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Abstract

Background: Cancer is one of the leading causes for the morbidity and mortality worldwide. Although substantial
studies have been conducted theoretically and experimentally in recent years, it is still a challenge to explore the
mechanisms of cancer initiation and progression. The investigation for these problems is very important for the
diagnosis of cancer diseases and development of treatment schemes.

Results: To accurately describe the process of cancer initiation, we propose a new concept of gene initial mutation
rate based on our recently designed mathematical model using the non-constant mutation rate. Unlike the
widely-used average gene mutation rate that depends on the number of mutations, the gene initial mutation rate can
be used to describe the initiation process of a single patient. In addition, we propose the instantaneous tumour
doubling time that is a continuous function of time based on the non-constant mutation rate. Our proposed concepts
are supported by the clinic data of seven patients with advanced pancreatic cancer. The regression results suggest
that, compared with the average mutation rate, the estimated initial mutation rate has a larger value of correlation
coefficient with the patient survival time. We also provide the estimated tumour size of these seven patients over time.

Conclusions: The proposed concepts can be used to describe the cancer initiation and progression for different
patients more accurately. Since a quantitative understanding of cancer progression is important for clinical treatment,
our proposed model and calculated results may provide insights into the development of treatment schemes and
also have other clinic implications.
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Background
Pancreatic cancer is one of the most aggressive malig-
nancies in humans, with a five-year relative survival rate
of only 8% patients [1, 2]. This disease occurs when the
damaged cells grow in an uncontrolled manner. The most
common treatment options for pancreatic cancer patients
include surgery, endoscopic treatment, chemotherapy and
radiation therapy [3]. The design of a treatment plan is
based on a number of factors, including the severity and
spread of the tumour, as well as the patient’s health con-
ditions and age [4, 5]. Due to the location of the pancreas
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which is deep within the abdomen, this type of cancer is
difficult to diagnose and is often found at an advanced
stage. The observed aggressive malignancy of this disease
may be due to the factors such as the delay in diagnosis
or early metastatic dissemination [6–8]. Therefore, it is
important to conduct experimental and theoretical stud-
ies for the initiation of this disease and the dynamics of
cancer progression, which may be helpful to diagnose this
disease at an earlier stage [9].

It is widely recognised that cancer diseases are initiated
from gene mutations that increase the fitness of cancer
cells over that of the surrounding normal cells [10–12].
The recent advances in high-throughout technologies and
systems biology approaches have provided huge amount
of data showing the mutation heterogeneity in cancer
cells [13–16]. A number of theoretical studies have been
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proposed to investigate the initiation and progression
of cancer diseases [17–19]. Mathematical modelling has
been used as a powerful tool to elucidate mechanisms
in cancer initiation and progression [20–23]. These mod-
els have provided quantitative predictions that may be
validated by experimental or clinical studies. For exam-
ple, regarding the mechanisms of metastacis, a mod-
elling study has suggested that more than 10 years might
be needed to generate the first parental, non-metastatic
founder cell from the first gene mutation [18]. In addition,
more than five years may be needed for cancer cells to
achieve the metastatic ability.

A key assumption in the mathematical models for can-
cer study is that the gene mutation rate is constant, which
is defined as the number of mutations over a fixed time
period. The value of mutation rate is obtained using the
ratio of mutation number to the number of cells in the
population [17, 18]. However, experimental studies sug-
gests that the mutation rate of a cell may be dependent on
the number of gene mutations inside the cell, though it is
still in the debate regarding the effects of driver mutation
and passenger mutation in gene mutation and cell growth
[24, 25]. Growing evidence suggests that gene mutations
can be deleterious to cancer cells and play an important
role in both cancer progression and clinical treatment. In
the process of tumorigenesis and the metastasis of pan-
creatic cancer, at least 3–7 driver mutations have been
identified in the clinical and experimental studies. Exper-
imental studies suggest that the telomeric shortening and
mutations in Kras gene are among the earliest and most
pervasive alterations [26–28].

In a previous study, we have proposed a model using
the non-constant gene mutation rate [29]. However, this
initial study did not provide the detailed method for
determining the variations of gene mutations in different
patients. In this work, based on the non-constant muta-
tion rate, we further propose the concept of the gene
initial mutation rate and instantaneous tumour double
time. Using the data of seven patients, we calculate the ini-
tial mutation rate of each patient. Then we calculate the
tumour size using the instantaneous tumour double time.

Implementation and results
Mathematical model
In this work we consider a dynamic model to study the
process of cancer initiation and progression. Based on the
proposed assumptions in [29], we use a continuous func-
tion of time to represent the gene mutation rate, whose
derivative is a linear function of the number of mutations
occurred, namely

μ � dN
dt

= a + bN , (1)

where N is the number of mutations, μ(t) is the mutation
rate at time t, a is the mutation rate of normal cells
(namely the cells without any gene mutation) and b
is a constant. The solution of Eq. (1) with regarding
to N is

N(t) = cebt − a
b

,

where c is an arbitrary constant. Note that this solution is
valid if b �= 0. Then the mutation rate can be written as

μ(t) = bcebt

when b �= 0. Combined with the case of b = 0 (namely
μ = a), the mutation rate is denoted as

μ(t) = μ(0)ebt . (2)

Here mutation rate μ(0) is termed as the initial mutation
rate which is the mutation rate for cells without any gene
mutation. If the value of b is zero, the mutation rate is a
constant which has been widely used in the literature.

We now consider a model for the dynamics of cell popu-
lation with different numbers of gene mutations. Let pj(t)
be the fraction of cancer cells with j mutations at time t. In
addition, tj is the time point when the first cancer cell with
exact j mutations appears. Here we assume that t0 = 0.
When using the continuous mutation rate μ(t), the system
is modelled by

dp0(t)
dt

= −μ(t)p0(t),

dpj(t)
dt

= −μ(t)pj(t) + μ(t)pj−1(t), (3)

dpk(t)
dt

= μ(t)pk−1(t),

where j = 1, ..., k − 1. Figure 1 provides simulations
of model (3) based on either a constant mutation rate
(namely μ(t) = const ) or a rate function of time t (2).
Here we considered a cancer system with a maximal num-
ber of 8 mutations. Figure 1 suggest that the difference
between simulations obtained by the two types of muta-
tion rates is small if the number of mutations k is small
(see Fig. 1a). However, Fig. 1b shows that the difference
may be large when the mutation number is large. In this
simulation, a = 0.000001, b = 0.00003, and the initial
condition is p0(0) = 1 and pi(0) = 0 (i = 1, . . . , 8).

Now we consider another realization for the non-
constant gene mutation rate. It is assumed that the rate is
a piecewise linear function, namely the value of mutation
rate is approximated by a constant
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Fig. 1 Numerical simulations of model (4) using the constant
mutation rate and non-constant mutation rate. a proportions of cells
with two mutations. b proportions of cells with eight mutations.
(Solid line: model using constant mutation rate; dash-red line: model
using non-constant mutation rate)

μ(t) ≈ μ
(
tj
) ≡ μj

during the interval
[
tj−1, tj

]
between the two consecutive

mutations. Using this piece-wise mutation rate, we have
the following model [29]

dp0(t)
dt

= −μ0p0(t),

dpj(t)
dt

= −μjpj(t) + μj−1pj−1(t), (4)

dpk(t)
dt

= μk−1pk−1(t),

where j = 1, ..., k − 1.
The solution of system (3) is given by [29]

pj(t) = λ(t)je−λ(t)

j!
,

where

λ(t) =
∫ t

0
μ(x)dx = μ0

b

(
ebt − 1

)
.

Then the time point tj, at which the first j-mutated cell
occurs, satisfies

tj =
ln

(
bλj
μ0

+ 1
)

b
(5)

where λj = λ(tj).
The clinic data may provide the gene mutation num-

ber N and the time point when the N-th mutation occurs
only. That is why the average mutation rate has been
widely used in studies. However, it is not obvious to
determine the initial mutation rate and parameter b in
the non-constant mutation rate model based on this lim-
ited information. The major contribution of this work is
to derive the relationship between the initial mutation
rate μ(0), parameter b, mutation number N and average
mutation rate.

Determination of non-constant gene mutation rate
Now we derive a formula to calculate the value of expo-
nent b and gene initial mutation rate μ(0) based on the
gene mutation number N and average mutation rate μ.
We first consider the average mutation rate, defined by

μN = N
tN

.

By using Eq. (5), the average mutation rate is given by

μN = bN
ln (bλN/μ0 + 1)

.

Thus the value of μ0 is given by

μ0 = bλN

ebN/μN − 1
(6)

Then comsidering the following equations:

μj = μ
(
tj
) = μ0ebtj = bλj + μ0,

where j = 1, ..., N , the analytical solution for b may not
exist. Thus our goal is to find an approximation of b with
good accuracy.

To this purpose, we consider the sequence {uj =
μ0etjb, t = 1, 2, ..., N} which is a geometric series. The
mean of this series has the form

μ′
N = 1

N

N∑

j=1
uj

= μ0
(
1 − ebtN

)
eb

(
1 − eb) tN

and it satisfies

μ′
j ≤ μj,
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for j = 1, ..., N . Substituting the expression (5) of tN into
the above equation, we have that

μ′
N = −b2λN eb

(
1 − eb) ln

(
bλN
μ0

+ 1
)

and hence

μ0 = bλN
b2λN eb

e(eb−1)μ′
N

− 1
. (7)

Again from tN = N/μN and

ln
(

bλN
μ0

+ 1
)

= bN
μN

by using (5), we have that

bN
μN

= −b2λN eb
(
1 − eb) μ′

N

and

N
μN

= λN ebb
μ′

N
(
eb − 1

) .

Note that when b is very small, we have that

−beb

1 − eb ≈ 1.

To find the value of b with good accuracy, we assume
that

μ′
j

μj
= λj

j
= e−bN/μN , (8)

where j = 1, 2, . . . , N − 1, and λN = N . Thus from Eq. (7),
we again obtain Eq. (6), which implies that assumption (8)
is reasonable. On the other hand, using the notation

λN = 1
N

N∑

j=1
λj,

then we have

λN = N + 1
2

e− bN
μN .

Finally, we derive the following theorem by using the
assumption (8).

Theorem 1 The relationship between the average muta-
tion rate μ, number of mutations N and parameter b is
given by

μN = e−bN/μN
b(N + 1)

2
+ bN

ebN/μN − 1
. (9)

Proof The average mutation rate satisfies

μN = bλ + μ0 = b(N + 1)

2eNb/μN
+ μ0. (10)

Thus this theorem is proved by using Eqs. (6) and (10).
Note that, when the values of μN and N are given, we

can find the value of b by solving the nonlinear Eq. (9).
We use MAPLE to solve this equation and obtain the
value of b.

Initial mutation rate
To demonstrate the importance of non-constant mutation
rate, we first calculate various mutation rates based on the
clinic data of seven pancreatic cancer patents [18]. Table 1
gives the information regarding the survival time from
diagnosis, age at diagnosis and gene mutation numbers of
these seven patients. The calculated values of parameter
b for the seven patients are also given in Table 1. In addi-
tion, we calculate the initial mutation rate using the total
number of mutations, parameter b and average mutation
rate, given by

μ(0) = μ − e−bN/(2μ)b(N + 1)

2
(11)

Table 1 suggests that the average mutation rate and
initial mutation rate both are negatively correlated with
the survival time of patients from prognosis. This means
that the smaller the mutation rate is, the longer the
patient survives. For example, the three smaller initial
mutation rates are 0.0172, 0.173 and 0.0176 for patients
Pa04C, Pa05X and Pa08C, respectively. The correspond-
ing survival time periods of these three patients are the
longest ones, namely 6, 7 and 15 months, respectively.
On the other hand, the highest initial mutation rate 0.020
(patient Pa03C) corresponds to the shortest survival time
(namely one month). The initial mutation rate can be
expressed as a function of the survival time of patients,
given by

μ0 = a[ S] +b, (12)

where [ S] is the survival time of patients from diagnosis.
We use the least square regression method to find the
values of coefficients of a and b which are −0.0019 and
0.0194, respectively. The values in Fig. 2 clearly show the
negative correlation between the initial mutation rate and
survival time of patients.

Note that the averaged mutation rate is also nega-
tively correlated with the survival time. The next question
is whether the average mutation rate can give a better
regression relationship with the survival time. To answer
this question, we use a similar function

μ = c[S] + d (13)

to represent the relationship; and calculate the values
of c and d which are −0.0019 and 0.0211, respectively.
Although Fig. 2 suggests that the average mutation rate
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Table 1 Estimated average mutation rate, initial mutation rate and the value of parameter b based on the clinic data of seven patients
from [18] (Survival from diagnosis: month)

Patients Survival from diagnosis Clone time diagnosis Mutations Mutation rate Initial rate b

Pa01C 6 9.8 49 0.0192 0.01917 0.00001

Pa02C 8 9.4 35 0.019 0.0189 0.000018

Pa03C 1 2.4 28 0.0223 0.0201 0.000030

Pa04C 7 7.9 34 0.0188 0.0185 0.000019

Pa05C 10 4.3 28 0.0194 0.0189 0.000029

Pa07C 3 3.1 50 0.0198 0.0198 0.00001

Pa08C 15 10.6 35 0.0193 0.0190 0.000018

also has a consistent negative correlation with the survival
time, the scaled mean-square error, defined by

Error = 1
mean(μ)

√√√√
n∑

i=1

(
μi − μ∗

i
)2,

where μi is the estimated mutation rate in Table 1 for
patient i and μ∗

i is the predicted mutation rate by using
either the regression (12) or (13). The error for the pre-
dicted initial mutation rate and that for average mutation
rate is 0.1007 and 0.1197, respectively. This result suggests
that the initial mutation rate provides a better indicator
for patient survivor time than the average mutation rate.
We have also find the correlation regression relationship
between the survival time and the age of patient, as well
as the relationship between the survival time and gene
mutation number. Numerical results suggest that these

variables are not as good as the gene mutation rate for the
indicator of survival time (Results not shown).

Instantaneous tumour double time
Pancreatic cancer has an extremely poor prognosis. Fac-
tors that appear to be important in predicting long-term
survival following resection include clear surgical mar-
gins, small tumour size (2 cm), negative lymph nodes,
and reduced perioperative morbidity [7, 30, 31]. It is well
known that metastasis accounts for 90% of cancer deaths
[32]. The challenge is whether we can detect the tumour
during the stage T1 (namely the time between tumour ini-
tiation and the birth of the cell giving rise to the parental
clone), or even after stage T1 but before seeding of metas-
tases. Advanced imaging methods, as well as other test
methods to detect cancer-specific proteins, transcripts, or
genes, tumor markers, offer hopes for such non-invasive
early detection.

Fig. 2 Negative correlations between the patient suvivour time and gene mutation rate (Circle: initial mutation rate, blue under line: predicted initial
mutation rate; star: average mutation rate, red above line: predicted average gene mutation rate)
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To address this issue, we study the time required for can-
cer cells successfully to leave the primary tumour based on
our non-constant mutation rate. We first refine the notion
of tumour doubling time (DT) and propose the concept
of instantaneous tumour double time, which is defined as
the average tumour double time over a very short period
of time. Although the concept of tumour doubling time is
widely used for the quantification of tumour growth rate,
it involves a number of factors for the growth of cancer
cells, such as the tumour type, growth stage, presence of
symptoms, and the patient’s lifestyle. Thus it is not easy
to determine and analyse the instantaneous tumour dou-
bling time accurately. Based on the research results in
[5], Yachida et al. considered the doubling time curve as
a piecewise linear function [18]. It assumes that the cell
division time is 2.3 days for pancreatic cancer when the
tumour size is less than 1 mm, and after that (namely the
tumour size is larger than 1 mm) the cell division time is 56
days [18]. The key factor behind this assumption is angio-
genesis. Here we consider a continuous curve which fits
the Amikura-Yachida curve with good accuracy.

Since it is widely recognized that the cell growth rate is
proportional to the number of driver mutations inside the
cell, the doubling time should be proportional to the non-
linear gene mutation rate. Based on the Amikura-Yachida
model, we propose the following smooth curve which
describes the number of doubling as a function of time t,

DT = μ0
μ0

exp
((

b − b
)

t
) at

K + t
, (14)

where μ0 and b are the initial mutation number and muta-
tion parameter of a particular patient, μ0 and b are the
average parameters based on the corresponding values of
all patients, and a and K are parameters to match the
data in [18]. Thus it is clear the proposed method can
make more accurate prediction if the number of patients
is larger.

To estimate the values of a and K, we remove the initial
mutation rate and parameter b, the average value of the
doubling time is given by

DB = at
K + t

. (15)

We use this function to realize 23 doubling time in 53
days and the following 23 doubling time in the follow-
ing 1288 days, which is defined by the Amikura-Yachida
model. Using the least-square regression method, the esti-
mated values are a = 40.74 and K = 62.04. Figure 3a
gives the Amikura-Yachida curve and our approximated
curve (14). When t < 53 days, the difference between
these two curves is small. However, when t > 53 days,
this approximated curve provides a more reasonable pre-
diction regarding the doubling time. Using the estimated
values of a and K together with the gene mutation rate of

Fig. 3 The number of cell doubling over time. a The Amikura-Yachita
curve using piece-wise doubling time (solid-line) and our proposed
average nonlinear model (15) (dot-line). b The doubling time curve
for seven patients using the proposed nonlinear model (14)

each patient, Fig. 3b gives the estimated doubling time of
the seven patients.

Tomour growth curves in metastasis
We have established a formula to calculate the tumour
doubling time for each patient. Next we use it to predict
the tumour size. It was proposed that the development of
tumour can be divided into three stages, namely stage 1
for the development of the first cancer cell, stage 2 for the
development of the first cancer cell that has the ability to
escape from the original tumour position, and stage 3 for
the full development of metastasis. For the seven patients
in [18], Yachida et al. estimated the time intervals between
stage 1 and stage 2, which are presented in Table 2. For
these given data, we calculate the low, medium and high
tumour sizes based on the low, average and high values
of the time, respectively. These values are the estimated
tumour sizes of each patient at the beginning of stage 2.
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Table 2 Estimated tumour size for seven patients. Tumour-size (L) (M) (H) is based on the lower bound, average time and higher
bound of the clone time

Patients Pa01c Pa02c Pa03c Pa04c Pa05x Pa07c Pa08c

Clone time(y) 4.05-5.94 3.3-4.84 3.9-5.72 3.45-5.06 3.3-4.8 3.7-5.4 3.1-4.6

Tumor-size(L) 4.55 4.12 9.08 3.52 4.63 5.95 4.20

Tumor-size(M) 4.73 4.46 10.15 3.80 5.15 6.25 4.58

Tumor-size(H) 4.82 4.71 11.09 4.01 5.59 6.42 4.86

Time for 2cm 0.22 0.28 0.17 0.325 0.275 0.19 0.29

Time for 2cm is the scaled time (based on the average time) for tumour to teach 2cm

For example, for patient Pa01C, the low, average and high
values of the time are 4.05, 4.995 and 5.94 years, respec-
tively, and the estimated tumour size are 4.55, 4.73 and
4.82 cm, respectively. Table 2 also gives the scaled time for
the tumour size to reach 2cm based on the estimated aver-
age tumour size (M). For example, for patient Pa01C, the
time to reach tumour size 2cm is 0.22×4.995 = 1.01 years.
For all patients, the time for reaching 2cm is less than 1/3
of the clone time.

Numerical results in Table 2 show that the lowest value
of tumour size for these seven patients all are greater
than 2cm. Our calculation presents a theoretic support to
the empirical tumour size (< 2 cm) hypothesis in [5]. In
addition, Japan Pancreatic Cancer Registry [4] reported
11,317 patients with carcinoma of the pancreas during
the past decade and 3743 patients underwent pancre-
atectomy. The 5-yr survival rate of all patients under-
going pancreatectomy, including those with malignant
islet cell tumour and cystadenocarcinoma, was 16.6%.
The 5-yr survival rate of patients with carcinoma of the
pancreas of 2 cm or less, excluding malignant islet cell
tumour and cystadenocarcinoma, was 36.2% after pan-
createctomy. This registry shows that survival rate is on
the increase in patients with carcinoma of the pancreas
after pancreatectomy, especially in resettable cases with
tumour of 2 cm or less. Further improvement in survival
rate is expected in carcinoma of pancreas. Our quanti-
tative analysis provides a theoretic support to the above
conclusion.

Discussion and conclusion
In this work, we have proposed new concepts for the
initial mutation rate and instantaneous tumour doubling
time based on our recently designed mathematical model
using non-constant mutation rates. These concepts are
aimed at replacing the widely used definitions of the
average mutation rate and average doubling time. The
proposed initial mutation rate is independent of the muta-
tion number which determines the average mutation
rate. Our regression results have suggested that, com-
pared with the average mutation rate, the estimated initial

mutation rate has a larger value of correlation coefficient
with the patient survival time. In addition, our instan-
taneous tumour doubling time is a continuous function
of time and considers the effect of initial mutation rate
and non-constant mutation rate. Thus, compared with
the existing model in which the doubling time is a piece-
wise linear function, our continuous model may be able
to provide more reasonable estimate of tumour growth
process. Since a quantitative understanding of cancer pro-
gression is important for clinical treatment, our proposed
model and calculated results may provide insights into
the dynamics of cancer metastasis and hence have clinic
implications.

Since the gene mutation rate is usually very small, gene
mutations are normally observed in experiments over a
long time period. The estimated values of the mutation
rate constant in literature all are based on the number of
gene mutations over the given time span. Thus, the aver-
age mutation rate strongly relies on the observed number
of gene mutations. The calculated mutation rate is highly
stochastic due to the very small value of mutation num-
ber. Our proposed continuous model for the mutation rate
considered not only the total mutation number but also
the average dynamics of gene mutation which is realized
by the model of cancer cell progression. The major con-
tribution of this work is to derive an analytic expression
for the instantaneous mutation rate based on the total
number of mutation.
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