
RESEARCH Open Access

Predicting and understanding
comprehensive drug-drug interactions via
semi-nonnegative matrix factorization
Hui Yu1, Kui-Tao Mao1, Jian-Yu Shi2*, Hua Huang3, Zhi Chen4, Kai Dong2 and Siu-Ming Yiu5

From The Sixteenth Asia Pacific Bioinformatics Conference
Yokohama, Japan. 15-17 January 2018

Abstract

Background: Drug-drug interactions (DDIs) always cause unexpected and even adverse drug reactions. It is important to
identify DDIs before drugs are used in the market. However, preclinical identification of DDIs requires much money and
time. Computational approaches have exhibited their abilities to predict potential DDIs on a large scale by utilizing pre-
market drug properties (e.g. chemical structure). Nevertheless, none of them can predict two comprehensive types of DDIs,
including enhancive and degressive DDIs, which increases and decreases the behaviors of the interacting drugs
respectively. There is a lack of systematic analysis on the structural relationship among known DDIs. Revealing such a
relationship is very important, because it is able to help understand how DDIs occur. Both the prediction of comprehensive
DDIs and the discovery of structural relationship among them play an important guidance when making a co-prescription.

Results: In this work, treating a set of comprehensive DDIs as a signed network, we design a novel model (DDINMF) for
the prediction of enhancive and degressive DDIs based on semi-nonnegative matrix factorization. Inspiringly, DDINMF
achieves the conventional DDI prediction (AUROC = 0.872 and AUPR = 0.605) and the comprehensive DDI prediction
(AUROC = 0.796 and AUPR = 0.579). Compared with two state-of-the-art approaches, DDINMF shows it superiority. Finally,
representing DDIs as a binary network and a signed network respectively, an analysis based on NMF reveals crucial
knowledge hidden among DDIs.

Conclusions: Our approach is able to predict not only conventional binary DDIs but also comprehensive DDIs. More
importantly, it reveals several key points about the DDI network: (1) both binary and signed networks show fairly clear
clusters, in which both drug degree and the difference between positive degree and negative degree show significant
distribution; (2) the drugs having large degrees tend to have a larger difference between positive degree and negative
degree; (3) though the binary DDI network contains no information about enhancive and degressive DDIs at all, it implies
some of their relationship in the comprehensive DDI matrix; (4) the occurrence of signs indicating enhancive and
degressive DDIs is not random because the comprehensive DDI network is equipped with a structural balance.
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Background
When two or more drugs are taken together, they would
unexpectedly influence each other in terms of pharmacoki-
netic or pharmacodynamical behavior [1]. This kind of in-
fluence is termed as Drug-Drug Interaction (DDI), which
would cause adverse drug reactions (e.g. the reduction in
efficacy or the increment on unexpected toxicity among the
co-prescribed drugs). As the number of approved drugs in-
creases, the number of unidentified DDIs is rapidly rising,
such that more and more adverse effects among the drugs
may occur. Unidentified DDIs would lead patients, who are
treated with numerous medications, to be in the unsafe
treatment of medication errors [2–5]. Understanding DDI
is also the first step towards drug combination, which is
one of promising strategies for multifactorial complex dis-
eases [6]. Therefore, it is an urgent need to screen and
analyze DDIs before clinical medications are administered.
However, traditional experimental approaches for DDI
identification (e.g. testing cytochrome P450 [7] or
transporter-associated interactions [8]) face challenges,
such as high cost, long duration, animal welfare consider-
ations [9], the very limited number of participants and the
great number of drug combinations under screening in
clinical trials. As a result, only a few of DDIs could be iden-
tified during drug development (usually the clinical trial
phase), and most of them are reported after the drugs are
approved.
Computational approaches are promising to discover po-

tential DDIs on a large scale, and they have gained many
concerns from both academy and industry recently [10, 11].
Text-mining based computational approaches have been
developed for detecting DDIs from different sources [9], in-
cluding scientific literature [12, 13], electronic medical re-
cords [14], and the Adverse Event Reporting System of
FDA (http://www.fda.gov). These approaches heavily rely
on the clinical evidence in post-market, thus cannot pro-
vide alerts of potentially DDIs before clinical medications
are administered. In contrast, machine learning-based com-
putational approaches (e.g. naïve similarity-based approach
[15], network recommendation-based [9], classification-
based [16]) are able to provide such alerts by utilizing pre-
marketed drug features or similarities [17], such as, chem-
ical structures [15], targets [18], hierarchical classification
codes [16] and side effects [9, 19]. Most of the existing ma-
chine learning-based approaches were designed for conven-
tional binary prediction, which only indicates how likely a
pair of drugs is a DDI. However, two interacting drugs may
increase or decrease their own pharmaceutical behaviors or
effects in vivo.
It is more important to know exactly whether the inter-

action increases or decreases the pharmaceutical behav-
iors of the drugs when making optimal patient care,
establishing the dosage of a drug, designing prophylactic
drug therapy, or finding the resistance to therapy with a

drug [20]. As one of the important pharmaceutical indices,
serum concentration reflects the amount of a drug in the
pharmacokinetic circulation [21]. When interacting with
other drugs, a drug would increase or decrease the level of
its own and its partners’ serum concentration. For ex-
ample, the serum concentration of Dofetilide (whose
DrugBank Id is DB00204) decreases when it is taken with
Dabrafenib (DB08912) together, whereas its serum con-
centration increases when taken with Dalfopristin
(DB01764). For short, we name the first case of DDI as a
degressive DDI and the second case of DDI as an enhan-
cive DDI in the following texts.
To summarize, predicting approaches for comprehensive

DDIs helps to uncover the underlying mechanism of how
DDIs occur [19]. However, most of current approaches have
been developed only for conventional binary DDIs, but not
for enhancive and degressive DDIs. Furthermore, there is a
lack of systematic analysis on the structural relationship hid-
den among known DDIs. Revealing such a structural rela-
tionship is very important, because it is able to help
understand how DDIs occur. A promising solution of these
two issues is able to guide medical doctors to make safe co-
prescriptions.
In this paper, to address abovementioned issues, we

firstly design a novel model (DDINMF) for DDI predic-
tion based on Nonnegative Matrix Factorization (NMF).
Representing DDIs as a binary network and a signed
network respectively, we then make an attempt to reveal
the structural relationship hidden among DDIs by NMF
and social balance theory.

Methods
Dataset
We collected 2329 approved drugs from DrugBank
[22] and selected 603 drugs, which have DDIs re-
corded in DrugBank. Among the set of drugs, we also
removed those drugs without chemical structures or
without the off-label side effects recorded in OFF-
SIDES [23], and kept the remaining 568 drugs having
both of them. The final DDI dataset contains 21,351
DDIs, including 16,757 enhancive DDIs (E-DDI) and
4594 degressive DDIs (D-DDI). Each drug is repre-
sented as an 881-dimensional feature vector fstr based
on PubChem structure descriptor and also a 9149- di-
mensional feature vector fse according to the off-label
side effects provided by OFFSIDES [23]. The second
feature fse was proposed firstly in [19]. These two
vectors are binary, of which a value of 1 denotes the
occurrence of a specific structure fragment in its
chemical structure or the observation of a specific
side effect in clinic, and 0 if this does not occur or is
not observed. By organizing DDIs as a DDI graph, we
also investigated the degrees of DDIs, enhancive DDIs
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and degressive DDIs respectively. The details of our
DDI dataset are listed in Table 1.

Problem formulation
Without loss of generality, let D = {di}, i = 1, 2, …, m be a
set of m approved drugs. Their interactions can be orga-
nized as an m ×m symmetric interaction matrix Am ×m

= {aij}, which can be regarded as the adjacent matrix of
DDI network. For the conventional DDI, aij = 1 if di inter-
acts with dj, and aij = 0 otherwise. For the comprehensive
DDI, aij ∈ {−1, 0, +1}. In details, if di and dj do not interact
with each other, aij = 0. When there is an enhancive DDI
or a degressive DDI between di and dj, aij = + 1 or aij = − 1
respectively. Obviously, as the special case of the compre-
hensive DDI matrix A, the conventional binary DDI matrix
Ab can be obtained by Ab = Binary(A).
In addition, each drug di in D is represented as a p-di-

mensional feature vector fi = [f1, f2,…, fk,…, fp], where fk = 1
denotes the k-th specific structure fragment or observed
side effect and fk = 0 otherwise . All the drugs in D are se-
quentially organized as an m × p feature matrix Fm × p.
To obtain a brief description, a known drug is re-

ferred to as a drug in D and a new drug is defined as
the drug having no interaction with any drug in D. A
screening scenario for new drugs is considered in this
paper. Formally, the task is to predict how likely a newly
given drug dx interacts with one or more known drugs,
and how likely a DDI of dx is an enhancive DDI or a de-
gressive DDI. Fig. 1 illustrates the task.

Prediction model
Since the new drugs have no existing interaction with
the drugs in D and are regarded as isolated nodes in
the DDI network (Fig. 1), we cannot utilize their topo-
logical information to deduce their potential interac-
tions. This is also the well-known cold start problem in
recommendation system. Obviously, we need their add-
itional properties (e.g. chemical structure fragments or
side effects), which are called drug features in terms of
machine learning. Once the additional features are ob-
tained, we would build a supervised model to perform
DDI prediction. The main idea is to build the relation-
ship between the features of known drugs in D and their
DDI network topology. We built the model (DDINMF)

for predicting DDI based on nonnegative matrix
factorization. It includes two phases (Fig. 2).
(1) In the training phase of DDINMF, the adjacent

matrix Am ×m among m known drugs is first decomposed
into two matrices Am ×m ≈Wm × r ×Hr ×m, where r is the
dimension of the latent topological space. Denote Fm × p as
the input feature matrix of those m known drugs (the
training drugs). Then the relationship between Fm × p and
Hr ×m can be modeled by a regression (HT)m × r = Fm × p ×
Bp × r, where Bp × r is the regression coefficient matrix.
(2) In the predicting phase, the learned Bp × r firstly maps

the n × p input feature matrix of n newly given drugs
(denoted as Fx) into the latent topological space by HT

x

¼ Fx � B . Then the n × r mapped latent feature matrix
Hx is used to generate the predicted interactions between
the new drug and the known drugs by Ax = (WHx)

T.
DDINMF applies the regular nonnegative matrix

factorization (NMF) to decompose the DDI adjacent
matrix when given a conventional binary adjacent
matrix, and applies a variant of NMF, semi-NMF, when
given a comprehensive adjacent matrix. A brief intro-
duction of both NMF and semi-NMF can be found in
the next section. The regression in DDINMF is solved
by Partial Least Square Regression (PLSR) because there
is a multi-collinearity between some columns of F or H.
The model of multivariate PLSR can be solved by
SIMPLS algorithm [24].

Nonnegative matrix factorization and semi-nonnegative
matrix factorization
Given an instance matrix Xm × n = [x1, x2,…, xn] ∈ℝ

+, Non-
negative Matrix Factorization (NMF) aims to find a base
matrix Wm × r = [wir] ∈ℝ

+ and an encoding matrix Hr× n

= [hri] ∈ℝ
+, whose product can well approximate the ori-

ginal matrix X+ ≈W+H+, where r <min(m, n). These ap-
proximating factors are typically obtained by solving the
constrained least square minimization problem [25]:

min
W ≥0
H ≥0

X−WHk k2F ¼
X
i; j

xij−
Xr
k¼1

wikhki

 !2

ð1Þ

The algorithm minimizing the objective function is as
follows:

Table 1 Details of comprehensive DDI network

Property Value Degree Value Degree of E-DDI Value Degree of D-DDI Value

#Drug 568 Ave. 75.18 Ave. 59.00 Ave. 16.18

#DDI 21,351 Median 61.50 Median 45.00 Median 8.00

#E-DDI 16,757 Max. 296 Max. 230 Max. 206

#D-DDI 4594 Min. 1 Min. 0 Min. 0

E-DDI: enhancive DDIs, D-DDI: degressive DDIs
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The factor matrices W and H in the regular NMF are
able to provide basic clustering. If we view W = [w1,w2,
…,wr] as the cluster centroids, then H = [h1, h2,…,
hn] can be viewed as the cluster indicators for each data-
point. Especially, when X+ is a symmetric binary

nonnegative matrix (e.g. the adjacent matrix of DDI Ab),
W denotes the communities in a network while H de-
notes the membership of instances to those
communities.
Though there is a variant of NMF, symmetric NMF

(SymNMF) [26], which looks more natural to the symmet-
ric adjacent matrix of binary DDIs, it has disadvantages
from a technical point of view. SymNMF has higher com-
plexity than NMF, thus runs slower. Most importantly, it
has a larger reconstructed error, especially a higher diver-
gence of the diagonal elements in its reconstructed matrix
comparing to all-zero diagonal of the original matrix.
Therefore, we apply NMF but not SymNMF to decom-
pose the binary adjacent matrix of DDI.
NMF has a strong constraint of X ∈ℝ+. When the in-

stance matrix has mixed signs (e.g. the adjacent matrix
of comprehensive DDI A ), we consider Semi-NMF X
± ≈W±H+, in which both X∈Rm�n

� and W∈Rm�r
� have

mixed signs while only H∈Rr�n
þ is restricted to comprise

strictly nonnegative components [27]. Semi-NMF has
the same form of cost/objective function as that of NMF,
except for no constraint on W. But the algorithm min-
imizing the objective function is totally different:

W←XH†; H←H⊙

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WTX
� �pos þ WTW

� �neg
H

� �
ik

WTX
� �neg þ WTW

� �pos
H

� �
ik

vuut ;

ð3Þ

where H† is the Moore–Penrose pseudo-inverse of H,
Apos is a matrix that has the negative elements of matrix
A replaced with 0, and Aneg is the one that has the posi-
tive elements of A replaced with 0:

Fig. 1 Illustration of predicting DDIs for a newly given drug. In the left panel, nodes in DDI network represent drugs. The hollow nodes are known drugs
(numbered from 1 to 7) and the solid lines between them denote their interactions. Blue lines are enhancive interactions and yellow lines are degressive
interactions. The node in red respectively is the newly given drug, tagged as X. In the right panel, the adjacent matrix is shown. The cells in it are filled
with blue, yellow and red, accounting for the types of DDIs and drug pairs of interest respectively. All the pairwise entries among {d1,d2…,d7} are used to
train the model, the entries in the red cells denote the testing entries. Our problem is to determine which known drugs could interact with the new
drug X and what type these potential interactions are

Fig. 2 Overview of DDINMF. DDINMF contains a training phase and
a predicting phase. (1) In its training phase, the adjacent matrix A is
first decomposed into a basis (community) matrix and a latent
(encoding) feature matrix by A ≈W ×H. Then the relationship
between the input feature matrix F and the latent feature matrix H is
modeled by a regression (HT) = F × B. (2) In the predicting phase, the
learned regression coefficient B firstly maps the input feature matrix Fx
of n newly given drugs into their latent feature matrix by HT

x ¼ Fx � B
. Then the mapped latent feature matrix of Fx is used to generate the
predicted interactions between the new drugs and the known drugs
by Ax = (WHx)

T
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Though there are other methods of matrix factorization
(e.g. Principal Component Analysis, PCA) that can be
used to decompose the comprehensive adjacent matrix of
DDIs, semi-NMF has the exclusive advantage that both its
W and H show physical meanings, such as the ordinary
degree, the difference of positive degree and negative
degree, and the balance properties. See also Section Re-
sults and Discussion.
Finally, NMF and Semi-NMF are adopted to decom-

pose the binary and the comprehensive adjacent matri-
ces of DDIs in our predicting model respectively.

Assessment
K-fold Cross-validation (K-CV) is the well-established
approach to validate the power of generalization of algo-
rithms in machine learning. To reflect the fact that new
drugs have no interaction and to avoid over-optimistic
prediction [17, 28–31], the K-CV scheme should be elab-
orately designed. For the given drugs having NO known
interaction, the K-CV scheme tries to assess the task of
predicting new potential interactions between them and
those drugs having known interactions. The task corre-
sponding to the K-CV scheme is useful when one tries
to extend existing co-prescriptions by adding new drugs.
The generation of both training samples and testing

samples is as follows. 1/K drugs are randomly removed
out of all the given drugs in D as the testing drugs and
the remaining drugs are taken as the training drugs. The
drug pairs among the training drugs are selected as the
training samples. The testing drugs are regarded as new
drugs, and only the drug pairs between the testing drugs
and the training drugs are selected as the testing sam-
ples, which are blind to the training (see also Fig. 1).
Finally, the above procedures are repeated K times and
the average of predicting performance in all rounds of
CV is taken as the final performance. Usually, K = 10.
Two measures are usually adopted to assess the pre-

dicting performance, including the area under receiver
operating characteristic curve (AUROC) and the area
under precision-recall curve (AUPR) [32]. In the predic-
tion of conventional binary DDIs, since positive and
negative samples are interactions and non-interactions,
both AUROC and AUPR can be calculated by comparing
their predicted scores. Considering that the predicted
scores of enhancive DDIs tend to be greater than ZERO
and the predicted scores of degressive DDIs tend to be
less than ZERO, we need to extend the calculation of
AUROC and AUPR. In the prediction of comprehensive
DDIs, to adopt the same way of calculating AUROC and
AUPR, both enhancive and degressive DDIs first are la-
beled as positive samples while non-interactions are still

labeled as negative samples. Then, the union of the pre-
dicted scores of enhancive DDIs and the MINUS of the
predicted scores of degressive DDIs is compared with
those scores of non-interactions by the same way as that
in measuring conventional prediction.

Results and Discussion
Feature preprocessing
Because each drug was represented as an 881-dimensional
feature vector fstr or as a 9149-dimensional feature vector
fse, we reduced the high dimensions to accelerate the calcu-
lation. Though the value of the reduced dimension was un-
known, we estimated it by performing ordinary PCA on the
input feature matrix and counting the obtained PCs from
the first one until the one, of which the entries having the
values near to zeros. Then, using the number of PCs as the
estimated dimension, we applied Kernel PCA [33] to the
original input feature matrix and obtained the mapped
feature matrix having significantly smaller dimensions.
Gaussian function was adopted as the kernel in Kernel
PCA with its variance equal to 4 for fstr and 16 for fse. Fi-
nally, the reduced dimensions of fstr and fse were 487 and
557 respectively.

Comparison with the state-of-the-art approaches
Before running prediction, we assigned two parameters in
our DDINMF, including the dimension of latent space (r) in
matrix factorization and the number of latent factors (k) in
PLSR as follows. We fixed the former with rank(A)/2 and
tuned the latter from the list {10, 20, 30, 40, 50, 60, 70, 80, 90,
100} with the prediction measure of AUROC under 10-CV.
Using the structure feature fstr and the side effect feature fse,
we run NMF for binary DDI prediction and Semi-NMF for
comprehensive DDI prediction respectively. When perform-
ing the conventional prediction of binary DDIs, we turned
the entries equal to − 1 into + 1 in A to form the binary
DDI adjacent matrix A b (see also Section Problem Formula-
tion). The best values of the number of latent factors (k= 40
and k= 100 respectively) were picked up for two kinds of
DDI prediction. In addition, we concatenated fstr with fse
and run the prediction again (k = 100). The results show that
fstr are significantly better than both fse and their concaten-
ation (Fig. 3). Therefore, only using the chemical structure
feature fstr, we performed DDI prediction in the following
experiments.
First, we compared our approach with two state-of-the-

art approaches, including Naïve similarity-based approach
[15] and label propagation-based approach [9]. To obtain
the robust predicting performance, 10-CV was repeated 50
times under different random seeds. Their final perform-
ance was reported by the average performance over 50 rep-
etitions of CV (Table 2). The results show that DDINMF is
significantly superior to them in terms of both AUROC
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and AUPR, and also indicate that the comprehensive pre-
diction is more difficult than the conventional prediction.
We also compared NMF with SymNMF in the case of

binary DDI prediction. We decomposed our binary DDI ad-
jacent matrix with the dimension of latent space = rank(A)/
2 by NMF and SymNMF respectively. NMF spends only
4.76 s on the binary adjacent matrix of DDIs while
SymNMF spends 97.6 s using a computer equipped with
Windows 10 (64-bits), Intel Core i7-4700MQ 2.40G and
16 GB RAM. On the other hand, the reconstructed error of
NMF is only 26.1122 while that of SymNMF is up to
94.7374. The mean and standard derivation of the diagonal
elements in the reconstructed matrix achieved by NMF are
0.3888 and 0.4003, whereas those achieved SymNMF are
1.4352 and 0.8303 respectively. In addition, the performance
(AUROC= 0.870 and AUPR= 0.583) achieved by SymNMF
is worse than those achieved by NMF (see also Table 2), es-
pecially on AUPR. In summary, NMF is better than
SymNMF.
Similarly, we compared semi-NMF with PCA in the

case of comprehensive DDI prediction. PCA achieves the
prediction performance with AUROC= 0.780 and AUPR
= 0.535. Obviously, semi-NMF with AUROC= 0.796 and
AUPR = 0.579 outperforms PCA. More importantly, semi-
NMF has the advantage that both its W and H show phys-
ical meanings, such as the ordinary degree, the difference
of positive degree and negative degree, and the balance
properties. See also next section.
Finally, considering the desirable performance of pre-

dicting conventional DDIs, we performed a novel predic-
tion. In detail, we randomly collected 50 extra drugs

from DrugBank and checked whether they interact with
any of the original 568 drugs. According the predicted
scores, the top-k drug pairs then were picked out and
compared with the records in DrugBank. We counted
the records matching the drug pairs of interest. For con-
venience, the number of such records over k is called
hitting ratio. We checked the records from top-10 to
top-100 with step 10 (Table 3). The validation demon-
strates that our DDINMF is effective to predict DDIs for
newly coming drugs.

Properties of DDI network
In this section, two questions are lifted up: (1) how the
decomposed factor matrices W and H reflect the proper-
ties of DDI network; (2) whether the binary DDI matrix
Ab implies some relationship about enhancive and degres-
sive DDIs in the comprehensive DDI matrix. Since NMF
has the nature of clustering, the analysis based on it would
give insights on the corresponding answers.
To describe briefly, we refer to a set of DDIs as a binary

DDI network or a signed DDI network according to the
type of DDI. For a drug, we also refer to the number of it
DDIs, the number of its enhancive DDIs, and the number
of its degressive DDIs as Degree, Positive Degree, and
Negative Degree respectively. In this context, we treated
the rows of W as the community-derived features f fWi g
and the columns of H as the encoding features ffHi g of
drugs respectively. The former indicates how each drug
contributes to comprise the communities, which account
for all the columns of W, while the latter indicates how

Fig. 3 Illustration of determining the best value for the number of latent factors when given the structure feature and the side effect feature

Table 2 Comparison with state-of-the-art methods

Binary Prediction Comprehensive Prediction

Method AUROC AUPR AUROC AUPR

Naïve Similarity [15] 0.779 ± 0.001 0.342 ± 0.002 0.641 ± 0.002 0.298 ± 0.004

Label Propagation [9] 0.776 ± 0.001 0.327 ± 0.002 0.635 ± 0.004 0.286 ± 0.006

DDINMF 0.872 ± 0.002 0.605 ± 0.006 0.796 ± 0.003 0.579 ± 0.003
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likely each drug belongs to those communities. Since their
dimensions are high, we applied kernel PCA to them and
used the first 3 principal components (PC) of the mapped
instances to visualize them in a 3-d space.

We firstly tried to visualize the binary DDI network
(Fig. 4). Each data-point in the two spaces is rendered by

its drug degrees (Fig. 4a and c) and the difference between
its positive degree and negative degree (Fig. 4b and d) re-
spectively. In Fig. 4, Red means the largest degree or the
degree difference, blue means the smallest value and other
colors transiting from blue to red denote the middle
values in an ascending order. Several interesting aspects
can be found:
(1) As expected, the mapped spaces show significant

clusters. Four significant branches are observed in the
mapped space of community-derived features (Fig. 4a)
while both two big clusters and one small cluster are
found in the mapped space of encoding features (Fig. 4b).

Table 3 Novel Prediction

Top-k 10 20 30 40 50 60 70 80 90 100

Hitting ratio(%) 100 100 97 97 92 93 90 88 84 82

Fig. 4 Illustration of the mapped space of binary DDI network. (a) Community-derived features rendered by drug degree; (b) encoding features rendered
by drug degree; (c) community-derived features rendered by the difference between positive degree and negative degree; (d) encoding features rendered
by the difference between positive degree and negative degree
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Degree shows a fairly clear distribution along those
branches or in those clusters. For example, the Spear-
man Correlation between the degrees of the data points
in the biggest branch (Fig. 4a) and their first mapped PC
(denoted as X) is up to 0.9250.
(2) Surprisingly, the difference between Positive De-

gree and Negative Degree shows a significant distribu-
tion. Especially, both the branch X in Fig. 4c and the left
cluster in Fig. 4d contain all the data points, of which
their positive degrees are definitely greater than their
negative degrees. In addition, the points having large

degrees tend to have a large difference between Positive
Degree and Negative Degree. The observation on binary
DDIs surprisingly implies that the occurrence of signs
indicating enhancive and degressive DDIs is not random.
Similarly, we then tried to visualize the comprehensive

DDI network (Fig. 5). The mapped space of community-
derived features contains four sectors, which show a signifi-
cant distribution of both degree and positive-negative de-
gree difference in the plane of the first and the third PCs
(denoted as X-Z). The mapped space of encoding features
also shows that the positive degrees of data points are

Fig. 5 Illustration of the mapped space of comprehensive DDI network. (a) Community-derived features rendered by drug degree; (b) community-derived
features rendered by the difference between positive degree and negative degree; (c) encoding features rendered by drug degree; (d) encoding features
rendered by the difference between positive degree and negative degree
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definitely greater than their negative degrees and that the
points having large degrees tend to have a large difference
between positive degree and negative degree. Differentially,
the mapped space of encoding features presents that its first
PC (denoted as X) and the degree are almost completely
correlated with each other (Spearman Correlation =
0.9822). In general, the observation is consistent with that
in Fig. 4.
In summary, one just keeps it in mind that the binary

DDI network contains NO information about enhancive
and degressive DDIs at all, but it shows a consistency
with the comprehensive DDI network, especially about
Degree, Positive Degree and Negative Degree. Therefore,
the binary DDI network implies some relationship about
enhancive and degressive DDIs in the comprehensive
DDI matrix. In other words, the occurrence of signs in-
dicating enhancive and degressive DDIs is not random.
To validate this point further, we checked the signed

DDI network to see whether or not it is of a structural
balanced network. The relationships in signed networks
can be positive (“enhancive”, “like”, “friend”) or negative
(“degressive”, “dislike”, “enemy”). Thus, there are four
kinds of triangle relation patterns according to the type
of DDI, including (positive, positive, positive), (positive,
negative, negative), (negative, positive, positive) and
(negative, negative, negative). The first two triangles are
called the balanced pattern, the third is called as the un-
balanced pattern and the last is named as the weakly
balanced pattern. We counted four kinds of triangle pat-
terns in the comprehensive (signed) DDI network and
listed their numbers as follows: 374,215, 47,389, 46,478
and 7773. Obviously, ~ 90% triangles are balanced pat-
terns. After checking the balance tendency in the
mapped space of community-derived features, we found:
(1) all the triangles (54,722) among the drugs having the
first PC < 0 are purely balanced, and (2) the interactions
of the drugs having the second PC < 0 are purely posi-
tive and negative in the two branches respectively. In
addition, the small cluster in the mapped space of en-
coding features contains no weakly balanced triangles
but 253,284 balanced triangles as well as 8597 imbal-
anced triangles. The results demonstrate that the com-
prehensive DDI network is equipped with a structural
balance, such that the occurrence of enhancive and de-
gressive DDIs is not random. The observation helps
understand how DDIs gather together.

Conclusions
Existing computational approaches are able to screen
potential DDIs on a large scale before drugs are used in
the medicine market. However, none of them can pre-
dict comprehensive DDIs, including enhancive and de-
gressive DDIs, though it is important to know whether
the interaction increases or decreases the behavior of the

interacting drugs before making a co-prescription.
Moreover, the important structural relationship hidden
among DDIs still remains unknown.
To address the abovementioned issues, we have de-

signed a novel approach DDINMF for comprehensive
DDI prediction in different scenarios. Treating the set of
DDI as a network, it provides a unified framework for
predicting conventional binary DDIs as well as compre-
hensive DDIs. Experiments on the dataset demonstrate
that DDINMF is significantly superior to two state-of-
the-art approaches in the conventional binary DDI pre-
diction and also shows an acceptable performance in the
comprehensive DDI prediction. More importantly,
DDINMF enables us to discover crucial knowledge hid-
den among DDIs, including degree distribution and ten-
dency, as well as the implication of binary network to
signed network, especially the structural balance of com-
prehensive DDI network.
There are still unknown but important factors among

DDIs to be uncovered. In the future, we will focus on
extracting and integrating more features of drug (e.g.
drug targets and pathway) together to achieve improved
DDI prediction, building an interpretable mapping be-
tween drug features and DDI, and digging out more
structural patterns of comprehensive/signed DDI net-
work and even their dynamic properties.
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