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Abstract

Background: One of the crucial steps toward understanding the associations among molecular interactions,
pathways, and diseases in a cell is to investigate detailed atomic protein-protein interactions (PPIs) in the structural
interactome. Despite the availability of large-scale methods for analyzing PPI networks, these methods often
focused on PPI networks using genome-scale data and/or known experimental PPIs. However, these methods are
unable to provide structurally resolved interaction residues and their conservations in PPI networks.

Results: Here, we reconstructed a human three-dimensional (3D) structural PPI network (hDiSNet) with the detailed
atomic binding models and disease-associated mutations by enhancing our PPI families and 3D-domain interologs
from 60,618 structural complexes and complete genome database with 6,352,363 protein sequences across 2274
species. hDiSNet is a scale-free network (y = 2.05), which consists of 5177 proteins and 19,239 PPIs with 5843
mutations. These 19,239 structurally resolved PPls not only expanded the number of PPIs compared to present
structural PPl network, but also achieved higher agreement with gene ontology similarities and higher co-
expression correlation than the ones of 181,868 experimental PPIs recorded in public databases. Among 5843
mutations, 1653 and 790 mutations involved in interacting domains and contacting residues, respectively, are
highly related to diseases. Our hDiSNet can provide detailed atomic interactions of human disease and their
associated proteins with mutations. Our results show that the disease-related mutations are often located at the
contacting residues forming the hydrogen bonds or conserved in the PPI family. In addition, hDiSNet provides the
insights of the FGFR (EGFR)-MAPK pathway for interpreting the mechanisms of breast cancer and ErbB signaling
pathway in brain cancer.

Conclusions: Our results demonstrate that hDiSNet can explore structural-based interactions insights for

understanding the mechanisms of disease-associated proteins and their mutations. We believe that our method is
useful to reconstruct structurally resolved PPI networks for interpreting structural genomics and disease associations.
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Background

One of the crucial steps toward understanding the
associations among molecular interactions, path-
ways, and diseases in a cell is to investigate detailed
atomic protein-protein interactions (PPI) in the
structural interactome. Many high-throughput ex-
perimental methods, such as high-throughput yeast
two-hybrid screening [1, 2] and co-affinity purifica-
tion [3], and computational approaches have been
proposed to generate large-scale PPIs. The PPIs
identified from these experimental methods are
often unable to reflect the binding mechanisms of
PPI that how a protein interacts with another one,
and could not describe the relationship between
mutated protein and disease.

As the increase in the number of available three-
dimensional (3D) structural complexes, there is a new
opportunity to develop a fast and accurate computa-
tional method for inferring structurally resolved PPIs
and constructing structural PPI networks. The structural
complexes provide domain-domain interactions and
atomic details for thousands of direct physical PPI inter-
actions. Several works have combined protein structures
with experimental PPIs to study how mutations affect
protein interactions in diseases [4, 5]. For example,
Wang et al. considered both structural complexes with
known interacting domains (e.g., iPfam) and high-quality
binary interactions, from literature and yeast two-hybrid
screens, to construct human structural interaction net-
work (hSIN), and they mapped disease-related mutations
into the proposed network [4]. To study mutated pro-
teins in PPI networks, the human structural interactome
provides detailed atomic interactions to examine the
linkage between the disease-related mutations and pro-
tein binding mechanisms. Some methods have utilized
template-based methods to predict the PPIs by accessing
interface preference through the fitness of known tem-
plate structures [6]. However, these methods are time-
consuming to search for all possible protein-protein
pairs in a large genome-scale database to construct the
human structural interactome. Recently, we have pro-
posed 3D-domain interologs with the template-based
scoring function to infer the binding models of homolo-
gous PPI (called PPI family) of a 3D complex structure
by comparative modeling across multiple species [7].

Here, we propose a structural systems biology method
for reconstructing human structural interactome (hDiS-
Net) with physical PPIs by enhancing our previous 3D—
domain interologs and scoring functions [7]. We col-
lected a structural template library comprising 60,618
3D-dimers from the protein data bank (PDB) and the
complete genomic database (Integr8 [8], with 6,352,363
protein sequences in 2274 species). hDiSNet consists of
5177 proteins and 19,239 predicted PPIs with 5843
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mutations recorded in the Online Mendelian Inheritance
in Man (OMIM) [9] and 42,688 mutations in the Cata-
logue Of Somatic Mutations In Cancer (COSMIC) [10].
These predicted 19,239 PPIs share the higher Gene
Ontology similarities and co-expression correlations
than the ones of using 181,868 experimental PPIs re-
corded in five public databases (i.e., IntAct, MIPS, DIP,
MINT, and BioGRID) [11-15]. In addition, our hDiSNet
enlarge the number of PPIs more than 4 times compared
to present structural PPI network (i.e. hSIN [4], 4222
PPIs). Moreover, our proposed network is a scale-free
network (y =2.05), which is consistent with the architec-
ture of cellular networks. Among 5843 mutations from
OMIM, 1653 and 790 mutations involved in interacting
domains and contacting residues, respectively, are highly
related to diseases. According to 42,688 cancer-related
somatic mutations derived from COSMIC, we found
that 14,684 and 5883 mutations are located at interact-
ing domains and contacting residues, respectively. Fur-
thermore, the disease-related mutations are more
enriched in the residues that are able to form the hydro-
gen bonds and are conserved across multiple organisms.
Our structurally resolved PPI network (hDiSNet) provide
the insights for interpreting the mechanisms of breast
cancer and ErbB signaling pathway for brain cancer.
These results indicate that our method is useful to re-
construct structural PPI network for understanding the
associations between mutations and diseases. The recon-
structed human structural interactome (hDiSNet) and
other supporting data are available at http://gemdock.li-
fe.nctu.edu.tw/3d-network.

Methods

Overview

Figure 1 illustrates the overview of reconstructing hu-
man structural interactome (hDiSNet) though “3D-do-
main interolog mapping”. First, a structural template
library comprising 60,618 3D—dimers involved in 24,815
complexes was selected from PDB released on Sep 2,
2011 (Fig. 1a). For a given 3D—dimer (e.g., FGFR2-FGF2,
PDB code: 1ev2), we identified the homologous proteins
(i.e, BLAST E-value <10~ '°) from the Integr8 complete
genomic database [8], including 6,352,363 protein se-
quences in 2274 species, and our scoring functions [7,
16] were used to infer the contacting residues and evalu-
ate the similarities of binding interfaces (i.e., Z-value
>3.0). According to these homologous PPIs, we recon-
struct the human structural interactome (hDiSNet). This
network consists of 5177 proteins and 19,239 PPIs and
the largest sub-network includes 2051 proteins and
11,534 PPIs (Fig. 1b). The node (protein) in the network
indicates the ratio of the mutations on the contacting
and non-contacting residues and the number of muta-
tions and diseases. The edges (i.e. PPIs) indicate the PPIs
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inferred from the human and non-human templates.
The maximum sub-network can be grouped into
nine major cellular processes, including extracellular
proteolysis (yellow), nucleic acid metabolic (red), cel-
lular protein metabolic (brown), nuclear part cell
cycle (pink), membrane signal transduction (purple),
cytoplasm part signal transduction (cyan), cytoplasm
part signal protein transport (green), cytoplasmic
proteolysis (orange), and cytoskeletal part organelle
organization (blue). Based on mutations (i.e., SNPs)
and the reconstructed human structural PPI net-
work, we inferred the mutations-disease associations
with detailed atomic binding models. Our human
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structural PPI network reflects the mutation-disease
associations on EGFR (FGFR)-MAPK pathway (Fig.
1c). Among 26 proteins in EGFR (FGFR)-MAPK
pathway, 21 proteins (e.g., FGFR1, FGFR2, EGEFR,
and RET) have been identified as the cancer-related
proteins [17] and 10 proteins (e.g. FGFR1, FGFR2,
EGFR, ERBB2) have more than 3 disease-related mu-
tations (Additional file 1: Table S1). Because the mu-
tations in interacting domains or interaction sites
often disrupt the PPI, the reconstructed human
structural PPI network could interpret the mecha-
nisms of disease-associated proteins and their muta-
tions (Fig. 1d).

Structural template database

Complete genomic database,
Integr8 (6,352,363 protein
sequences in 2,274 species)
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Fig. 1 Overview of reconstructing human structural interactome (hDiSNet) using 3D-domain interolog mapping. a 3D-domain
interolog mapping infers human PPIs through 60,618 three-dimensional (3D) structural complexes and complete genome database
with 6,352,363 protein sequences across 2274 species using the 3D-template 1ev2 complex as the example. We totally infer the
19,239 PPIs in 5177 proteins in the reconstructed human structural interactome (hDiSNet) from 60,618 structural templates. b The
largest sub-network of hDiSNet with 2051 proteins and 11,534 PPls can be grouped into nine major cellular processes, including
extracellular proteolysis (yellow), nucleic acid metabolic (red), cellular protein metabolic (brown), nuclear part cell cycle (pink), membrane
signal transduction (purple), cytoplasm part signal transduction (cyan), cytoplasm part signal protein transport (green), cytoplasmic
proteolysis (orange), and cytoskeletal part organelle organization (blue). ¢ The FGFR (EGFR)-MAPK pathway in hDiSNet. The node sizes of
circle (proteins) and box (cancer-related proteins) denote the numbers of mutations recorded in OMIM database. The colored borders
of nodes indicate the numbers of diseases associated proteins. The colored nodes indicate the ratios of mutations in the contacting
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3D-domain interolog mapping and scoring function

To efficiently enlarge protein interactions annotated
with residue-based binding models, we have previously
proposed the concept “3D—domain interolog mapping”
[7, 16]: for a known 3D-structure complex (template T
with chains A and B), domain a (in chain A) interacts
with domain b (in chain B) across multiple species. The
proteins of the homolog families A’ and B’ of A and B
have the significant sequence similarity (i.e. BLASTP E-
values <10™'°) and contain interacting domains @ and b,
respectively. All possible protein pairs between these
two homolog families are considered as protein-protein
interaction candidates using the template T. Then, we
utilize our previous scoring system [7, 16] to evaluate
the binding model similarity between candidates and
template. The scoring function is briefly described as fol-
lows: E;o; = E, g, + Ese + Egjyy + Eons, Where E, ;, and Egp
are van der Waals and hydrogen-bond/electrostatic en-
ergies, respectively. The Eg,, is the template interface
similar score based on the aligned-contact residues of
proteins A and B aligned to the hit template. The E,,,; is
couple-conserved residue score. The E,;, and Egr are
residue-based energy functions, including sidechain-
sidechain and sidechain-backbone energies [7, 16].

Protein-protein interaction data sets

To investigate the reliability of PPIs derived from “3D-
domain interolog mapping”, we compared these pre-
dicted PPIs with the experimental PPIs. In this paper,
the 181,868 integrated experimental (IEXP) PPIs among
16,433 human proteins were collected from the five pub-
lic databases (ie., IntAct [11], MIPS [12], DIP [13],
MINT [14], and BioGRID [15]; Additional file 1: Table
S2). In addition, we compiled the high-confidence (HC)
set, which was reported at least two different publica-
tions, including 25,675 high-confidence PPIs and 8965
proteins. Based on the human structural templates, we
divided our predicted 19,239 PPIs into 10,651 PPIs from
human-templates and 8588 PPIs from non-human-
templates. To compare our hDiSNet with the present
human structurally resolved PPI networks, we collected
the hSIN, including 2816 proteins and 4222 PPIs, from
Wang et al. [4].

Protein-protein interactions in gene expression profiles

Moreover, to further assess the quality of our network,
we collected three microarray sets, from GEO database
(GSE12667 [18], GSE12276 [19], and GSE7696 [20]),
which were conducted on various tissues to compare co-
expression correlation of PPIs derived from PPI families
and experimental data. We used these gene expressions
to evaluate predicted PPIs derived from our methods.
The co-expression value of PPIs is one of an index to
measure the two proteins activated or non-activated
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simultaneously in specific states. For GSE12667 pub-
lished in Nature journal by Li et al,, the author used 188
lung cancer samples to identify the 26 potential genes in
188-paired tumor and normal subjects [18]. For
GSE12276 published in Nature journal by Paula et al.,
the author used 204 primary tumors from breast cancer
patients to study the mechanism of breast cancer metas-
tasis to the brain [19]. GSE7696 used 80 glioblastoma
multiforme (GBM) samples to identify novel genes re-
lated to the malignant behavior of GBM [20]. In sum-
mary, two of the three datasets have high reliability
based on high-impact journal, and all three datasets are
comprised of a large number of samples, which ensure
the robustness of our analysis.

Disease-associated genes and mutations

To study the relationship between disease-associated
proteins (genes) and their mutations in hDiSNet, we col-
lected the disease-related mutations of these proteins
from OMIM database [9]. The database of single nucleo-
tide polymorphisms (dbSNP [21], build 132) is a public-
domain archive for a broad collection of germline and
somatic mutations associated with diseases. We col-
lected 18,543 mutations including in-frame and truncat-
ing mutations in 2900 genes with “OMIM-curated-
records” annotations from the dbSNP database. Accord-
ing to these 18,543 mutations, there are 5843 mutations
associated with 776 genes in hDiSNet. To further exam-
ine the somatic mutation and cancer associations, we
collected 91,000 somatic mutations (missense) with 546
cancer genes from the Cancer Gene Census (CGC) in
the COSMIC database [10]. Here, total 42,688 mutations
with 266 cancer genes were mapped to our hDiSNet. To
investigate the enrichment of mutations in the interact-
ing domains and contacting residues, we calculated the
odds ratios of the mutations in the interacting domains,
non-interacting domains, contacting residues, and non-
contacting residues. Odds ratios were calculated by
using the following equations:

Odds ratio = pil/(l_pl) (1)

P,/ (1-p,)’

where the p; is the number of observed mutations in the
interacting domains or contacting residues, and divided
by the total number of mutations. The p, is the total
number of residues in the interacting domains or con-
tacting residues, and divided by the length of all proteins
combined. For example, the odds ratio of mutations in
the interacting domain is calculated as follows: The
value of p; is 0.71 (1653/2330) of the Pfam domain resi-
dues (Additional file 1: Table S3). The value of p, is 0.44
(125,606/282,517) of the Pfam domain residues.
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Therefore, the odds ratios of Pfam domain residue is
3.05 ([0.71/(1-0.71)]/[0.44/(1-0.44)]).

Results and discussions

hDiSNet: The reconstructed human structural interactome
The interacting proteins are usually involved in simi-
lar biological processes and located in similar cellular
components. To verify the quality of our human
structural interactome (hDiSNet), we calculated the
relative specificity similarity (RSS) [22] of Gene
Ontology (GO) [23], including biological process (BP),
cellular component (CC), and molecular function
(MF), in interacting protein pairs and all possible pro-
tein pairs. In addition, the 19,239 structurally resolved
PPIs derived from our PPI families could be separated
by the template organism of PPI family, which were
10,651 PPIs from human templates and 8588 from
non-human templates. Figure 2 illustrates the RSS
score distributions of BP, CC, and MF of our inferred
PPIs derived from human and non-human templates,
IEXP PPIs, HC PPIs, overlapped PPIs between our in-
ferred and IEXP PPIs, hSIN, and all protein pairs.
The distributions of RSS scores of PPIs derived from
human (mean RSS scores=0.83; gray) and non-
human (0.81; green) templates are significantly more
enriched than all protein pairs (0.62; white) in RSS-
BP, CC, and MF (p-value <0.01, Mann—Whitney U
test). We also observed that PPIs derived from human
and non-human templates are enriched than IEXP
PPIs while the RSS-BP, CC, and MF are higher than
0.9 (Fig. 2). These results imply that the PPIs in our
hDiSNet significantly share the similar biological
functions than IEXP PPIs and all protein pairs. In
addition, we found that the RSS-BP and RSS-MF
scores of 4375 overlapped PPIs of hDiSNet and IEXP
(yellow) are significantly different comparing to the
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scores of IEXP (p-value <0.05) and all pairs (p-value
<0.01) (Fig. 2a and c). The RSS-BP, CC and MF
scores of 4375 overlapped PPIs have no difference
compared with that of 4222 PPIs from hSIN (p-value
>0.1; purple). In RSS-BP score > 0.9, the ratio of over-
lapped PPIs (0.50) are similar to hSIN (0.53), and
more enriched than HC (0.33), IEXP (0.15) and all
pairs (0.03). The results indicate that our recon-
structed human structural interactome (hDiSNet)
comprehensively includes 14,864 newly discovered
PPIs and 4375 overlapped PPIs that enhance the
Gene Ontology similarities of PPIs.

Furthermore, we have found that the reliability of a
predicted PPI depends on the evolutionary distance be-
tween the target and source species based on our previ-
ous studies. Here, we compared the similarities of GO
annotations of PPIs derived from human and non-
human templates. The average of RSS-BPs of PPIs from
human and non-human structural templates is 0.85 and
0.82, respectively. We found that the RSS-BPs of PPIs
derived from human templates have no significant differ-
ence comparing with the non-human templates (Fig. 2a;
p-value = 0.97). These results show that both of our pre-
dicted PPIs derived from human and non-human tem-
plates are robust and helpful for investigating the
cellular processes.

To further assess the quality of our hDiSNet, we used
three microarray sets, including lung, breast and brain
cancer, for comparing co-expression correlation in our
predicted PPIs and other PPI sets. (Additional file 1: Fig-
ure S1) illustrates the co-expression correlation of PPIs
derived from human and non-human templates, hSIN,
and experimental PPI sets (i.e, HC and IEXP). Our pre-
dicted PPIs derived from human (mean correlation =
0.06; gray) and non-human (mean correlation =0.06;
green) templates have no significant difference (p-value
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Fig. 2 Comparisons of our predicted PPIs with reference PPI sets. The relative specificity similarity (RSS) shows the distributions of (a) biological
process (BP), (b) cellular component (CC), and (c) molecular function (MF) of our hDiSNet and reference PPI sets, including our predicted PPIs
using human (10,651 PPIs, gray) and non-human (8588 PPIs, green) templates, 4375 overlapped PPIs between hDiSNet and IEXP PPIs (yellow),
25,675 HC (red) PPIs, 181,868 IEXP (blue) PPIs, 4222 hSIN (purple) PPIs, and 2,102,275 all possible PPI pairs (white)
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=0.71) on co-expression of three different gene expres-
sion datasets. In addition, the HC PPIs have no differ-
ence (mean correlation =0.07) compared with our
inferred PPIs from PPI families (mean correlation = 0.06;
p-value >0.1), and our predicted PPIs have significant
difference with the IEXP PPIs (mean correlation = 0.04;
p-value <0.05; blue) and significant higher correlation
than all protein pairs (mean correlation = 0.01; p-value <
0.001; black dot lines). Furthermore, the co-expression
correlation of 4375 overlapped PPIs from our inferred
and IEXP (yellow) has no significant difference com-
pared with that of hSIN (p-value > 0.5; purple), but has
significantly higher correlation than that of IEXP (p-
value <0.01) and all protein pairs (p-value <0.001).
These results imply that both of our predicted PPIs
derived from human and non-human templates are
reliable and they could reflect the specific states of
disease in time and space. Moreover, our hDiSNet
completely comprises 14,864 newly discovered PPIs
and 4375 overlapped PPIs that improve the co-
expression correlation of PPIs.

A network with a power degree distribution is called
scale-free, a name that is rooted in the statistical physics
literature. An important finding of the cellular network
architecture is that most networks within the cell ap-
proximate a scale-free topology [24]. Therefore, our
hDiSNet was evaluated based on the characteristic of
scale-free networks that the P(k), the probability of a
node with k links, decreases as the node degree increases
on a logarithmic scale plot (Additional file 1: Figure
S2A). The degree exponent y is 2.05 in hDiSNet, as well
as hSIN, HC, and IEXP are 2.23, 1.48, and 1.43, respect-
ively (Additional file 1: Figures S2B-S2D). In addition,
we found that our hDiSNet (19,239 PPIs) has expanded
the number of PPIs more than 4 times compared to
hSIN (4222 PPIs). These results show that hDiSNet and
hSIN are satisfied with the properites of scale-free net-
works, which typically have degree exponents 2<y<3,
and are consistent with the architecture of some cellular
networks [24, 25]. Furthermore, the results suggest that
we not only make the present human structural PPI net-
work more comprehensive, but we also keep the prop-
erty of biological network and enrich the biological
significance of the network.

Mutation-disease associations on EGFR (FGFR)-MAPK
pathway

Somatic mutations in proteins have been considered as
one of the main causes for cancer development [26].
When a protein occurs mutation, it can influence linked
PPIs and pathways to lead abnormal biological functions.
According to previous studies, somatic mutations in a
protein usually involved in some types (e.g., point muta-
tion, deletion, and insertion) and occurred at different
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mutation sites (e.g., contacting residues and non-
contacting residue). The mutations positioning on inter-
acting domains or interaction sites often disrupt the
protein-protein interactions and we considered these
mutations as “hot spot of mutations”, which play poten-
tial roles to result in disease occurrence.

Based on our reconstructed human structural interac-
tome (hDiSNet) with mutations and diseases, we identi-
fied two major regions which are signal receiving
receptors (e.g., FGFR, EGFR, and RET) and their down-
stream signal transduction proteins (e.g., RAS, BRAF,
and MAPK) (Fig. 1c). These two regions are linked with
some PPIs (e.g., RET-SRC, EGFR-SRC, EGFR-ABL1) in
which RET and EGFR are cancer-related proteins of “hot
spot of mutations”. RET is a pro-oncogene and related
to development and carcinogenesis [27]. In addition,
these two proteins and some other proteins, such as
fibroblast growth factors (FGF), fibroblast growth factor
receptors (FGFR), and epidermal growth factor (EGF),
are involved in cancers. The FGFR2 and FGFR3 are the
cancer-related genes and top-rank proteins with the
number of annotated diseases (i.e., 14 and 13 diseases
recorded in OMIM, respectively). These mutations with
~50% probability are located at the contacting residues
and have high-risk to induce diseases. Interestingly,
EGEFR and HRAS are key signal transporters and consist-
ently mutated on contacting residues. Fig. 1c¢ shows the
series of protein kinases (MAPK3 and MAPK1) which
are highly related to cancer by involving diverse bio-
logical functions and critical pathways such as cell
growth, adhesion, survival, and differentiation [28, 29].
In addition, the RAF and BRAF, which regulate
MAPKKK of ERK pathway, act as a regulatory link be-
tween the upstream signal proteins (e.g., membrane-
associated Ras GTPases (i.e., KRAS, NRAS, and HRAS)
and non-receptor protein tyrosine kinase (e.g., SRC) and
the MAPK/ERK cascade. Furthermore, SRC can be acti-
vated by the EGFR and ERBB2 in the ERBB signal path-
way for adhesion and migration [30].

According to the studies of these three microarray
datasets (i.e., lung cancer [18], breast cancer [19], and
brain cancer [20]) and other relevant studies, we
found some particular genes expressed and mutated
in specific cancer. In lung cancer dataset, some pro-
teins (e.g., EGFR, ERBB2, BRAF, KDR, and KRAS)
were indicated to have the higher level of mutation
and expression in clinical samples of cancer. In breast
cancer dataset, ERBB2 and EGFR were highly corre-
lated to carcinogenesis process. These two cancers re-
lated proteins were well studied in the past and
showed high probability to mutate on contacting resi-
dues in EGFR (FGFR)-MAPK pathway. Moreover,
EGFR participates the metastasis mechanism of the
tumor from breast tissue to brain tissue. In GBM
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dataset, Wnt signaling pathway plays an important
role to induce tumor and has possible crosstalk with
EGFR (FGFR)-MAPK pathway [31]. They affect the
signaling pathways related to cell survival and growth.
Furthermore, the EGFR (FGFR)-MAPK pathway of
signal transduction is located at the central region of
human structurally resolved PPI network (Fig. 1b).
Through this pathway, the introduced signal will be
spread to downstream proteins around the EGFR
(FGFR)-MAPK pathway and induce numerous bio-
logical processes. Based on the mutation number and
mutation site of disease, we could easily find the im-
portant proteins and pathways related to disease, such
as signal transduction in cancer development.

3D-binding models for FGF2-FGFR2 association

FGF is a signal protein and interacts with some trans-
membrane receptors (e.g., FGFR1, FGFR2, FGFR3, and
FGFR4) to regulate key biological processes, such as cell
proliferation, survival, migration, and differentiation
both during development and in the adult [32]. FGFR2
mutation can cause endometrial cancer (S252 W) or
Pfeiffer syndrome (D321A) [33, 34]. Based on the previ-
ous study, S252 W mutation is the most common
FGFR2 mutation [35]. According to the FGFR2-FGF2
binding interface of the structural template (PDB code:
lev2 [36]), the S252 and D321 are the contacting resi-
dues of FGFR2 on the FGF2-FGFR2 binding interface
(Fig. 1d). According to the multiple sequence alignment
(MSA) results, the S252 forms a conserved van der
Waals interaction to the L98 of FGF2 according to the
PPI family of this template, and the D321 forms a
hydrogen-bond interaction with the Q56. Because the
FGF2-FGFR2 is the upstream interaction of MAPK3 and
MAPK]1 (ERK pathway), this mutation (i.e. S252 W) can
influence the cell proliferation and apoptosis in the ERK
pathway in endometrial cancer. In addition, the interact-
ing residues S252 and L98 are conserved across three
vertebrate PPI networks. These results suggest that our
hDiSNet is useful for studying mutations associated with
disease-related proteins.

Network analysis of the reconstructed human structural
network

To further investigate the biological meaning of our net-
work (hDiSNet), the Gene Ontology enrichment analysis
was carried out. The proteins involved in the similar
process and located in similar cellular component would
be the neighbors in the PPI network. We identified six
cellular components (i.e., nucleus, cytoskeleton, cyto-
plasm, membrane, extracellular space, and others) in the
human network based on the CC annotations (Add-
itional file 1: Figure S3A). In addition, we also identified
eight biological processes (i.e., cell cycle process, nucleic
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acid metabolic process, protein metabolic process, trans-
port, signal transduction, proteolysis, organelle
organization, and others) based on the BP annotations
(Additional file 1: Figure S3B). According to these
GO annotations, the reconstructed human structural
interactome (hDiSNet) could be grouped into nine
major regions and perform cellular functions, includ-
ing cell cycle processes; nucleic acid metabolic
process (e.g., transcription); cellular protein metabolic
process (e.g., translation); cytoplasm signal transduc-
tion process; membrane signal transduction process;
transport process; proteolysis process; extracellular
proteolysis process; organelle organization (Fig. 1b).

The reconstructed human structural interactome
(hDiSNet) can be used to describe the communication
between the cellular protein metabolic processes (Fig.
1c). The membrane signal transduction (e.g. EGFR,
FGFR, and other membrane receptors) could receive
the signals from the extracellular factors and transfer
the signals to the cytoplasm part signal transduction
(e.g. Ras and its downstream substrate). Then, the
signals could be used to activate or inactivate the cel-
lular protein metabolic processes. The cellular protein
metabolic process (brown) communicates with the
cytoskeletal part (organelle organization, blue), cell
cycle process (pink) and nucleic acid metabolic
process (red) (Additional file 1: Figure S3B). The
cytoskeletal part (organelle organization) is related to
the assembly, arrangement of constituent parts, or
disassembly of an organelle within a cell. The cell
cycle process and nucleic acid metabolic processes are
the kernel processes of a living cell. In addition, sev-
eral cyclins (e.g. G1/S-specific cyclin-D2 and G2/mi-
totic-specific cyclin-B1) and cyclin-dependent kinases
(e.g. CDK2 and CDK4) control the cell cycle and play
essential roles of meiosis in cell cycle process during
meiosis. The cytoplasm part transport process per-
forms the function in the cytoplasm and communi-
cates with the cytoplasm part signal transduction and
cytoplasmic proteolysis (Additional file 1: Figure S3).
The extracellular proteolysis only communicates with
cellular protein metabolic process and located on the
peripheral portion. These results imply that the bio-
logical behaviors of hDiSNet are consistent with
known processes of a living cell.

Disease-related mutations in hDiSNet

Disease-related mutations can be roughly classified
into two broad categories (i.e., in-frame and truncat-
ing mutations) [4]. Here, the in-frame mutations are
considered as missense point mutations and the in-
frame insertions or deletions are likely to produce
full-length proteins with local defects. In-frame mu-
tations can lead to loss of interactions [37]. To
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evaluate the relationships between mutations and
their associated diseases in hDiSNet, we first identi-
fied the positions of the disease-associated in-frame
mutations on the corresponding proteins. In this
paper, we collected 5843 in-frame mutations on 776
proteins, annotated with “OMIM-curated-records”
from the dbSNP database, in hDiSNet. Next, the
proteins are assigned with the interacting domains
(i.e. Pfam [38] and SCOP [39]) based on the struc-
tural templates. Among the 5843 in-frame mutations,
2330 and 2090 mutations are located at 403 and 345
proteins with the Pfam and SCOP domain annota-
tions, respectively (Additional file 1: Table S3). We
found that 1653 and 1646 mutations are located at
the interacting domains (i.e. Pfam and SCOP, re-
spectively). The odds ratios of in-frame mutations
involved in Pfam (3.05) and SCOP (3.34) domains
are enriched than the non-interacting domain of
Pfam (0.33) and SCOP (0.30), respectively (Fig. 3a
and Additional file 1: Table S3). To further investi-
gate the association between somatic mutations and
their corresponding cancers in human structural in-
teractome, we collected 42,688 somatic mutations in
266 cancer genes from COSMIC and mapped them
to our hDiSNet. We then observed that 10,415 and
11,892 somatic mutations occurred in the interacting
domains of Pfam and SCOP, respectively. Similarly,
the results showed that the odds ratios of somatic
mutations involved in Pfam (1.29) and SCOP (1.22)
domains are higher than non-interacting domain re-
gions (Additional file 1: Figure S4). These results
imply that the mutations occurred in interacting
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domains are more related to the disease (e.g., can-
cer) than non-interacting domains.

In addition, we also assigned the contacting residues
of proteins based on the contacting residues of the
structural templates. To investigate the relationship be-
tween the mutations and contacting residues, we col-
lected 283 proteins which have in-frame mutations on
the contacting residues. Based on these 283 proteins, we
found that 790 and 1426 mutations are located at the
contacting and non-contacting residues, respectively.
According to the odds ratio, the disease-related muta-
tions are significantly associated with the contacting res-
idues (2.45) comparing to non-contacting residues (0.41;
Fig. 3a and Additional file 1: Table S3). We also found
that somatic mutations are easier to occur in contacting
residues (odds ratio: 1.42) than non-contacting residues
(0.70; Additional file 1: Figure S4). According to our
knowledge, the residues which form the hydrogen bonds
or are conserved in PPI families may be the critical resi-
dues in the binding site and provide a higher experimen-
tal free energy [7, 16]. There are 368 (46.5%) and
468(60.8%) of 790 mutations on the contacting residues
forming the hydrogen bonds and conserved in the PPI
families, respectively. Conversely, 197 (24.9%) of 790
mutations neither are conserved residues and nor in-
volved in hydrogen bonds. Fig. 3b shows the odds ratio
of in-frame mutations in the contacting residues or
other residues that form the hydrogen bond or is con-
served in PPI families. These results indicate that the
disease-related mutations are usually located at the con-
tacting residues to form the hydrogen bonds or are con-
served in the PPI families.
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To further validate the association between residues
and their binding affinity on binding interfaces, we col-
lected 869 residues with experimental binding affinity
annotations within 56 structural complexes derived from
ASEDB and SKEMPI [40, 41]. Here, we used 786 resi-
dues in our analysis. We observed that the binding affin-
ity (i.e. ddG) of contacting residues (1.27) is higher than
non-contacting residues (0.82; p-value = 8.51E-05 by U-
test) (Fig. 4a). The 116 out of 208 residues (56%) with
ddG > 1.5 are preferred to play as the contacting residues
(p-value = 3.95E-06 by Fisher’s exact test) (Fig. 4b).
Moreover, we found that the contacting residues located
at the domains (e.g., Pfam domains) have higher binding
affinity (1.31) than non-contacting residues that outside
of domains (0.70; p-value = 5.03E-07 by U-test) (Add-
itional file 1: Figure S5A). The 81 contacting and domain
residues with ddG > 1.5 have higher potential as hot
spots in binding interfaces (p-value = 1.03E-06 by Fish-
er’s exact test; Additional file 1: Figure S5B). These re-
sults suggest that the binding affinity on binding
interfaces could be influenced when mutations occurred
in our identified contacting residues.

hDiSNet for describing mutations in breast cancer

Breast cancer is one of the major diseases in women
worldwide, with ~ 1.38 million new cases and ~ 458,000
deaths in 2008 alone [42]. Metastasis is the principal
cause of death in patients with cancers [43]. Moreover,
understanding of the molecular basis for breast cancer
metastasis to the brain is incomplete [19]. To explore
the mechanisms of breast cancer metastasis to the brain,
the proteins involved in breast cancer (e.g. androgen re-
ceptor (AR); red boxes) and metastasis (e.g. Nuclear re-
ceptor subfamily 3 group C member 2 (NR3C2); yellow
triangles), recorded in OMIM and provided by Bos et al.
[19], are highlighted in our network, respectively (Fig. 5).
According to the breast cancer- and metastasis-related
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proteins in our hDiSNet, we found that these proteins
are located in five regions, including cytoplasm part sig-
nal transduction, cytoplasmic proteolysis, cellular pro-
tein metabolic process, nucleic acid metabolic process,
and nuclear part cell cycle (Fig. 5a).

The AR is a ligand-dependent factor, which transcrip-
tional activity is mediated by interaction with multiple
co-activators [44], and is involved in the nucleic acid
metabolic process (Fig. 5a). The NR3C2 is a member of
the nuclear receptor superfamily, which acts as a ligand-
dependent transcription factor, mediating aldosterone ef-
fects on a variety of target tissues, such as the cardiovas-
cular and central nervous systems, and brown adipose
tissue [45]. In addition, the NR3C2 has been considered
to mediate breast cancer metastasis to the brain [19]. In
clinical use, the progesterone receptor (PGR) is one of
the important biomarkers in breast cancer [46]. In our
hDiSNet, the proteins, AR, NR3C2, and PGR, located in
the same sub-network (called AR-regulated sub-
network) (Fig. 5b). Among 12 proteins in AR-regulated
sub-network, we found that five proteins (e.g. AR, Retin-
oic acid receptor RXR-alpha (RXRA), and PGR) are
cancer-related proteins [17], such as breast and prostate
cancer. Moreover, the mutations of the other seven pro-
teins in AR-regulated sub-network are considered as
disease-association (e.g. Glucocorticoid resistance, breast
cancer, and Progesterone resistance) in OMIM (Fig. 5b).
In AR-regulated sub-network, nine PPIs and 11 PPIs of
41 PPIs are recorded in five databases (i.e. IntAct, MIPS,
DIP, MINT, and BioGRID) and Human Protein Refer-
ence Database (HPRD) [47], which is a specific PPI data-
base for collecting human protein-protein interactions,
respectively. These 41 PPIs also share the similar GO
annotations of BP (e.g., steroid hormone mediated sig-
naling pathway and transcription from RNA polymerase
II promoter) and CC (e.g., nucleoplasm) which are re-
lated to cell proliferation (Additional file 1: Table S4).
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In comparison with the PPI network derived from ex-
perimental PPIs, our hDiSNet provided the clues to re-
veal that the mutations of target proteins affect the
binding between two proteins. According to the struc-
tural template (PDB code: 3 h52 [48]), the contacting
residues of A chain (orange) were 1539, L544, A546,
R558, T562, Q571, and D626 (Fig. 5¢). The D chain
(blue) were L544, Y548, L566, and A580. Based on the
MSA results of A chain, we observed that the D626 was
conserved residue across multiple species, and was
mapped to D832 of the NR3C2 protein (Fig. 5d). The
L544 on A chain could map to V750 on NR3C2. In
addition, the Y548 and L566 on D chain were aligned to
H689 and L707 on AR, respectively. The mutated AR
has been proposed to causes breast, prostate cancer or
androgen insensitivity [49, 50]. On the interface of

3h52AD, we found that the H689 of AR may form a
hydrogen-bond interaction with the D832 of NR3C2 ac-
cording to the PPI family, and the L707 of AR forms a
conserved van der Waals interaction to the V750 of
NR3C2 (Fig. 5¢). Rosa et al. analyzed the structural con-
sequences of the H689P mutation, and they suggested
that it likely to perturb the conformation of the second
helix of the AR ligand-binding domain, which contains
the residues critical for androgen binding [51]. In
addition, sequencing identified a point mutation in exon
4 that is responsible for a CTG to CGG replacement
(L707R), which is located at the amino-terminal part of
the AR ligand-binding domain [52]. Therefore, the
present results suggest that our hDiSNet is useful for
understanding the influences of mutations on binding
interfaces in diseases.
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hDiSNet for exploring somatic mutations in brain cancer
The grade IV astrocytomas (i.e., GBM) are categorized
as an aggressive class of brain cancer, which involved in
hallmark characteristics of proliferation, necrosis, genetic
instability, and chemoresistance [53]. In clinical studies,
it is difficult to treat and has a poor prognosis when pa-
tients were diagnosed with the GBM, who have a poor
median overall survival of 12 months and 2-year survival
rates were less than 10% [54]. Multiple histopathological
and genetic reports have recognized the epidermal
growth factor receptor (EGFR) and its downstream sig-
naling pathways as commonly dysregulated elements in
the GBM tumors [55-57]. Recently, some studies have
observed that mutations of ErbB family receptors (e.g.,
EGFR) and downstream proteins may mediate the GBM
tumorigenesis [54, 58, 59]. To explore the association of
signaling pathways and somatic mutations in GBM, we
collected the proteins of the ErbB signaling pathway
(hsa04012) from KEGG pathway [28] and mapped som-
atic mutations from COSMIC into our hDiSNet. Based
on our hDiSNet, the sub-network contains 41 proteins
and 128 PPIs, and 18 out of 41 proteins are annotated
with 3577 somatic mutations (Additional file 1: Figure
S6A). We found that 18 proteins involved in more than
3 different primary tissue (cancer) types associated with
somatic mutations, such as EGFR, ERBB2, and ABL1. In
ErbB-regulated sub-network, 75 (59%) and 53 (41%) of
128 PPIs are derived from human and non-human tem-
plates, respectively, and total 92 (72%) PPIs are recorded
in five databases. In addition, EGFR has 10 interacting
partners and they share similar biological functions, such
as EGFR-ERBB2 (RSS-BP 0.93) participated in cell sur-
face receptor signaling pathway and EGFR-ABL1 (RSS-
BP 0.93) involved in regulation of cell cycle (Additional
file 1: Table S5). Moreover, we observed that EGFR has
732 somatic mutations across 22 different primary can-
cer types, of these 732 mutations, 14 mutations are
found in GBM patients (e.g., Y270C and R149W). Based
on our PPI families, we found that 131 out of 732 EGFR
mutations (18%) occurred in binding interfaces, such as
Y270C. The importance of EGFR Y270 was reported as
the phosphorylation site in PhosphoSitePlus database
[60] and identified by small-scale experiments [61].
According to the structural template (PDB code: livo
[62]), the contacting residue of A chain (cyan) was Y246,
and B chain (purple) was G264 and C283 (Additional
file 1: Figure S6B). Based on the MSA results of A chain,
we observed that the Y246 was conserved residue across
multiple species, and mapped to the homologous protein
EGFR was Y270 (Additional file 1: Figure S6C). The
interacting residues of Y246 were G264 and C283 in B
chain of structural template livo, which aligned to the
homologous protein ERBB2 was G292 and C311. On the
interface of EGFR-ERBB2 (1livoAB), we found that the
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Y270 of EGFR (Y246 in A chain) may form the con-
served hydrogen-bond interaction with the G292 and
C311 of ERBB2 (G264 and C283 in B chain; Additional
file 1: Figure S6B). In addition, the EGFR-Y270, ERBB2-
G292, and ERBB2-C311 are not only contacting resi-
dues, but also located at the furin-like domain (Pfam ID:
PF00757) of extracellular regions. Previous studies have
indicated that mutations occurred in extracellular do-
mains 2 and 4 of EGFR could disrupt auto-inhibitory
contact regions and promote out of control ligand-
independent receptor activation in cancer [63]. Further-
more, the genomic mutations of EGFR have been ob-
served to affect the extracellular domain regions, for
instance, EGFR-Y270 mutation affects extracellular do-
mains 2 [64] and confers oncogenicity in GBM [65]. The
results show that our proposed human structural inter-
actome (hDiSNet) is powerful for investigating the ef-
fects of somatic mutations on binding interfaces and
revealing the causes of disease.

Conclusions

We have reconstructed a human structural interac-
tome (hDiSNet) with detailed atomic binding models
and disease-associated mutations by enhancing our
PPI families and 3D—domain interologs. Our hDiSNet
expands the number of PPIs compared to present
structural PPI network. The experimental results show
that our predicted PPIs have significantly consistent
GO annotations and high co-expression correlations.
Our hDiSNet provides the insights into human gen-
etic disease and their associated proteins and muta-
tions, such as the structural FGFR (EGFR)-MAPK
pathway for interpreting the breast cancer and ErbB
sub-network in brain cancer. Our results show that
the disease-related mutations are often located at the
contacting residues forming the hydrogen bonds and
are conserved in the PPI family. Furthermore, the
binding affinity analysis indicates our identified con-
tacting residues have high potential as hot spots. We
believe that our method is a useful tool to recon-
struct structural interactome with detailed atomic in-
teractions to examine the linkages between the
diseases and mutations and to interpret structural
genomics and disease associations.
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