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Abstract

Background: The lack of a continuous long-term in vitro culture system for Plasmodium vivax severely limits our
knowledge of pathophysiology of the most widespread malaria parasite. To gain direct understanding of P. vivax
human infections, we used Next Generation Sequencing data mining to unravel parasite in vivo expression profiles
for P. vivax, and P. falciparum as comparison.

Results: We performed cloud and local computing to extract parasite transcriptomes from publicly available raw
data of human blood samples. We developed a Poisson Modelling (PM) method to confidently identify parasite
derived transcripts in mixed RNAseq signals of infected host tissues. We successfully retrieved and reconstructed
parasite transcriptomes from infected patient blood as early as the first blood stage cycle; and the same methodology
did not recover any significant signal from controls. Surprisingly, these first generation blood parasites already show
strong signature of transmission, which indicates the commitment from asexual-to-sexual stages. Further, we place the
results within the context of P. vivax’s complex life cycle, by developing mathematical models for P. vivax and P.
falciparum and using sensitivity analysis assess the relative epidemiological impact of possible early stage
transmission.

Conclusion: The study uncovers the earliest onset of P. vivax blood pathogenesis and highlights the challenges of P.
vivax eradication programs.
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Background
Plasmodium vivax (P. vivax) infection has the most
widespread distribution across different continents of
any malaria parasite, with up to 2.6 billion people esti-
mated to be at risk [1]. It can lead to severe disease and
death but, despite the high disease burden [2], there is a
lack of in-depth understanding of the distinct pathogen-
esis of P. vivax. This has resulted in a lack of targeted
control measures. Thus, as malaria cases decline over-
all, the proportion of cases attributable to P. vivax is
on the rise [3].
Human malaria infection starts with the inoculation of

sporozoites into the skin dermis through the proboscis

of female Anopheles mosquitoes; the sporozoites are
hosted in her salivary glands. Some part of the inoculum
enters the bloodstream and within a few minutes they
invade hepatocytes in the liver [4, 5]. During the next
five to 8 days (depending on the Plasmodium spp), the
parasite transforms into a large exoerythrocytic form,
packed with thousands of merozoites inside a parasito-
phorous vacuolar membrane (PVM). As the parasite ma-
tures the membrane breaks down into small packets of
vesicles filled with merozoites. These are released into
the bloodstream, leading to erythrocytic invasion [6]. In
the next 48 h (depending on species) the parasite under-
goes mitotic division and cytoplasmic growth inside the
erythrocyte. They may develop either directly into a
schizont (asexual) or gametocyte (sexual) [7]. For P. fal-
ciparum the sexual stages are not found in the periphery
until after multiple blood stage cycles because gameto-
genesis, which requires bone marrow sequestration,
takes 10 to 12 days, to achieve the fully transmissible
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stage V gametocyte [8]. In contrast, the appearance of P.
vivax sexual stages is believed to be much earlier [7].
However, whether sexual commitment in P. vivax occurs
early still needs to be determined.
P. vivax has a complex transmission cycle with distinct

biological features compared to other malaria parasites,
most notably: the high prevalence of asymptomatic car-
riers and the potential for disease relapses [7, 9] and ga-
metocytes in circulation at the very beginning of
infections [10]. In contrast to the better studied Plasmo-
dium falciparum, P. vivax has the unique ability to re-
main as dormant hypnozoites in a hepatocyte in the
liver and, in the future, to reactivate a blood stage infec-
tion leading to what is termed a clinical relapse [7, 11].
Unlike P. falciparum, there are currently no established
laboratory methods to perform continuous long-term
culture of P. vivax in vitro [12]. Furthermore, in P.
vivax, the merozoites from both exo-erythrocytic and
intra-erythrocytic schizogony have strong preferences of
infecting reticulocytes [12], which typically comprise
about 1 % of red blood cells. This leads to low parasit-
emia rates in peripheral circulation. The host require-
ment of human reticulocytes and many other technical
challenges hampers studies of this parasite. These
unique P. vivax life cycle characteristics pose major chal-
lenges for the understanding of P. vivax pathogenesis
and hence the elimination of malaria worldwide [7].
We propose that better understanding of these complex

characteristics of P. vivax can be achieved by employing a
variety of new and established computational and mathem-
atical methods. We utilise cloud computing to achieve this,
as we believe that the cloud has the potential to transform
future analyses of sequencing data. These tools can uncover
traits of P. vivax that cannot be found experimentally as
well as teasing apart the different roles of these traits in
transmission of P. vivax at the population level.
In this study (Fig. 1), we examined patient blood se-

quencing data using data mining techniques to recover
P. vivax transcripts in the earliest time point possible
during the blood stage, i.e. immediately after sporozoite
invasion and the liver stage parasite ruptures into the
blood stream. We discovered a very early gametogenesis
expression signature, indicating the possibility of very
early sexual commitment and possible transmission. To
evaluate the epidemiological impact of this possible early
transmission, we constructed a novel mathematical
model of P. vivax transmission, which quantifies the ef-
fect of relapses, asymptomatic carriers and early trans-
mission. We used sensitivity analysis to compare all of
these characteristics of the P. vivax life cycle on the
spread of the disease at a population level. Combining
all of these methods allows us to explain why P. vivax
transmits so successfully and hence why it may be the
most difficult malaria to eradicate.

Results
Using cloud-based computational pipelines to mine
parasite derived transcript
To understand P. vivax in vivo pathogenesis, we first
utilized a set of publicly available NGS (Next Generation
Sequencing) raw data from Rojas-Pina et al. [13] that ex-
amined human immune responses against malaria. We
performed computational analysis to extract the low
levels of parasite signals from the raw sequencing data,
by using pre-infection data as negative controls (Fig. 1).
The study by Rojas-Pina et al. performed sporozoite
challenge on 12 volunteers with a single source of P.
vivax, and generated whole blood RNAseq before and
after the challenge. The post-infection RNAseq was pro-
duced around day 9 (diagnosis day), i.e., the first blood
stage cycle after the liver stage infection which usually
lasts for about 6–7 days [4, 5]. Due to the very low levels
of parasitemia at this time point, we first used a
cloud-based data mining pipeline to obtain pathogen se-
quences (P. vivax) in order to investigate the feasibility
of our project. We deployed the program PathoScope
2.0 in the Amazon Elastic Compute Cloud (Amazon
EC2: aws.amazon.com/ec2), due to the computational
scalability that can be achieved within a few minutes.
We mapped the entire set of raw sequencing reads to
the NCBI NR(Non-Redundant) reference sequences and
set P. vivax reference (Sal I) as targets. We have also
used other pathogens such as viruses and bacteria as
non-targets to increase the search specificity. From a
total of 12 pairs of pre and post infection RNAseq raw
sequencing reads data sets, we successfully detected P.
vivax sequences from 1000 to almost 50,000 reads in
post-infection samples (Table 1) (Fig. 2a). In contrast,
none of the pre-infection samples gave a significant
amount of reads (> 10).

Reconstruction of P. vivax in vivo transcriptome from very
early blood stage infection
Next, we used the Tuxedo RNAseq pipeline [14] to re-
construct transcriptomes from the 12 post-infection
samples, which is deployed in USF research computing
cluster. We aligned the entire sequence data to P. vivax
Sal 1 and Human (GHRc37) reference genome and esti-
mated the transcript abundances. The majority of the
raw reads cannot be assigned to any references, primar-
ily due to reads quality and possibly a small amount be-
longing to unknown genomes and the Phix179 control
genome generally used during sequencing library con-
struction. Reads originating from Phix were filtered prior
to implementation of the Tuxedo RNAseq pipeline. An
average of 16.8% of the reads can be mapped to human
genome reference GRCh37. On average only 0.45% total
reads on average mapped to the P. vivax reference gen-
ome (Fig. 2b). From the 12 post-infection RNAseq
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pathogen transcriptomes, we can detect over 95% of the
5625 total protein coding genes expressed at > 20 FPKM
(fragments per kilobase of exon per million fragments
mapped). For each patient, we can identify from 9% to
over 50% of the total protein-coding P. vivax genes are
expressed at > 20 FPKM (Additional file 1: Figure S1A).
To confidently identify parasite derived RNAseq signal

from infected host tissues, we developed a Poisson Mod-
elling (PM) method to characterize positive pathogen
signals above the background (i.e. parasite expression
levels in the pre-infected samples). We modelled back-
ground signal with a Poisson distribution and estimated

the significance of detected parasite transcriptional levels
with a Maximum Likelihood method (Additional file 2:
Table S1 and Additional file 3: TableS2).
Subsequently, we performed PM at two levels (Additional

file 1: Figure S2A). First, we used PM to evaluate patient
level infection signals of before and after infection, taking
the entire transcriptomes into account. Second, we used a
gene-by-gene PM evaluation approach to identify the sig-
nificantly expressed parasite genes in mixed sequencing re-
sults from human tissues as compared to pre-infection
samples (Additional file 1: Figure S2B). To cross-validate
our PM method, we have independently built our statistical

Table 1 Patient specific information from literature and RNAseq data analysis

Patient Number SRR (Sequence
sample number) [11]

Parasite Density on
Pre-patent Day
(Parasites/μL)

Patient Location [11] Total Reads % reads aligned
to Parasite Genome

% reads aligned
to Human Genome

1 SRR1925783 6 Cali 800,452 0.32 17.52

2 SRR1925785 10 Cali 1,410,398 0.24 16.92

3 SRR1925803 20 Buenaventura 949,274 0.09 16.1

4 SRR1925797 25 Buenaventura 415,781 0.19 19.52

5 SRR1925781 34 Cali 725,123 1.1 18.16

6 SRR1925795 34 Buenaventura 446,940 0.09 15.79

7 SRR1925787 38 Cali 1,055,063 0.1 13.43

8 SRR1925799 55 Buenaventura 587,972 0.29 16.51

9 SRR1925788 95 Cali 1,570,675 0.43 16.81

10 SRR1925790 110 Cali 712,547 1.13 18.48

11 SRR1925798 216 Buenaventura 1,238,628 0.98 15.14

12 SRR1925791 390 Buenaventura 711,395 0.2 17.49

Fig. 1 Study design and protocols. We have used two sets of RNAseq raw reads data pre and post sporozoite challenge from Rojas-Peña, et al.
The post challenge data are inferred as the first blood stage cycle sequencing data. The early transcriptome signature is compared with publicly
available in vivo P. falciparum and ex vivo P. vivax data to cross-validate the gametocyte signature in the early in vivo P. vivax infection
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model based on Negative Binomial Model (NBM)
(Additional file 1: Figure S3A B) and obtained very
similar results with only 0–2 genes expression in the
negative control of pre-infected samples.
To understand the molecular patterns associated with

P. vivax parasitemia, we designed a computational
method to search for parasitemia associated genes. First,
we grouped the patients into low (<=25 ul), medium
(34–55/ul) and high parasitemia (95–300/ul) groups,
based on the reported levels of parasitemia on
pre-patent day, i.e. a range of 11–13 days [15], a few days
later than the RNAseq samples were collected. We
recognize that, in reality, all the patients have very few
parasites during this early stage of infection, and the cat-
egories are primarily for statistical analysis. Then we per-
formed a non-parametric statistical analysis (Wilcoxon
test with p values adjusted with multiple hypothesis test-
ing correction) to search for transcripts that are posi-
tively and significantly associated with the levels of
parasitemia. In the top 20 in vivo parasitemia associated
genes (p < 0.05), we identified genes with peak expres-
sions in different asexual stages such as ring, trophozoite
and schizont. The top markers from parametric analysis
(based on Pearson’s r) are consistent with that of

non-parametric analysis. We clearly identify a gameto-
cyte expression signature at this early stage of in vivo in-
fection in the top ranking markers.

P. vivax early blood infection is associated with
gametocytogenesis
To understand the extent of gametocytogenesis gene ex-
pression and its relationship with parasite abundance,
we search for how many known gametocyte specific
markers are expressed. We first defined a set of 280
gametocyte specific genes by using P. falciparum ortho-
logous gene expression specificity (details in Materials
and Methods). We discovered that between 8 to 60% all
sexual stage specific genes are expressed in this early
blood stage (Additional file 1: Figure S1B). To further in-
vestigate the gametocytogenesis transcription pattern,
we identified 48 gametocyte related genes from the pa-
tient infected transcriptomes. We were able to identify
stage specific gametocyte markers with early markers
[16] such as tubulin-specific chaperone PVX_081315
and Pvs16 PVX_000930. We also found late markers
such as PVX_116610, indicating that there might be
mixed stages of gametocyte obligation at this early blood
stage. Furthermore, we found gender specific markers,

A B

D

C

Fig. 2 Recovering the earliest in vivo P. vivax blood stage transcriptome. Uninfected and post-infection blood samples were derived from the same
individual. A total of 12 paired individual genomics data were analysed. a Cloud-based sequence mining revealed that only the post-infection RNAseq
raw data set contains parasite sequences in all patients. Patient identifiers are from the publication by Rojas et al. The P. vivax reads number is
generated with stringent criteria and reflects conservative estimation. b On average, less than 0.5% of total signal is derived from P. vivax.
The mapped data of total reads and percentage of alignment in individual patient samples are listed in Table 1. c The log(FPKM) distribution of
all patients. FPKM represents fragments per kilobase of exon per million fragments mapped. Pre represents uninfected, while Dx means infected. Only
the genes with FPKM > 0 are plotted here. The labels on the horizontal axis represent de-identified patient numbers. d RNAseq recovered parasite
transcriptome in infected samples. RKPM refers to Reads Per Kilobase of transcript per Million mapped reads. Genes expressed in at least two patients
are plotted
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such as female markers like PVX_093600; as well as
male markers such as PVX_116610 (Additional file 4:
Table S3), indicating that there were mixed genders of
gametocytes developed from a single source of sporozo-
ite challenge. The transcriptional factor PvAP2-G is con-
sidered a master regulator and a specific marker for
early gametocyte production [17]. We are able to clearly
identify transcripts of PvAP2-G in 5 patients in the early
blood stage (Fig. 3a).
To validate our findings of gametocytogenesis expres-

sion signature in vivo, we analyzed an independently
generated, publicly available data set of ex vivo RNAseq
data from pooled infected patient blood [18]. To search
for relationships between expression levels and gameto-
cyte production, we classified the ex vivo P. vivax expres-
sion based on two transcriptome features in orthologous
genes of P. falciparum, namely, 1) Level of expression and
2) Specificity of gametocyte stage expression. We first
computed the average FPKM for each gene and converted
the values into a rank score from 0 to 100, with 100 repre-
senting the highest relative expression levels. Then we an-
alyzed the levels of gametocyte expression specificity by
calculating the ratio of sexual stage FPKM vs. asexual
stage FPKM, the higher values indicate higher levels of
sexual stage expression specificity. We found that the
gametocyte specific genes in fact are the highest expressed
genes in the ex vivo data (Fig. 3b). The top quartile of
most highly expressed genes in the ex vivo data consists of
more than 40% of gametocyte specific genes. The ex vivo
data has even stronger gametocyte expression pattern
than that of the early in vivo data (Additional file 1:
Figure S4). The ex vivo enhanced gametocyte induc-
tion could be due to the abiotic stress of the culture

conditions [19]. By analyzing the precise peak expres-
sion time in the ex vivo expression data set, we found
that gametocyte specific genes are mostly expressed
in late schizont/early ring stage, despite the fact that
these stages have the lowest number peak expression
genes (Additional file 1: Figure S5 A B). P. falciparum
and P. vivax appear to share a pattern in which com-
mitment to gametocyte development occurs in the
schizont stage [20]. The ex vivo analysis strongly sup-
ports our in vivo analysis, that P. vivax parasitemia is
associated with commitment to gametocytemia.
We next compared our in vivo P. vivax analysis with

that of P. falciparum. Similar to P. vivax analysis, we
have identified the top 20 transcripts associated with
parasitemia from 116 whole blood samples of P. falcip-
arum infected patients (data deposited in the publication
by Yamagishi, et al., [21] (Fig. 4a, b). We defined these
markers by searching for the gene expression levels that
are most strongly associated in Spearman correlations
with the levels of P. falciparum parasitemia among over
5000 unique transcripts. We found that in contrast to P.
vivax parasitemia markers, P. falciparum parasitemia
driven genes have peak expression only in the merozo-
ite/early ring stages and many of them are associated
with protein export as PEXEL containing proteins. None
of the top P. falciparum parasitemia markers are gam-
etocyte related in terms of peak expression pattern.
The differences between in vivo P. vivax and P. falcip-

arum expression in relation to gametocytogenesis is twofold
as revealed by our analysis. First, P. vivax has gametocyte
specific gene expressions correlated with parasitemia levels
in this in vivo data set. Secondly, P. vivax’s most abundant
in vivo and ex vivo transcripts include gametocyte specific

Fig. 3 Discovering gametocyte signatures from early P. vivax in vivo RNAseq. a Five patients showed expression of PvAP2-G, a master regulator of
Plasmodium gametocyte production. The numbers on the plot represent de-identified patient numbers. b Gametocyte specific genes are the
most highly expressed genes in ex vivo P. vivax RNAseq transcriptomes. The x axis refers to the ratio of FPKM levels for sexual to asexual stages
gene expressions. The top quartile of most highly expressed genes (Normalized rank score > =75) in the ex vivo data consisted of more than 40%
of gametocyte specific genes
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genes (Additional file 1: Figure S4). For P. falciparum, nei-
ther parasitemia correlations nor high gene expression levels
show strong associations with sexual commitments.
Although P. falciparum in vivo data do contain some
sexual stage gene transcripts, the expression levels are
much lower as compared to P. falciparum merozoite/
ring stage gene expressions levels.
Therefore, we conclude that the two malaria parasites

in vivo pathogenesis show distinct patterns. P. falcip-
arum parasitemia is likely to be more associated with
asexual cycle protein export and host red blood cell re-
modelling; whereas P. vivax shows clear gametocyte ex-
pression signatures from the first blood stage cycle.

Mathematical modelling shows unique P. vivax transmission
pattern
P. vivax has unique biology with respect to its popula-
tion dynamics, such as hypnozoite formations and dis-
ease relapses. Our finding of potential early transmission
adds another important aspect to its population dynam-
ics. To evaluate these different parameters' impact on
disease transmission, we performed a sensitivity analysis
of the effect of different components of P. vivax disease
spread (Fig. 5). The most influential parameter on rela-
tive R0, the basic reproductive number of the disease, is
k2, which determines the proportion of human hosts
that recover with hypnozoites, and hence the possibility
of relapse. It causes R0 for P. vivax to vary from less than
2.1 to over 2.5 times the values for P. falciparum (set to
1, when p = 1, where p is the proportion of P. falciparum
hosts that are symptomatic). The second most influential
parameter on changes in relative R0 is ε, the reduction in
the length of the incubation period. When there is no

difference between P. falciparum and P. vivax, that is ε
is 0 days, R0 is lowered to less than 2.2. However, when
the incubation period is shortened for P. vivax by ε = 7
days, as we expect from our experimental results, R0 is
2.4. Therefore, if the reduction in incubation time is not
considered, mathematical models could miscalculate R0,
underestimating it by approximately 11%. Parameters υ
and η, the rate of relapse and the rate of hypnozoite
death in the liver respectively, are also influential in de-
termining the value of R0, as are the parameters related
to proportion of hosts that show symptoms, p and k3.
Varying p from 1 to 0 increases the number of asymp-
tomatic hosts in both P. falciparum and P. vivax. Even
though k3 = 1 in this scenario and, therefore, there are
exactly the same proportions of asymptomatic cases in
both diseases, this change in p leads to a reduction in
the relative value of R0 for P. vivax. This is because it in-
creases R0 for P. falciparum proportionally more than it
increases R0 for P. vivax (the actual increases are ap-
proximately the same but P. falciparum has a lower ini-
tial value). Therefore, the role of asymptomatic hosts in
malaria generally leads to increased R0 equally for the
two diseases. However, the difference in R0 is larger (i.e.
R0 is more sensitive) when k3 is varied compared to p.
This indicates that it is necessary to understand the like-
lihood of asymptomatic cases in P. vivax compared to P.
falciparum to accurately predict differences in disease
spread. The influence of these parameters highlights the
importance of understanding the role of the asymptom-
atic stage correctly.
We further explore the role of the reduction in the in-

cubation period length in Additional file 1: Figure S6,
which shows the effect of not including relapses in the

A B

Fig. 4 Comparison of P. falciparum and P. vivax in vivo transcriptomes. Top ranked markers that correlated with the levels of parasitemia are used
for plotting. The top ranked parasitemia markers in P. falciparum are derived from 116 patients’ in vivo infection data. And the top ranked parasitemia
markers in P. vivax are from 12 in vivo early infection data. a Exported protein proportions in P. falciparum and P. vivax. Exported proteins are defined
as PlamsoDBv27 PEXEL containing proteins; and they are likely be involved in host cell remodelling. b Life cycle peak expression markers in
P. falciparum and P. vivax. The peak expression patterns are assigned with all differentially expressed genes in 7 stages when there are
more than 2-fold difference between stages
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model and not accounting for asymptomatic hosts trans-
mitting the infection in P. vivax. When we model the
asymptomatic class as capable of transmitting infection
but are unsure what proportion of hosts are in this cat-
egory, our uncertainty in R0 is small (Additional file 1:
Figure S6A). On the other hand, when asymptomatic
hosts for P. vivax exist but the existence of these asymp-
tomatic cases is unknown and hence not modelled as
capable of spreading disease, there is a drastic under-
estimation of R0, the potential for spread, of P. vivax
(Additional file 1: Figure S6B). In fact, if more than
40% of infectious hosts are asymptomatic compared
to P. falciparum, the estimate of R0 for P. vivax
would be less than for P. falciparum when in reality
it is approximately 2.5 times larger. Similarly, when
the model does not account for relapses, the estimate
for R0 is halved (Additional file 1: Figure S6B).

Discussion
Our study has uncovered the earliest possible in vivo in-
fection transcription patterns of blood stage P. vivax, a
parasite that cannot be cultured in the laboratory. With
malaria eradication always in the spotlight of the scientific
and public health community, there is an urgent need to
understand the unique biological and physiopathological

features of P. vivax. If, as our data suggest, P. vivax trans-
mission to mosquitoes is plausible at the very first blood
stage cycle immediately after liver stage development, this
would represent a major hurdle towards targeting P. vivax
reservoirs. Due to ethical and practical limitations to ob-
tain experimentally infected P. falciparum data in vivo,
our study used P. falciparum data without defined infec-
tion age. Nevertheless, the major differences we have dis-
covered between P. vivax and P. falciparum, in terms of in
vivo gene expression, suggest that P. vivax begins gameto-
cyte production immediately upon entering the blood,
whereas more research is needed for early gametocyte
production in P. falciparum.
Early stage I gametocytes of P. falciparum can be ini-

tially in peripheral blood and are microscopically indis-
tinguishable from early rings [22, 23]. Yet, we did not
find strong transmission expression signatures. It stands
to reason that the 1–2 weeks of bone marrow sequestra-
tion that P. falciparum needs in order to achieve a fully
transmissible stage V truly represents an advantage for
P. vivax transmission over P. falciparum. Further, it has
been demonstrated [24] that even very few gametocytes
in circulation, such as inferred from our study on P.
vivax, can effectively mount an infection in the mos-
quito host [24]. Our mathematical model indicates that

Fig. 5 Mathematical model of P. vivax exploring the effect of reduced incubation period on spread of disease. A sensitivity analysis is performed
on relative R0 for P. vivax (relative to P. falciparum). Green indicates when the parameter has been lowered from its baseline value, pink indicates
higher than baseline (therefore R0 is positively correlated with the first four parameters and negatively correlated with the last four parameters).
Parameters ε, p and k3 are varied between 0 and 7, 0–1, and 0–1 respectively, all other parameters are varied by 10%. Parameters and their baseline
values are: proportion of hosts that develop hypnozoites (k2, 0.68), reduction in incubation time (ε, 3.5), proportion of hosts developing symptoms in P.
falciparum (p, 1), rate of relapsing (ν, 1/72), host death rate (μH, 3.84 × 10−5), proportional rate of disease-induced death for P. vivax (k1, 0.25), rate of
hypnozoite death in liver (η, 1/223) and proportion of hosts developing symptoms in P. vivax relative to P. falciparum (k3, 1). Parameter values are in
Additional file 5: Text S1
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this advantage in early transmission for P. vivax leads to
a higher reproductive number relative to P. falciparum,
signifying a greater ability to spread quickly throughout
populations. Hence, without including shorter incuba-
tion periods, models may underestimate the work re-
quired to reduce transmission of P. vivax within a
population.
A study in native Amazonian populations [25] found

that the proportion of symptomatic and asymptomatic
clinical forms was roughly similar for both P. falciparum
and P. vivax. However, others have reported that the
relative proportion of submicroscopic P. vivax is signifi-
cantly higher than that of P. falciparum [26, 27]. Taking
into account that over 89% of P. vivax submicroscopic
infections are said to be asymptomatic [28], the balance
in terms of better asymptomatic transmissibility falls on
the side of P. vivax. Altogether, this evidence suggests
that the differences we have discovered between P. vivax
and P. falciparum, in terms of in vivo gene expression,
suggests that P. vivax has the ability to spread quickly to
multiple hosts before the onset of symptomatic pheno-
types. Our mathematical model found that the propor-
tion of hosts that are asymptomatic in P. vivax
infections has a greater impact on population spread of
the disease than the proportion in P. falciparum. Fur-
ther, the model highlights the importance of including
the asymptomatic stage within models, even if the exact
proportion of hosts that will not show symptoms is un-
known (Additional file 1: Figure S6). A further factor to
consider is that symptomatic cases of P. vivax are much
more likely to seek treatment than asymptomatic cases
[29]. We assumed the recovery rate was the same across
symptomatic and asymptomatic cases. However, if the
recovery rate for symptomatic cases is higher, the role of
asymptomatic cases in increasing disease transmission
will be even more significant.Thus, the results from
across the computational methods we use confirm the
idea, held widely, that P. vivax will be the last parasite
standing before the goal of malaria eradication is to be
achieved [3].
Our mathematical model highlights the important role

of relapses and asymptomatic cases, similar to previous
mathematical models of P. vivax [30, 31] and epidemio-
logical studies [32, 33]. However, the sensitivity analysis
we perform allows a quantitative comparison of each of
these traits, including the reduction in incubation time,
on the reproductive ratio, relative to P. falciparum. It as-
serts that relapses are the most influential factor on in-
creases in disease spread. And yet, relapses are poorly
understood with no consensus on what causes them to
occur or on their frequency. Our model can be used for
further exploration of P. vivax dynamics and can also be
adapted to account for the potential evolutionary conse-
quences of reducing the length of the incubation period.

A shorter incubation period could indicate lower pro-
duction of efficient gametocytes, therefore the probabil-
ity of successful transmission from an infected human to
mosquito could be reduced [34]. This could be achieved
by introducing a trade-off function between these two
parameters in the model. However, the form of this
trade-off function is not clear and would need to be in-
vestigated experimentally. The potential reduction in in-
cubation period, and hence early transmission, has a
substantial impact on disease spread, dependent on this
evolutionary trade-off. Other potential differences be-
tween P. falciparum and P. vivax such as a reduced de-
velopment time in the mosquito or the length of waning
immunity, could have an effect on the relative R0 be-
tween the diseases, but we have not included these in
our model. This may limit our ability to understand the
transmission properties of the two malaria strains. Nor
did we include superinfection of multiple diseases within
one host. Further studies are required to determine, for
example, the interaction of different diseases within a
single host. P. falciparum may mask the symptoms of P.
vivax which essentially increases the proportion of
asymptomatic P. vivax cases [35].Our model focuses in-
stead on some of the differences between P. falciparum
and P. vivax and assesses which are of most importance
in determining changes in relative R0. The fact that our
model is relatively simple compared to previous P. vivax
models [30, 31, 36] allows us to more clearly determine
how each parameter affects R0.
We used a cloud-based mining method as part of our

study which we employed at a pricing of $0.13/h. All the
computational storage was synced with Amazon Simple
Storage Service (Amazon S3), which automatically scales
according to the current usage requirements. This facil-
ity gave us a cost effective ($0.03 per GB) advantage over
the fixed storage on the local computing cluster. Further,
this approach does not require local High Performance
Computing (HPC) facilities and can accommodate high
volumes of data analysis within short time frames. As
publicly available genomic data grow in complexity and
volume every day, more efficient and more precise ana-
lytical tools are needed for future studies. Our study is
an example for infectious disease researchers on how to
use large raw sequencing data to investigate previously
intractable pathogenesis-related features. Infectious disease
scientists could use similar approaches in resource-limited
research settings.
We use a wide variety of computational tools to un-

cover the transmission potential of P. vivax, such as
cloud computing, data mining, mathematical models
and cross-platform genomics data comparisons. In our
study, we used a more robust method (non-parametric
analysis) to give a conservative estimate for P. vivax in-
fection data because the P. vivax data set is smaller than
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that of P. falciparum. The results of non-parametric and
parametric analysis of P. vivax parasitemia associated
gene expressions are mostly consistent (Pearson’s r =
0.784). Overall, the unique transmission of P. vivax leads
to a much higher likelihood of disease spread compared
to P. falciparum in similar settings. Although future
transmission studies need to be conducted to further
verify the transmission window of these malaria para-
sites, our work highlights the challenge of P. vivax eradi-
cation and provides evidence for the need for more
thorough and earlier transmission intervention mea-
sures. Controlled transcriptomic studies comparing P.
falciparum and P. vivax gametocyte gene expression in
oocysts and sporozoites are needed in order to under-
stand how soon sexual commitment is decided in the P.
vivax complex life cycle. Since P. vivax commits to
gametocytogenesis early in the blood stage, rationally de-
signing a treatment or vaccine targeting the early blood
stage will reduce transmission rates. However, targeting
treatment at such an early stage is difficult to achieve
and once again re-enforces the idea that P. vivax may be
the most difficult malaria to eliminate.

Conclusion
In this study, we used cloud and local computation with
Poisson modelling to reconstruct the earliest in vivo
blood stage transcriptome of P. vivax infection. We
found that hundreds of sexual stage specific genes are
already expressed in the first blood stage cycle. Further-
more, our novel mathematical modelling quantifies the
epidemiological impact of the complex life cycle of P.
vivax; and highlights the important challenges for P.
vivax control.

Methods
Mining parasite data from infected human tissues
We used the blood transcriptome data sets deposited in
Gene Expression Omnibus (GEO) under accession num-
bers GSE67184, GSE61252 associated with the in vivo P.
vivax sporozoite challenge [13] and ex vivo P. vivax
asexual stage culture [18] respectively. We also use the
in vivo P. falciparum infection genomic reads [21] de-
posited in DNA Data Bank of Japan (DDBJ) under acces-
sion number DRA000949 to compare the transcript
abundances with the above datasets.
PathoScope 2.0 [37] framework is used to quantify

proportions of reads from individual species present in
sequencing data from samples from environmental or
clinical sources. A spot Elastic Computing Cloud (EC2)
instance r3.4xlarge (Virtual CPUs – 16, Memory (GB) –
122, Storage (SSD GB) – 320)) was employed. We used
the Patholib module along with National Centre for Bio-
technology Information (NCBI) vast nucleotide database
to create filter genomes containing host (human),

microbes (virus, bacteria), artificially added sequence
(PhiX Control v3, Illumina) and target genome library
containing P. vivax Sal-1 sequences using their respect-
ive taxonomic identifiers. PathoMap module is used to
align the reads to target library using the Bowtie2 algo-
rithm [38] and then filters reads that aligned to the fil-
tered genomes. PathoReport was used to annotate the
sequences.
The Tuxedo suite [14] of programs (Bowtie2, TopHat2,

and Cufflinks) were used to process and analyze the
data. Reference genomes of Human (GHRc37) from
Ensembl human genome database and P. vivax Sal-1
from PlasmoDB—a Plasmodium genome resource.
Bowtie2 [38] was used to build indexes of the reference
genomes. RNASeq reads from each sample were aligned
to the P. vivax Sal-1 genome using TopHat2 (v. 1.4.1)
[39]. A maximum of one mismatch per read was
allowed. The mapped reads from TopHat were used to
assemble known transcripts from the reference, and
their abundance FPKM (fragments per kilobase of exon
per million fragments mapped) values were calculated
for all genes using Cufflinks.

Gene expression level estimation with Poisson modelling
(PM)
Poisson distribution has been widely used to estimate
the background level of gene expression [40–42]. In this
work, we used Poisson distribution to model the back-
ground expression level (x) for each patient.

x � Pois λð Þ ð1Þ

p xjλð Þ ¼ e−λλx

x!
ð2Þ

It is well known that the unbiased estimator of λ is the
mean value of x, which can be calculated from max-
imum likelihood estimation.

λ̂ ¼
P

x
n

ð3Þ

where ∑x is the sum of gene expression level of specific
patient or gene; n is the number of genes considered.
Finally, we can compare the expression levels between
different patients or genes by using the mean value of
estimated distribution.
Negative Binomial (NB) distribution has been widely

used to estimate the background level of gene expression
[43–45]. In this study, we also used NB distribution as
an additional method to model the background expres-
sion level (x) for each patient. The NB distribution also
arises as a continuous mixture of Poisson distributions
where the mixing distribution of the Poisson rate is a
gamma distribution.
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x � Poisson λð Þ ð1Þ

λ � gamma γ;
1−p
p

� �
ð2Þ

By using bayes rule

P xð Þ ¼
Z

P xjλð ÞP λð Þ dλ ¼ Γ γ þ xð Þ
x!Γ γð Þ px 1−pð Þγ ð3Þ

The parameters can be estimated by maximum likeli-
hood. Finally, we compared the expression levels be-
tween different patients (samples) or genes by using the
expectation value of estimated distribution. The methods
based on NBM and PM gave very similar results.

Analysis of RNAseq data
The sexual stage specific genes are defined by using the
7 stages RNAseq data [16]. The stage specific RNAseq
dataset is from Illumina-based sequencing of P. falcip-
arum 3D7 mRNA from gametocyte stage II and gameto-
cyte stage V), and ookinete. The dataset has also four
time points of asexual stages representing ring, early
trophozoite, late trophozoite, and schizont. The ortho-
logs of P. vivax and P. falciparum were mapped with
OrthoMCL data [46]. Sexual stage specific genes are re-
quired to have 20 or more fold expression level FPKM
differences in the sexual stage (gametocytes, ookinete) vs
the time points in the blood stages. The expression dif-
ferences between asexual and sexual stages were ana-
lyzed with Fisher’s Exact tests, and the P values (< 0.001)
were adjusted by multiple hypothesis correction with
Benjamini-Hochberg method.

Mathematical modelling of P. vivax transmission
We created two mathematical models to represent the
population-level spread of disease among humans and
mosquitoes for P. falciparum and P. vivax malaria. We
do this to allow comparisons between the two malaria
diseases, in order to assess which differences between
the two have the most influence in producing the
current epidemiological profile of the two diseases. This
can inform us whether our genomics research results are
an important aspect of P. vivax spread within popula-
tions. Similar to many models of vector-borne diseases
which were developed for malaria, we categorize humans
and mosquitoes into compartments based on their infec-
tion status, such as Susceptible, Exposed, Asymptomatic
and Infected, [47–49] see Additional file 5: Text S1). In
both models, we include a time delay in human acquisi-
tion of disease, the possibility of asymptomatic hosts,
waning immunity, disease-induced death for symptom-
atic hosts, natural death and frequency-dependent trans-
mission between mosquitoes and hosts. The major
structural difference between the two models is the

inclusion of hosts with hypnozoites in the P. vivax
model; other differences are implemented through
changes in parameter values. Specifically, the parameters
that alter are the proportion of hosts with symptoms,
the disease-induced death rate (lower for P. vivax), the
length of the incubation period and the recovery rate.
Accounting for relapses of P. vivax has been achieved in
models usually by many additional compartments to
represent all the various transitions that can occur (e.g.
see [30, 31, 36]). Our model is novel for the simple but
effective way it introduces relapses in P. vivax, by
including a single compartment for humans with hepa-
tocytes in which transition into and out of this compart-
ment is parameterised by the average number of relapses
each human is expected to have [50, 51]. For both the P.
vivax and P. falciparum model we calculate R0, the basic
reproductive number of the disease. This is a commonly
used, fundamental metric of disease transmission poten-
tial defined as the number of people one infected person
is able to infect in a susceptible population. If R0 > 1
then the disease is likely to take off and spread widely
throughout the population. As the models for P. vivax
and P. falciparum contain many similar components, we
assess the relative R0 for the diseases, i.e. we divide all
values of R0 for P. vivax by the value of R0 for P. falcip-
arum. The model structure and resultant calculation of
relative R0 allows us to easily make comparisons be-
tween the two diseases as well as ignore potential error
in parameter values for those parameters which are
shared between the two models.
In order to assess the impact of early transmission in

humans on disease spread compared to other differences
between P. falciparum and P. vivax, we perform a sensi-
tivity analysis of R0 for P. vivax. For each parameter, we
vary its value and calculate the new value of R0 to deter-
mine the effect of each parameter. We introduce param-
eter ε to represent the reduction in the length of the
incubation period for P. vivax in comparison to P. fal-
ciparum; thus ε varies from 0 to 7 days to indicate a re-
duction from 14 to 7 days in the incubation period. That
is, the larger ε is, the bigger a difference between P. fal-
ciparum and P. vivax, indicating earlier transmission for
the latter disease. The parameter p represents the pro-
portion of humans that are symptomatic in the P. falcip-
arum model, and thus p varies from 0 to 1. In
comparison, k3p indicates the proportion of symptom-
atic hosts in the P. vivax model, therefore, by focusing
on k3 between 0 and 1, there are less symptomatic cases
for P. vivax than for P. falciparum. Thus, this ensures
that there are more asymptomatic cases for P. vivax. All
other parameters are varied by 10% to create a range
from 90 to 110% of the baseline value of each parameter.
The more R0 changes when a parameter is varied, the
more influence that parameter has on R0. In this way we
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can compare how much effect reducing the length of
the intrinsic incubation period has on disease spread
versus the role of other differences between P. vivax
and P. falciparum.
Full details of the models created and the parameter

values chosen as base values are presented in Additional
file 5: Text S1.
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