Skip to main content

Table 1 Simulation designs

From: Robust sparse canonical correlation analysis

Design Σ xx Σ yy Σ xy
Uncorrelated Sparse Low-dimensional 10−2·I p 10−2·I q \(10^{-2}\cdot \left [\begin {array}{ll} 0.9 & {\mathbf {0}}_{1 \times 3} \\ {\mathbf {0}}_{5 \times 1} & {\mathbf {0}}_{5 \times 3} \end {array}\right ]\)
n=100,p=6,q=4    
Correlated Sparse Low-dimensional \(10^{-2}\cdot \left [\begin {array}{ccc} 1 & 0.4 & \mathbf {0}\\ 0.4 & 1 & \mathbf {0}\\ 0 & 0 & \mathbf {I}_{4\times 4} \end {array}\right ]\) \(10^{-2}\cdot \left [\begin {array}{ccc} 1 & 0.4 & \mathbf {0}\\ 0.4 & 1 & \mathbf {0}\\ 0 & 0 & \mathbf {I}_{2\times 2} \end {array}\right ]\) \( 10^{-2}\cdot \left [\begin {array}{cc} 0.8 & {\mathbf {0}}_{1 \times 3} \\ {\mathbf {0}}_{5 \times 1} & {\mathbf {0}}_{5 \times 3} \end {array}\right ]\)
n=100,p=6,q=4    
NonSparse Low-dimensional 10−2·I p 10−2·I q 10−2·0.1 p×q
n=100,p=12,q=8    
Sparse High-dimensional 1 10−1·I p 10−1·I q \(10^{-1} \cdot \left [\begin {array}{cc}{\mathbf {0.45}}_{2 \times 2} & {\mathbf {0}}_{2 \times 2} \\ {\mathbf {0}}_{98 \times 2} & {\mathbf {0}}_{98 \times 2} \end {array}\right ]\)
n=100,p=100,q=4    
Sparse High-dimensional 2 \(10^{-7} \cdot \left [\begin {array}{cc} \mathbf {S}_{10\times 10} & \mathbf {0} \\ \mathbf {0} & 10^{-3}\cdot \mathbf {I}_{90\times 90} \\ \end {array}\right ]\) Σ xx \(10^{-7}\cdot \left [\begin {array}{cc}\mathbf {0.8}_{10\times 10} & {\mathbf {0}}_{10 \times 90} \\ {\mathbf {0}}_{90 \times 10} & {\mathbf {0}}_{90 \times 90} \end {array}\right ]\)
n=50,p=q=100    
  with \(\mathbf {S}_{ij}= \left \{\begin {array}{ll} 1 & if \ i=j\\ 0.8 & if \ i\neq j, \end {array}\right.\)   
Sparse Ultra High-dimensional \(10^{-7} \cdot \left [\begin {array}{cc} \mathbf {S}_{10\times 10} & \mathbf {0} \\ \mathbf {0} & 10^{-3}\cdot \mathbf {I}_{9990\times 9990} \\ \end {array}\right ]\) Σ xx \(10^{-7}\cdot \left [\begin {array}{cc}\mathbf {0.8}_{10\times 10} & {\mathbf {0}}_{10 \times 9990} \\ {\mathbf {0}}_{9990 \times 10} & {\mathbf {0}}_{9990 \times 9990} \end {array}\right ]\)
n=100,p=q=10000    
  with \(\mathbf {S}_{ij}= \left \{\begin {array}{ll} 1 & if \ i=j\\ 0.8 & if \ i\neq j, \end {array}\right.\)