
protein sequences are constructed. These models are
subsequently used to discriminate whether the missing
proteins are natively gene-coding proteins in human or
not. The identified proteins are then analyzed by their
predicted structures and functions, annotation from

neXtProt database [10], HGNC database [25] and other
mass spectrometry dataset [26].

Methods
Datasource
The native gene-coding proteins are downloaded from
Swiss-Prot database [27]. To construct the reliable
models, only the protein sequences with reviewed items
are selected. Totally, there are 14565 human proteins
and 70854 non-human proteins. The redundant se-
quences are then filtered by using CD-HIT program [28]
with the sequence identity threshold of 90%. Finally, we
get 14189 human proteins and 59060 non-human pro-
teins, which are used to build the n-gram model for hu-
man and non-human respectively.
The “dubious” or “uncertain” missing proteins with

confidence code “PE5” are extracted from the neXtProt
database [10] that was released at Sep. 19, 2014. There
are in total 616 proteins in this category with length ran-
ging from 21 to 2, 252 residues. The structures of these
proteins are predicted by using I-TASSER software [29].
The functions including the EC number, the GO terms
and the binding sites are predicted by using COFAC-
TOR software [30]. Both I-TASSER and COFACTOR
are run in non-homology mode where all the homologous
structures identified with sequence identities greater than
or equal to 30% are removed. The subcellular localization
is predicted by using Hum-mPLoc [31].

Biological language models to discriminate the native
gene-coding human and non-human proteins
The protein sequences are composed of 20 native amino
acids, while in natural language, the sentences are com-
prised by words. Such similarity has draw researchers at-
tention and the language features of DNA and protein
sequence have been investigated extensively [32–34]. In
this study, the methods from natural language process-
ing, especially, the statistical natural language processing
methods which have been successfully solve many of the
natural language task [35], are applied to identify the
missing proteins. Formally, the problem of identifying
missing proteins can be described as following: given a
protein P = (a1, a2, …, aL), is this protein a human pro-
tein or not:

P H jPð Þ > P NH jPð Þ ð1Þ

where P(H|P) and P(NH|P) represent the probability of
this protein belongs to human and non-human. The
above equation can be converted by conditional prob-
ability formulae:
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P Hð ÞP PjHð Þ
P Pð Þ >

P NHð ÞP PjNHð Þ
P Pð Þ ð2Þ

Since the denominator is the same, it can be ignored
during the comparison. P(H) and P(NH) are the prior
probability of human and non-human proteins, and can
be estimated from the training dataset by using maximum
likelihood estimation based on the number of human and
non-human protein. By applying the conditional probabil-
ity formulae repeatedly, the probability of P(H|P) or
P(NH|P) can be decomposed into:

P PjHð Þ ¼ P a1…aLjHð Þ
¼ P a1jHð ÞP a2…aLjH ; a1ð Þ
¼ P a1jHð ÞP a2jH ; a1ð ÞP a3…aLjH ; a1; a2ð Þ
¼ P a1jHð Þ

XL

i¼2
P aija1…ai−1;Hð Þ

ð3Þ
The n-gram model supposes that the occurrence of

each word is only dependent on the previous n-1 words,
so the above equation can be recalculated as:

P PjHð Þ≈
XL

i¼n
P aijai−nþ1…ai−1;Hð Þ ð4Þ

where the conditional probability can be estimated by
maximum likelihood estimation:

P aijai−nþ1…ai−1ð Þ ¼ C ai−nþ1…aið Þ
C ai−nþ1…ai−1ð Þ ð5Þ

where C(ai…aj) is the number of occurrence of amino
acid sequence ai..aj.
The same procedure can be applied to construct the

n-gram model of non-human proteins. The missing pro-
teins can be identified by using n-gram models to get
whether it’s native human proteins or not.

Results and discussions
Based on the n-gram models, there are 102 proteins in the
neXtProt “PE5” category which have high probabilities to
be native human proteins. In the following sections, these
proteins are analyzed by the predicted structure and func-
tion and annotations from other databases.

The structure and function analysis of the high-
probability proteins
Since the missing proteins have not been identified by
experiment methods, their structures and functions are
currently unknown. In this study, the structures and
functions of the high-probability proteins inferred by n-
gram models are predicted by I-TASSER and COFAC-
TOR software and the confidence scores outputted by
the software are used to indicate the reliability of the
prediction. The I-TASSER confidence score (C-score) is
computed by the accuracy of the threading programs
and the simulation results of the structural assembly
process. The value range is between -5 and 2, where
the higher the C-score value is, the more confident
the corresponding model is, and vice-versa. A model
with I-TASSER C-score larger than -1.5 means that
the structure topology is correct. The confidence
score (C-score) of COFACTOR is calculated based on
the confidence score of the structure prediction and
the similarity between the predicted models and their
native structures in the PDB. The COFACTOR C-
score are normalized between 0 and 1, where a large
value indicates a good prediction. Figure 1 shows the
distribution of I-TASSER and COFACTOR C-score of
the 102 high -probability missing proteins. The number of
foldable proteins (with C-score higher than -1.5) are less
than that of the un-foldable proteins (with C-score lower
than -1.5) which is also confirmed in our previous study

Fig. 1 The distribution of I-TASSER (a) and COFACTOR (b) C-score of the identified missing proteins
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about missing proteins [36]. The reason for this
phenomenon may be that the missing proteins are not
gene-coding proteins or there is no homology templates
used during prediction. Based on the results of structure
prediction, there are 7 foldable proteins whose I-TASSER
C-score are larger than the foldable threshold (-1.5).
These proteins have good structure models with no
homologous templates used during prediction, which
means that they may be gene-coding proteins. Most
of the COFACTOR C-scores are distributed between
0.3 and 0.6, where 8 proteins have very high COFAC-
TOR C-score. As shown in the figure, the COFAC-
TOR C-score for most of the missing proteins are
larger than 0.2, which indicates a good function pre-
diction based on experience evaluation.

Structural topology analyses of the I-TASSER models
The SCOPe library [37] is used as the classification cri-
terion of structure topology, which is an extended
structure library integrated from the standard SCOP
[38] and ASTRAL [39] databases. The structure class of
the I-TASSER model is assigned as the corresponding
structure class of the SCOPe domain which has the
highest structural similarity with the model. The struc-
ture alignment program TM-align [40] is used to calcu-
late the TM-score between the I-TASSER model and all
structural domains from SCOPe. If there are multiple
domains in target model, we selected the domain that
has the maximum TM-score to SCOPe domain. Figure 2
shows the distribution of the SCOPe class of the identi-
fied missing proteins. It is interesting that some missing

proteins have structure topology in ‘membrane and cell
surface proteins and peptides’ and ‘coiled coil proteins’
class. Such phenomenon is reasonable since these kind
of proteins are difficult to be identified by experiment
method.

Evaluation of the function base on gene ontology
The GO molecular function of the high-probability miss-
ing proteins is predicted by the COFACTOR package and
the number in each GO item is shown in Fig. 3. As shown
in the Fig. 3 GO terms come from the first level of GO
molecular function. Most of the high-probability missing
proteins have the GO function of ‘binding’ (GO:0005488)
and ‘catalytic activity’ (GO:0003824). However some miss-
ing proteins may be membrane proteins since they have
the GO function of ‘transporter activity’ (GO:0005215)
and ‘receptor activity’ (GO:0004872). The results are con-
sistent with the structural topology analysis in which there
are many membrane proteins in the missing proteins.

Comparision of subcellular localization
The subcellular localizations of proteins are critical for
their biological functions. The Hum-mPLoc 2.0 program
[31] is used to predict the subcellular localizations of the
high-probability missing proteins. The types of subcellu-
lar localizations and the number of proteins in each
types is illustrated in Fig. 4. Most of the proteins are lo-
cated at extracellular and nucleus. The missing proteins
are also observed at plasma membrane, which is also
confirmed by the results from the structural topology
analysis and function predictions.

Fig. 2 Relative frequency distribution of SCOP classes for the identified missing proteins
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HGNC mapping analysis
The HGNC [41] database is in charge of assigning a
unique symbol and name for each gene loci from human
genome. Most of the HGNC data are manually collected
and carefully checked [41]. The information from
HGNC gene loci provides valuable resource to identify
the missing proteins. Based on the Gene mapping, 71
out of the 102 high-probability missing proteins can be
mapped to one or more HGNC items. We collected the
corresponding gene loci types for the 71 missing pro-
teins and counted the number of missing proteins in
each loci type. The results are shown in Table 1. There

are 9 proteins confirmed by HGNC with gene loci type
“gene with protein product”. There are 26 pseudogenes.
Since pseudogenes are the products of evolution. They
usually have homologous proteins. That’s the reason why
there are many pseudogenes in the missing proteins.

Consistence analysis with other mass spectrometry
dataset
Mass spectrometry is currently one of the efficient
method to identify protein peptides. There are many
mass spectrometry data deposited in public database,
such as PeptideAtlas [42] and GPMDB [8]. The sketch

Fig. 3 The distribution of predicted GO items from the fist level of molecular function

Fig. 4 The distribution of subcellular localizations for the identified missing proteins
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of human proteome is drawing by mass spectrometry
data [26, 43]. Recently Kim et al [26] reported that about
two-third (2535/3844) of the “missing proteins” [11]
have been identified. Actually the “missing proteins”
used by Kim et al. are constituted by the neXtProt pro-
teins with evidence codes of “PE2”, “PE3” or “PE4”. This
paper aims to identify the “PE5” missing proteins. By
RefSeq [44] mapping, we found that there are 41 “PE5”
proteins which are also in Kim’s dataset. Among these
41 missing proteins, there are 6 proteins are foldable
based on the structure prediction results in non-
homology mode. These results indicate that our finding
are in good consistent with Kim’s results.

Conclusion
In this study, the human gene-coding proteins currently
undetected are identified by using biological language
models. The amino acid n-gram models of human and
non-human proteins are constructed. These models are
then used to identify the “uncertain” missing proteins with
evidence code “PE5” from neXtProt database. The results
show that 102 high probability proteins may be gene-
coding proteins. The structure, function and subcellular
localization of these proteins are then inferred by using
the advanced programs. The identified missing proteins
are then analyzed with the annotation from other data-
base. Without using homology templates, 7 proteins have
correct structure topology with I-TASSER C-score larger
than -1.5. The predicted functions are mainly within GO
items ‘binding’ (GO:0005488) and ‘catalytic activity’
(GO:0003824). 9 missing proteins are confirmed by
HGNC with gene loci type “gene with protein product”. 6
missing proteins are also detected by mass spectrometry
experiment. The analysis also shows that many of the un-
known proteins are membrane or natively disordered pro-
teins which are difficult to be detected. The identified
missing proteins need to be further validated by experi-
mental approach. The results in this study provides valu-
able complementary resource for the human proteome.
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