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Abstract

Background: Recent research has found that abnormal functioning of Microtubules (MTs) could be linked to fatal
diseases such as Alzheimer’s. Hence, there is an imminent need to understand the implications of MTs for disease-
diagnosis. However, studies of cellular processes like MTs are often constrained by physical limitations of their data
acquisition systems such as optical microscopes and are vulnerable to either destruction of the specimen or the
probe. In addition, study of MTs is challenged with non-uniform sampling of the MT dynamic instability phenomenon
relative to its time-lapse observation of the cellular processes. Thus, the above caveats limit the overall period of time
that the MT data can be collected, thereby causing limited data availability scenario.

Results: In this work, two novel superresolution frameworks based on Expectation Maximization (EM) based
Maximum Likelihood (ML) estimation using Kalman filters (MLK) technique are proposed to address the issues of
non-uniform sampling and limited data availability of MT signals. The proposed MLK methods optimizes prediction of
missing observations in the MT signal through information extraction using correlation-based patch processing and
principal component analysis -based mutual information. Experimental results prove that the proposed MLK-based
superresolution methods outperformed nonlinear interpolation and compressed sensing methods.

Conclusions: This work aims to address limited data availability and data/observation loss incurred due to
non-uniform sampling of biological signals such as MTs. For this purpose, statistical modelling of stochastic MT signals
using EM based ML driven Kalman estimation (MLK) is considered as a fundamental framework for prediction of
missing MT observations. It was experimentally validated that the proposed superresolution methods provided
superior overall performance, better MT signal estimation using fewer samples, high SNR, low errors, and better MT
parameter estimation than other methods.
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Background
Research on Microtubules (MTs) have recently garnered
a great level of interest due to its anomalous functioning
being associated with the onset of several lethal diseases
including Alzheimer’s disease [1], Parkinson’s disease [2],
and various forms of cancer [3]. Essentially, MTs are
intra-cellular polymers made of tubulin protein dimers [4]
which are found in all eukaryotic cells, and play major
roles in many intra-cellular activities such as trafficking,
mitosis, cell motility [4], and chromosome segregation [5].
Under fixed external conditions, it was first noted that
the MTs reached a steady state while randomly switching
between polymerization (growth) and depolymerization
(shrinking) states [4]. This unique phenomena of MTs
randomly switching between the two states was named as
“dynamic instability” by Mitchison and Kirschner [4, 6–8].
It was later reported in [9, 10], that the MTs were in fact
switching spontaneously between three states, namely,
growth (g), pause (p) and shrinkage (s). This three-state
dynamic instability model involves eight parameters: six
transition rates between the states of growth, pause and
shrinkage and growth and shrinkage velocities vg and vs.
The average length and mean lifetime of a MT depends on
the threshold quantity of these parameters.

Optical microscopes have been utilized for decades as a
mainstay for data collection of various cellular processes,
such as MTs. Even after modern technological advances in
the area of microscopy like single molecule sensitivity, and
frame rates in microseconds, optical microscopes are still
vulnerable in either damaging the specimen of interest,
or the probe during the course of experiment. Moreover,
the probe can only be illuminated for a certain period of
time, making data collection an arduous task, and data
availability is rendered-sparse with respect to the time
scale of intra-cellular processes [11, 12]. Especially, in case
of MTs, where its high temporal resolution is imperative
to estimate the dynamic instability parameters, under-
stand the MT behavior, and other cellular activities. In
particular, estimation of MT dynamic instability parame-
ters is crucial to understand the state of the MT system
and study its relationships to the occurrence of fatal dis-
eases like Alzheimer’s. Consequently, it signifies the need
for stochastic methods that can analytically overcome
the challenges such as scarce data availability, and equip-
ment limitations through better signal reconstruction and
estimation techniques.

Many statistical methods for modeling stochastic sig-
nals have been suggested in literature such as hidden
Markov models (HMMs) for capturing the underlying sig-
nal variability [13]. As a variation of traditional HMMs,
many wavelet-based HMMs have evolved because of
their capability to model real-world non-Gaussian signals
[14, 15]. Compressed sensing (CS) [16, 17] and other sub-
space learning methods [18] have also been proposed to

reconstruct signals using fewer samples than the Nyquist
rate. In literature, it has also been proposed to use maxi-
mum likelihood (ML) technique to estimate parameters of
a linear dynamic system from the observed data [19, 20].
Typically, this involves formulation of a time-varying
Kalman predictor with a likelihood function to minimize
the prediction error. In this case, a convergence assump-
tion is made for sufficiently large observations which
transforms the minimization of likelihood function to a
nonlinear programming problem [21–23]. As an alterna-
tive, it was proposed to use Expectation-Maximization
(EM) based maximum likelihood (ML) estimation in
Kalman filters with the assumption that the state is now
observable. This assumption simplifies the convergence
criteria by eliminating the need for a large observation
limit and facilitates to solve cases with missing observa-
tions [24]. Kalman filters have been proved to be opti-
mal in minimizing mean square error sense, under the
assumption that all noise is Gaussian. Therefore, the use
of EM- based ML estimation in Kalman filters as a means
to study MTs is very relevant, since we want to minimize
the residual error between the original MT signal, and the
predicted MT signal.

In this paper, the MT signal is modelled as a three-state
stochastic random evolution signal on which non-uniform
sampling is performed to emulate the data loss in real-
world scenario [11, 12]. Our motivation is to improve
prediction of the missing time-lapse intra-cellular obser-
vations analytically; in an effort to minimize the effect
of external dependencies such as spatio-temporal resolu-
tion, and experimental equipment precision. For this, we
propose two novel methods for superresolution of MT
signals based on non-uniform sampling, using EM based
ML estimation Kalman filter for better prediction of the
interpolated MT signal, which is followed by correlation
coefficient (R)- based patch processing (MLK-R) [25] and
principal component analysis (PCA)-based mutual infor-
mation (MI) criterion (MLK-MI) for information extrac-
tion to further optimize our final predicted MT signal.
We estimate the dynamic instability parameters for three
states in MTs using wavelet-based peak detection and
compare it with our previous work using CS [16]. Our
proposed methods MLK-R and MLK-MI gave superior
overall performance compared to all other methods, bet-
ter MT signal recovery and gave high SNR with low errors
validating the efficacy of our approaches.

Methods
Non-uniform sampling and interpolation
Consider a stochastic input MT signal x(n) with N sam-
ples. Non-uniform sampling is performed on this MT sig-
nal x(n) to generate its downsampled low resolution ver-
sion xl(n). The non-uniform sampling case is specifically
considered to emulate the loss of information occurring in



Menon et al. BMC Systems Biology 2018, 12(Suppl 6):112 Page 119 of 128

the real-world scenario due to hardware limitations of the
data acquisition system [11, 12]. Therefore, the assump-
tion is that the only signal available at hand for data
analysis is the low resolution MT signal xl(n). To accom-
modate the missing values due to non-uniform sampling,
a nonlinear interpolation scheme such as piecewise linear
interpolation is then used on the low resolution MT signal
xl(n) to get its corresponding high resolution interpo-
lated version xh(n). From this high resolution interpolated
frame we can generate a dictionary of d new low reso-
lution frames through interlaced non-uniform sampling,
where each frame is derived with a constant shift factor εi
from the first frame as below:

xli(n) = {x(mod(εi, N)), x(mod(d + εi, N)), x(mod(2d + εi, N)), . . . ,

x(mod((s − 1)d + εi, N))}
(1)

where i = 2, . . . , d+1, and xl1(n) = xl(n), mod = modulo
operator. For simplicity, we choose εi = i + 1, and d is
the resolution factor and it also denotes the level of down-
sampling performed. For e.g. d = 2 implies that the signal
was downsampled by a factor of 2. s is the number of sam-
ples in each frame, calculated as s = ⌊N

d
⌋

. For consistency,
nonlinear interpolation using piecewise linear interpola-
tion method is performed on the d new low resolution MT
signals xli(n) to get their corresponding high resolution
MT signals yhi(n).

Expectation-maximization based maximum likelihood
estimation of a stochastic MT system
From the previous section, it is assumed that we are only
given the low resolution MT signal and that nonlinear
interpolation is used as a basis to provide a first esti-
mate for missing signal values and yield the corresponding
high resolution MT signals. Thus, the problem of esti-
mation of missing observations of a stochastic MT signal
from few known measurements can be formulated as a
d series of Maximum Likelihood (ML) parameter estima-
tion for a time-varying linear dynamic MT system from
observations at hand yhi(n). Our goal is to achieve the
best approximation x̂hi(n) of the unknown input signal
(or state vector) x(n) from observed yhi(n). Let the set
of observations Y = {

yh1(n), yh2(n), . . . , yhd+1(n)
}

be
generated by a linear dynamic MT system. Then the time-
varying Kalman filter equations describing the system can
be formulated as below (using notation xn = x(n)):

xn+1 = Fxn + wn

yn = Hxn + vn
(2)

The F matrix represents the state at the previous time step
n to the state at the current step n+1 in the absence of pro-
cess noise. The matrix H gives the relationship between
the state xn to the measurement yn. Both process noise wn

and measurement noise vn are assumed as uncorrelated
zero mean white Gaussian noise vectors with covariances:

E
{

wnwT
m

}
= Q

E
{

vnvT
m

}
= R

(3)

Where T denotes transpose of a matrix, Q represents
process noise covariance and R for measurement noise
covariance. In practice, the matrices F , H, Q and R are
subject to change with each time step or measurement
(See [22] for detailed information). It is also assumed that
the initial conditions for state x0 is Gaussian with a known
mean and covariance (μ0, �0). Theerefore, the ML esti-
mates of the unknown parameters θ in F , H, Q, R, can be
obtained by minimizing the negative log likelihood or as
in [19, 20]:

J(Y , θ) = −L(Y , θ)

=
N∑

n=0
{log |�en (θ)| + eT

n (θ)�−1
en (θ)en(θ) + constant

(4)

Where en, �en are the prediction error and its covari-
ance, and can be obtained from Kalman filter time and
measurement update equations as in [20, 22] below:

Time update:

x̂n+1|n = Fx̂n|n
�n+1|n = F�n|nFT + Q

(5)

Measurement update:

en = yn − Hx̂n|n−1

�en = H�n|n−1HT + R
x̂n|n = x̂n|n−1 + K nen

K n = �n|n−1HT�−1
en

�n|n = �n|n−1 − K n�en K(n)T

(6)

where K is the Kalman gain. The function of the mea-
surement update is to adjust the projected estimate by the
actual measurement at that time n, whereas time update
serves the purpose of prediction of the current state esti-
mate x̂n+1|n ahead of time (indicated through future time
instance n + 1). This recursive update is performed with
the objective of minimizing (4) with respect to unknown
parameter θ to estimate the missing observations. In this
work, we have used Expectation Maximization (EM) algo-
rithm to find the ML estimates as in [22–24], by the
assuming that the state is now observable and can be
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denoted as X = {xh(0), . . . , xh(n)}, hence the problem in
(4) can be reformulated as:

J(X, Y , θ) = −L(X, Y , θ)

=
N∑

n=1

{
log |Q| + (xn − Fxn−1)T Q−1 (

xn − Fxn−1
)}

+
N∑

n=1

{
log |R| + (yn − Hxn)T R−1(yn − Hxn

}
+ constant

(7)

Using fixed interval form of Kalman filter (RTS smoother),
the new system recursion updates can be computed
as in [22]:

Forward Recursions:
en = yn − Hx̂n|n−1

�en = H�n|n−1HT + R
x̂n|n = x̂n|n−1 + K nen

x̂n+1|n = Fx̂n|n
K n = �n|n−1HT�−1

en

�n|n = �n|n−1 − K n�en K T
n

�n,n−1|n = (I − K nH)F�n−1|n−1

�n+1|n = F�n|nFT + Q

(8)

Backward Recursions:

An = �n−1|n−1FT
n−1�

−1
n|n−1

x̂n−1|N = x̂n−1|n−1 + An
[
x̂n|N − x̂n|n−1

]

�n−1|N = �n−1|n−1 + An
[
�n|N − �n|n−1

]
AT

n

�n,n−1|N = �n,n−1|n + [
�n|N − �n|n

]
�−1

n|n�n,n−1|n

(9)

Note that the formulation of d series estimation of the
state vector xn is made with the assumption that available
data is the observed vector yn and it provides d unique
estimated MT signals x̂hi(n). In each iteration, EM algo-
rithm computes the data-sufficient statistics in recursions
(8), (9) and estimates previous model parameters (E-step).
New system parameters are obtained from these statistics
in the maximization step (M-step).

Correlation coefficient-based-patch processing
Typically, employing correlation-based approaches are a
common practice in superresolution for images. This is
because correlation coefficient (R) is highly effective in
detection and extraction of identical information present
in the low resolution images. Hence, inspired by the profi-
ciency of correlation coefficient in information extraction,
we have implemented a novel correlation coefficient (R)-
based patch processing technique to find an identical
match between similar signal patches (segments) present
in the d + 1 Kalman-predicted MT signals x̂hp(n) and

achieve further optimization to yield an enhanced final
prediction for MT signal. This is accomplished by using
a sliding window w = 4 (w = 1 × 4) across the pair-
wise MT signals. The pairwise R comparisons ensures that
the inconsistencies such as artificial low/high frequen-
cies introduced during signal sampling or processing are
removed, and maximum information content is extracted
from the aliased signals. In order to define a patch as simi-
lar or identical the R threshold parameter is chosen as R >

0.90. The MT signal patches that satisfy this condition as
in (10) are then included in the final predicted signal x̂f (n).
An error minimization condition is also imposed such
that the selected patch must not only satisfy R > 0.90, but
also minimize the error between the signals as below:

x̂f (n) = x̂hp(n) ⇐⇒ (
R(x̂hp, x̂hq

)
> 0.90) ∧

(
min
p �=q

|x̂hp − x̂hq|
)

(10)

where p, q = 1, 2, . . . , d. For d Kalman-predicted MT
signals x̂hp(n), we will need dC2 signal comparisons to be
made. All missing values in the final MT signal x̂f (n) (for
patches < threshold R) are computed by taking the mean
of the d signals values available for that particular time
instance. This step is done as a tradeoff to minimize the
prediction error for missing values in the original low res-
olution MT signal. The final MLK − R-patch processed
MT signal x̂f (n) had better SNR and lower errors than
Kalman-predicted (MLK) (x̂hi(n)) and interpolated (NL-I)
(yhi(n)) signals. This final reconstructed MT signal x̂f (n)

was used for estimation of the three-state MT dynamic
instability parameters in the wavelet domain using peak
detection as in our prior works [16, 26].

Principal component analysis-based mutual information
criterion
Principal component analysis (PCA) is a widely used
unsupervised learning technique for information extrac-
tion and dimensionality reduction of data in multi-
disciplinary applications. The principle behind PCA is
that it captures the directions of maximum variance
(information) in the data, where these directions of max-
imum variance represent the principal components or
eigenvectors of the data [27]. The significance of PCA
includes: 1) the principal components are uncorrelated,
thus they provide elimination of redundancy in the data.
2) Most of the important information is usually com-
pacted in the first few eigenvectors, thereby providing
data compaction and effective dimensionality reduction of
data. In this work, we apply PCA to extract information
present in the individual d+1 MLK- predicted MT signals.
Given a data x, it can be described as a linear combination
of its eigenvectors using PCA as:

A = xB (11)



Menon et al. BMC Systems Biology 2018, 12(Suppl 6):112 Page 121 of 128

where A denotes the new principal component scores, B
gives weight vectors such that the linear combination of
xB maximizes the variance contained in A and data x can
be recovered as:

x = B−1A (12)

Mutual information (MI) is a well-known information
extraction criterion that measures the similarity of infor-
mation content or mutual dependence between two ran-
dom variables. It was first conceptualized by Shannon
[28], since then it been widely adopted in a variety of
applications, especially in the area of biology [29, 30].
The mutual information I between two discrete random
variables X and Y can be described as in [29]:

I(X, Y ) =
∑

x∈X

∑

y∈Y
pX,Y (x, y) log

pX,Y (x, y)
pX(x)pY (y)

(13)

where pX,Y (x, y) stands for the joint probability density
function of X and Y, and pX(x) and pY (y) denote the
marginal probability density functions of X and Y respec-
tively. Intuitively, if random variables X and Y are inde-
pendent, then their MI I(X, Y ) = 0, whereas if they
have perfect dependence then their MI tends to infin-
ity i.e., I(X, Y ) → ∞. As defined by Shannon in [28],
mutual information I(X, Y ) can also be defined in terms
of entropy as [28]:

I(X, Y ) = H(X) + H(Y )H(X, Y ) (14)

Where H(X) denotes entropy of random variable X,
H(Y ) represents entropy of random variable Y and
H(X, Y ) describes the joint entropy of random variables X
and Y. The above definition for MI can be interpreted in
terms of entropy and probability density functions of the
corresponding random variables by substituting Eqs. (13)
in (16) to yield:

I(X, Y ) = H(pX) + H(pY )H(pX,Y ) (15)

Thus, in this work, we apply MI to determine the infor-
mation dependence between the principal components
of the d + 1 predicted MT signals. Greater MI signifies
more common information content between the signals.
Since we are trying to refine our estimation of the missing
values in the MT signal, it is pertinent to retain the com-
mon information in the MT predicted signal. Lesser MI
could imply a bad signal prediction and therefore should
be excluded from analysis to improve final MT signal pre-
diction x̂f (n). The first two unique principal components
p corresponding to the MI pairs that give us the maximum
MI can be found as below:

p = arg unique{sortdescend{I(xai, xaj)}} (16)

where i, j ∈ {1, d + 1} and I(xai, xaj) denotes the MI
between pairs of principal components ai and aj of data
x. The average of p principal components selected from

our PCA-MI criterion (MLK-MI) is then computed to
reconstruct our final MT signal x̂f (n) using (12). Figure 1
illustrates the block diagram of the proposed superres-
olution framework for MT signal prediction of missing
observations.

Wavelet transforms
Wavelet transforms are commonly used in a wide vari-
ety of biomedical applications like for compression of
EEG and ECG signals. Wavelets are specially preferred
for modelling stochastic signals due to its attractive ben-
efits such as sparsity, compression, inherent denoising
and simultaneous time-frequency resolution of signals.
Given a 1D-discrete-time signal x̂f (n), it can be repre-
sented using translations of basis mother wavelet function
ψ(n) and a lowpass scaling function φ(n) in the time and
frequency domain as in ([15, 31]) by:

x̂f (n) =
∑

k
cj0(k)φj0,k(n) +

∑

j=j0

∑

k
dj(k)ψj,k(n)

(17)

where x̂f (n) ∈ L2(R), k, j ∈ Z. k stands for time (trans-
lation) and j represents the frequency (scale) respectively
[31] and the basis functions are:

ψj,k(n) = 2
j
2 ψ(2jn − k)

φj0,k(n) = 2
j0
2 φ(2j0 n − k)

(18)

where the first term in (17) corresponds to the coarse
resolution while the second term represents the detail
(or wavelet) resolution of the signal. cj0(k) and dj(k) are
the corresponding approximation (or scale) and detail (or
wavelet) coefficients at scale j, respectively. These coeffi-
cients can be calculated as below [31]:

cj0(k) = 〈x̂f (n), φj0,k(n)〉
dj(k) = 〈x̂f (n), ψj,k(n)〉 (19)

Note that j0 is an arbitrary starting scale. In this paper,
the maximum scale j also represents the wavelet decom-
position levels. We later perform peak detection of MTs
in the wavelet domain using the energy packing den-
sity (EPE) criterion [32] to estimate the three-state MT
parameters. In particular, simultaneous time-frequency
resolution is the key wavelet property that will be used for
detection of the three-transition states in MTs.

Trichotomous Markov Noise-based three-states random
evolution model
Consider the final predicted MT signal x̂f (n) that is under-
going the dynamic instability phenomena by randomly
switching between the three transition states of growth
(g), pause (p) and shrinkage (s). We formulate a three-
states random evolution model for the study of dynamic
instability process in MTs using Trichotomous Markov
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Fig. 1 Schematic representation of proposed superresolution framework for MT signal prediction

Noise (TMN), which is a three-state stochastic process.
Hence, the three-states random evolution model for the
dynamic instability of MTs has eight states-space param-
eters, including six transition rates between states of
growth, pause and shrinkage denoted by fij, where i, j ∈
{g, p, s} and two states of growth and shrinkage rates, rep-
resented by vg and vs [16]. The mean length and lifetime of
a MT in the three-states random evolution model depends
on the threshold quantities fgs, fsg , vg , and vs in the for-
mula for V in (20) [33]. If the quantity, V is positive, the
MTs tend to shrink more than they grow, and the MTs
will have a finite mean length and mean lifetime. Other-
wise, on average, they tend to grow forever. The derivation
of equations for three-states random evolution model for
MTs are provided in [16]:

Fg = fgp + fgs,
Fp = fpg + fps

Fs = fsp + fsg
F = Fs + Fp + Fg

Fgp = fgsfpg + fgsfps + fgpfps

Fsp = fsg fpg + fsg fps + fspfpg

Fsg = fspfgs + fspfgp + fsg fgp

� = Fsp + Fpg + Fsg

V = vgFsp − vsFpg

�

L = vsvg

vs
Fgp
Fp

− vg
Fps
Fp

(20)

Where V gives the equilibrium point of the system and
L denotes the average length of the MT signal.

Results and discussion
In this section, we experimentally validate the effective-
ness of our proposed methods for superresolution of MT
signals. The MT data used in this work are results of
experiments on MTs (composed of purified αβII isotopes

from bovine brain tubulin) performed by O. Azarenko, L.
Wilson and M.A Jordan at the University of California,
Santa Barbara. Tubulin proteins were first purified from
the bovine brain and then seeded to polymerize at 37◦C.
The growth and shrinkage dynamics of individual puri-
fied MTs were then recorded at their plus ends using the
differential interference contrast video microscopy. Data
points representing MT lengths were collected at 2 − 6s
intervals. MT lengths were analyzed using the Real Time
Measurement program. Growth and shrinkage rates were
calculated by least-squares regression analysis of the data
points. Growth and shrinkage thresholds are set to an
increase in length by 0.2μm at a rate of 0.15μm/min and
a decrease in length by 0.2μm at a rate of 0.3μm/min,
respectively. Any length changes equal to or less than
0.2μm over the duration of six data points were consid-
ered attenuation phases (phases in which length changes
were below the resolution of the microscope). It should
be noted that the experimental detection limit for length
changes corresponds to about 400 − 800 tubulin dimers.
The supplied data, however, was in the form of a hard copy
graphs, that they were scanned and then digitized using
the software “DigitizeIt” (http://www.digitizeit.de/) [34].

The MT data used in this study is ABII (αβII ) data and
the number of samples present in this original MT sig-
nal was N = 165. In this study, non-uniform sampling
was performed on the original MT signal by a factor of
d = 3 to emulate the inadequate MT data collection
limitation in physical systems. Figure 2 shows the origi-
nal MT signal. The red points indicate the non-uniformly
chosen samples, while blue points indicate the samples
chosen through uniform sampling by a factor d = 3.
Note that the blue points were more evenly distributed,
unlike red points that tend to be clustered around cer-
tain areas indicating a non-uniform distribution/sampling
across the MT signal.

In this paper, we introduce two novel methods for
enhanced MT signal prediction in the new superreso-
lution framework for MTs. Both the proposed methods

http://www.digitizeit.de/
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Fig. 2 Non-uniform sampling of MT Signal

have non-uniform sampling performed on the MT signals
to emulate real-world data loss scenario. This is fol-
lowed by EM-based ML Kalman prediction (MLK) of
the MT signals as a basis framework for superresolution.
The first proposed enhanced prediction method involves
using an image processing-inspired correlation (R)-based-
patch processing (MLK-R) method to further optimize
the final MT predicted signal by extraction of informa-
tion through identification of similar patches from the
dictionary of MLK-predicted MT signals. Second method
involves PCA based MI criterion (MLK-MI) method that
performs extraction of similar information present in
principle components of the MLK-predicted MT signals
using MI criterion for elimination of data redundancy and
further enhancement of the predicted MT signal. Com-
parison analysis of the proposed superresolution methods
is performed with respect to two other methods, namely,
non-uniform sampling of MT signal followed by nonlinear
(piecewise linear) interpolation technique (NL-I) and our
previous work using compressed sensing (CS) to recon-
struct MT signals with fewer samples than the Nyquist
rate [16]. Since, the non-uniformly sampled low resolution
MT signal was sampled at a factor of d = 3, this implies
that it has s = ⌊N

d
⌋ = ⌊ 165

3
⌋ = 55 samples. This is equiv-

alent to CS subrate of s
N = 55

165 = 0.33. Therefore, we
included results of CS rate = 0.3 (CS-0.3) from our prior
work [16] for comparison.

As discussed under Methods section, after non-uniform
sampling is performed to yield the resultant low resolution
MT signal, its corresponding high resolution MT signal is
then generated using nonlinear interpolation techniques

like piecewise interpolation in our case. An interlaced
non-uniform sampling of this resultant high resolution
interpolated MT signal is carried out to generate d -low
resolution MT signals and their corresponding high res-
olution MT signal versions yhi(n) this is denoted as the
NL-I method. Subsequently, EM based ML estimation
using Kalman filters is applied to these high resolution MT
signals to achieve a better prediction of the missing MT
values (MLK method). All the methods were followed by
peak detection in wavelet domain to estimate the three-
state dynamic instability parameters for MTs. Figures 3
and 4 illustrates the final predicted MT signals across all
methods, where Fig. 4 shows the average of d + 1 pre-
dicted MT signals for both NL-I and MLK methods. From
Figs. 3-4, it can be inferred that our proposed methods
MLK-R and MLK-MI had the best final predicted MT
signal across all the methods. To quantitatively substan-
tiate the effectiveness of our approach, we compute the
signal-to-noise-ratio (SNR) and root mean square error
(RMSE) statistics of the predicted MT signals from all
methods in Table 1. Again, our proposed superresolution
methods MLK-R and MLK-MI had the highest SNR and
lowest RMSE of all other methods. In particular, MLK-
R outperformed all other methods both qualitatively and
quantitatively.

The main difference between our proposed superres-
olution framework in this study and CS method from
previous work [16] is that in the former case we assume
that only the low resolution MT signal is available to
us and using statistical modelling we try to predict and
estimate the missing values in the original MT signal with
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Fig. 3 Comparison of EM based ML-Kalman (MLK) predicted MT signals with other methods. a MLK-predicted signal d=1 b MLK-predicted signal
d=2 c MLK-predicted signal d=3 d MLK-predicted signal d+1=4

minimum error possible. Whereas in the latter case, we
assume that we have already acquired the original MT
signal and want to compress it at the sensor side for stor-
age or transmission purposes such that at the receiver
side both the compressed signal and the transformation
basis is known. The main reason for wide acceptance
of CS is that we can preserve the signal details using a
random measurement matrix as Gaussian, thereby elimi-
nating the need for complex processing and transmission
of transformation basis. But CS makes no effort in learn-
ing the underlying signal characteristics which can be
critical in understanding biological processes as in case
of MTs. On the other hand, statistical modeling meth-
ods like EM based ML estimation based Kalman pre-
diction learns the signal structure and hence provides
better signal prediction. This is demonstrated through

Fig. 3 and Table 1, wherein MLK-R and MLK-MI meth-
ods had higher SNR, lower RMSE and performed bet-
ter than the CS methods, due to the data-learning and
information extraction processes involved. Thus, both
our current work and previous work [16] makes an
effort to analytically address various facets of the data
acquisition problem in MTs and biomedical signals in
general, such as low sample availability scenario, spatio-
temporal resolution and compression of biomedical
signals.

In particular, statistical modelling of MTs as a stochas-
tic signal with the problem of recovering the original
signal through fewer samples, while assuming all noise
to be Gaussian makes Kalman prediction an obvious
choice given its optimality in the mean squared error
sense. Kalman filtering is also ideal for real-time signal
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Fig. 4 Comparison of our proposed superresolution methods for MT signals with other methods

processing, where the future samples can be predicted in
real-time from the adaptive feedback of statistics com-
puted from the current samples. A good prediction of MT
signal is quintessential for better estimation of dynamic
instability parameters of three-state MTs, understand the
MT behavior and state of the MT system. Thus, our
MLK-R and MLK-MI method has shown to provide bet-
ter prediction and estimation of the unknown parameters
in the MT linear dynamic system. In addition, wavelet
domain MT signal processing is done to exploit benefits
such as sparsity, inherent denoising and most impor-
tantly simultaneous time-frequency resolution which is
very pertinent for good peak/ MT transition state detec-
tion. For consistency with our prior work [16], we have
used Daubechies D2 (db2) as mother wavelet with 8 levels
of signal decomposition; it also performs experimentally
better than other mother wavelet families for our work.
Wavelet transform is performed on the final predicted MT
signal to get its corresponding sparse wavelet coefficients.
Wavelet domain peak detection is then employed to detect
the peaks indicating the transition points in the MT sig-
nal between the growth (g), pause (p) and shrinkage (s)
states. This transition information is used to determine
when and where the MTs are switching between the three

Table 1 Comparison of SNR and RMSE for all methods

MT Parameters MLK-R MLK-MI NL-I CS-0.3

SNR (in dB) 15.88 12.71 12.09 4.78

RMSE 0.42 0.44 0.49 1.10

Significance as referred in main text is that the bold text represents highest / best
performance values

states. This is where the simultaneous time-frequency res-
olution of wavelets plays a crucial role. Since, we want to
detect switching instants (or time), implies we are looking
for narrower time bins for better time resolution, which
corresponds to the lowest level significant wavelet coeffi-
cients (swc). As in our prior work [16, 26], energy packing
efficiency (EPE) [32] is used to determine the number
of significant wavelet coefficients/peaks that need to be
chosen. The EPE steps for peak detection of MTs are as
follows:

• Step 1: Sort the lowest level wavelet coefficients in
descending order (i.e. larger significant wavelet
coefficients are most likely peaks).

• Step 2: Compute the total energy present in the
wavelet coefficients (swc) in the lowest level. Where
the total energy is calculated by:

ETOT =
∑

swc2 (21)

• Step 3: Fix a desired threshold to indicate the
percentage of significant wavelet coefficients to be
retained. In our case, we retain values such that 85%
of total energy of the coefficients in the lowest level is
preserved. That is:

ETH ≥ 0.85 ∗ ETOT (22)

• Step 4: Compute the total energy of the sorted
wavelet coefficients (ETH ) as in (21), until the
threshold condition in (22) is met.
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Fig. 5 Wavelet domain peak detection of the MLK-predicted MT signal

The value of EPE threshold parameter plays a vital in
detection of peaks and three-transition states in MTs.
Higher the threshold parameter, lower the number of
significant wavelet coefficients selected, thereby fewer
peaks/ MT transition states are detected (implying loss of
information, if threshold parameter is too high). Lower the
threshold, higher the number of false peaks detected, thus
causing an over-prediction of the MT transition states.
Therefore, the number of significant wavelet coefficients
retained is sensitive to threshold chosen, which in turn
dictates the number of potential peaks or MT transition
states detected. Figure 5 shows the peaks detected in pre-
dicted MT signal using wavelet domain EPE method. The
information derived from peak detection is then used
to encode our final predicted signal to its nearest peak
to obtain a TMN modelled three-state MT signal. The
resultant encoded three-state MT signal is used to com-
pute MT parameters like transition frequencies, transition

Table 2 Comparison of the original and estimated transition
frequency MT parameters for all methods

MT Parameters OrigMT MLK-R MLK-MI NL-I CS-0.3

fsg 0.22 0.22 0 0.22 0.22

fgs 0.22 0.44 0.22 0.22 0.22

fsp 8.76 8.76 5.47 9.53 12.04

fps 0.11 0 0 0.11 0

fgp 0.11 0 0.22 0 0

fpg 8.54 8.54 11.59 7.88 5.48

Significance as referred in main text is that the bold text represents highest / best
performance values

velocities and average MT lengths as tabulated in Tables 2
and 3. The error estimates of MT parameters for all
methods are given in Table 4. From Tables 2 and 4, we sub-
stantiate that overall MLK-R and MLK-MI had the best
performance compared to other methods. Specially, our
proposed method MLK-R demonstrated superior overall
performance, higher SNR, lower RMSE, better MT signal
prediction and parameter estimation with lowest errors
from fewer samples compared to interpolation and CS
methods.

Conclusion
In this paper, we propose two novel frameworks for super-
resolution of MT signals to address the limited data
availability scenario and emulate the data loss due to
non-uniform sampling of biological/natural signals that
we often encounter in the real-world. This work exploits
the stochastic nature of MT signals through statistical
modelling using EM based ML driven Kalman estima-
tion (MLK) for better prediction of the non-uniformly
sampled MT signal as a basic superresolution framework.

Table 3 Comparison of the original and estimated velocity and
length MT parameters for all methods

MT Parameters OrigMT MLK-R MLK-MI NL-I CS-0.3

vs 45.17 45.17 42.16 72.27 63.24

vg 40.65 42.16 40.11 36.14 21.68

avg L 5.24 5.31 5.27 7.87 5.44

Significance as referred in main text is that the bold text represents highest / best
performance values
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Table 4 Comparison of the estimated MT error parameters for all
methods

MT Parameters MLK-R MLK-MI NL-I CS-0.3

fsg 0 0.22 0 0

error

fgs -0.22 0 0 0

error

fsp 0 -3.28 -0.77 -3.28

error

fps 0.11 0.11 0 0.11

error

fgp 0.11 0.11 0.11 0.11

error

fpg 0 3.05 0.66 3.07

error

vs -2.00 -3.00 -4.00 -3.00

error

vg 2.66 3.00 3.00 3.00

error

The MLK-predicted MT signals were further optimized
through information extraction using correlation (R)-
based-patch processing (MLK-R) and PCA-based mutual
information criterion (MLK-MI) methods. We perform
comparison analysis of our proposed methods MLK-R
and MLK-MI with respect to nonlinear interpolation (NL-
I) and CS methods. It was experimentally found that both
the proposed methods MLK-R and MLK-MI achieved the
best overall performance for MT signal estimation. Specif-
ically, MLK-R outperformed all the methods, and had
better reconstruction performance using fewer samples,
gave high SNR, low errors, as well as better MT parameter
estimation than other compared methods. This work aims
to demonstrate the effectiveness and significance of statis-
tical modelling and data learning in MTs, and biomedical
paradigm. Our goal is to provide an analytical solution
to overcome the equipment/hardware fallacies that might
occur during the signal acquisition process.
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