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Abstract

Background: Polygenic diseases are usually caused by the dysfunction of multiple genes. Unravelling such disease
genes is crucial to fully understand the genetic landscape of diseases on molecular level. With the advent of ‘omic’
data era, network-based methods have prominently boosted disease gene discovery. However, how to make better
use of different types of data for the prediction of disease genes remains a challenge.

Results: In this study, we improved the performance of disease gene prediction by integrating the similarity
of disease phenotype, biological function and network topology. First, for each phenotype, a phenotype-specific network
was specially constructed by mapping phenotype similarity information of given phenotype onto the protein-protein
interaction (PPI) network. Then, we developed a gene gravity-like algorithm, to score candidate genes based on not only
topological similarity but also functional similarity. We tested the proposed network and algorithm by conducting leave-
one-out and leave-10%-out cross validation and compared them with state-of-art algorithms. The results showed
a preference to phenotype-specific network as well as gene gravity-like algorithm. At last, we tested the predicting
capacity of proposed algorithms by test gene set derived from the DisGeNET database. Also, potential disease genes
of three polygenic diseases, obesity, prostate cancer and lung cancer, were predicted by proposed methods. We found
that the predicted disease genes are highly consistent with literature and database evidence.

Conclusions: The good performance of phenotype-specific networks indicates that phenotype similarity information
has positive effect on the prediction of disease genes. The proposed gene gravity-like algorithm outperforms the
algorithm of Random Walk with Restart (RWR), implicating its predicting capacity by combing topological similarity
with functional similarity. Our work will give an insight to the discovery of disease genes by fusing multiple similarities
of genes and diseases.

Keywords: Disease gene prediction, Phenotype similarity, Topological similarity, Functional similarity, Gene gravity-like
algorithm

Background
Pinpointing disease genes is a fundamental task in eluci-
dating the pathogenesis of diseases. It has significant im-
plication in disease modeling, drug design, therapeutic
prevention and clinical treatment [1]. Disease gene pre-
diction is a process to pick out the most susceptible
genes among a pool of candidate genes for further
downstream screening.

Traditional disease gene prediction methods involve
linkage analysis and genome-wide association study
(GAWS). They typically identify a chromosome interval
of 0.5~10 CM, which includes hundreds of candidate
genes [2]. Although such methods have achieved fruitful
success in the low-throughput period, they suffer from
high false negatives for merely focusing on limited can-
didates on certain interval of chromosome. Moreover,
experimental validation for hundreds of candidates is
time-consuming and expensive. Therefore, computa-
tional methods are required to accelerate the discovery
of disease genes.
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With the advent of bioinformatics and the rapid devel-
opment of high-throughput mapping technology [3],
network-based methods arise and boost the discovery of
disease associated genes [4]. In general, network-based
methods predict potential disease genes based on guilt-
by-association principle, in which candidates are more
likely to be disease genes if they have higher topological
similarity to known disease genes in the background PPI
network [5, 6]. Such topological similarity between can-
didates and known disease genes can be measured from
local or global perspectives. The local approaches mainly
consider local network topology to infer potential dis-
ease genes. Linghu et al. used neighborhood-weighing
rule to score candidates based on their linkage weight
with the known disease genes [7]. Krauthammer et al.
used the shortest distance method to predict disease
genes that may not be physically related but belong to
common pathways [8]. However, the local approaches al-
ways suffer from noisy and incomplete background net-
work and fail in predicting precision [9]. Global methods
like RWR [10], network propagation [11] and kernel diffu-
sion [10] have partly solved this problem by considering
multiple alternate paths and the global topology of PPI
network. Although the global network-based methods
outperform the local ones, they still have limitation in dis-
ease gene prediction for only considering topological simi-
larity but ignoring other functional information.
Recent years, the importance of phenotype similarity

information has attracted community attention and been
integrated in network-based methods to identify disease
genes. So far, the integration of phenotype similarity in-
formation with gene-gene network has been applied
mainly in two ways. The first class of methods such as
Vavine [12], Prince [11], and Prosim [13], regards known
disease genes of similar phenotypes as known disease
genes for the given phenotype, so as to enlarge the seed
set, which is a collection of known disease genes. This
type of application provides alternatives for phenotypes
with few known disease genes, but fails to fully exploit
the similarity information. The second class of methods,
such as Cipher [14], RWRH [15], pgWalk [16] and
MAXIF [17], combines phenotype-phenotype similar-
ities, gene-phenotype relations and gene-gene interac-
tions to construct a heterogeneous network. Based on
the heterogeneous network, new gene-phenotype rela-
tionships are predicted by algorithms. Reasonable as it
seems, this type of methods ignores the great difference
in gene network and phenotype network, which are
comparable neither in biological property nor order of
magnitude. Therefore, it remains a challenge for us to
utilize phenotype similarity in a more reasonable way.
In this paper, we tried to improve disease gene predic-

tion by integrating the similarity of disease phenotypes,
biological functions and network topologies. To achieve

this, we first proposed a new way to project phenotype
similarity information into the background PPI network
and constructed a phenotype-specific network. This new
network is tailored to each phenotype and more relevant
to the phenotype than the original network. Next, we
proposed a gene gravity-like algorithm based on New-
ton’s law of universal gravitation. The new algorithm is
designed to select the potential disease genes which have
higher topological similarity measured by RWR algo-
rithm as well as functional similarity measured by the
number of common GO terms. In this way, we success-
fully integrated three types of similarity information to
predict new disease genes. We further conducted leave-
one-out and leave-10%-out cross validations to assess
the performance of the proposed algorithms. At last, the
predicting power of the proposed methods was demon-
strated by uncovering the test genes in the DisGeNET
database. Meanwhile, we went on case study on three
complex diseases, namely obesity, prostate cancer and
lung cancer.

Methods
Data preparation
Our research needs to use PPI data, phenotype simi-
larity data, gene ontology data and disease gene set.
These data are extracted from public databases de-
scribed as follows.

PPI data
The PPI data used in this paper comes from the Human-
Net database. HuamnNet is a functional gene association
network that incorporates 21 kinds of ‘omics’ data and
assigns confidence of interactions with log-likelihood
scores [18]. In the PPI network, proteins encoded by
genes are represented by nodes, and interactions are
edges with confidence scores, which indicate the likeli-
hood of pairwise genes interacting with each other. In
this work, to successfully run global algorithm on the
network, we further extracted the biggest connected
cluster from the PPI network after removing self-looped
and duplicated edges. Finally the PPI network comprises
16,222 genes and 476,388 edges, whose adjacent matrix
is 16222 × 16222dimension. In this paper, we still call
this final PPI network as HumanNet network or the
original network.

Phenotype similarity data
The phenotype similarity data was downloaded from
MimMiner database (http://www.cmbi.ru.nl/MimMiner/
suppl.html) created by Van Direl et al. They utilized text-
mining method to describe phenotypes by medical subject
headings vocabulary (MeSH), and profiled them into
corresponding feature vectors. At last a 5080 × 5080 di-
mensional similarity matrix is obtained by computing
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the cosine of the angle between pairwise feature
vectors [19].

Gene ontology (GO)
Gene Ontology (GO) is a hierarchical and maintained
database that uses controlled vocabulary of terms to an-
notate genes and their products. GO database develops
three structured ontologies from different biological as-
pects, namely, biological process, cellular component
and molecular function [20]. In the GO database, each
GO term represents one concept, and indicates certain
biological meaning. A GO term which lies in the deeper
level in the term ontology indicates more direct gene
function, and the GO terms used to annotate a gene are
usually the deepest level that so far has been found.
Therefore, if gene pairs share more common annotated
GO terms, they are more likely to be functionally re-
lated. Based on such observation, we can measure func-
tional similarity between genes by the number of their
common GO terms. In particular, to calculate the num-
ber of common GO terms between gene pairs, we first
downloaded GO database on March.1, 2016, and imple-
mented following steps:

(1)Removing genes with less than 3 GO terms;
(2)Excluding genes that are absent in the HumanNet

network;
(3)Intersecting common GO terms of gene pairs.

Note that, since the terms annotating the genes indi-
cate the direct function of genes, we did not consider
the parent-child relationship between terms in calculat-
ing the overlapping GO terms between genes. If we did
so, the number of the common GO terms between genes
would be too large to reliably measure the functional
similarity between genes.
Finally we got a 16222 × 16222 functional similarity

matrix corresponding to the genes in the HumanNet
network. In the functional similarity matrix, the
element represents the number of common GO terms
between genes.

Disease gene set from OMIM database
In this work, disease genes were collected from Mor-
bid map of the Online Mendelian Inheritance in Man
(OMIM) database [21]. We identified 113 disease
phenotypes containing 633 disease genes with 503
unique ones (One gene may be shared by several dis-
ease phenotypes). The selected disease phenotypes
must satisfy following criteria:

(1)Being a member of MimMiner database.
(2)Having at least 3 disease genes which are included in

the HumanNet network.

To evaluate the proposed network and algorithm, we used
the 633 genes in the 113 disease phenotypes as seed set to
conduct leave-one-out cross validation. Further, we chose 30
diseases from the 113 diseases to perform leave-10%-out
cross validation, each of which has at least 6 known disease
genes. There are 470 disease genes associated with these 30
diseases (The list of these phenotypes and disease genes is
available in the Additional file 1: Table S1).

Test gene set from the DisGeNET database
DisGeNET is a discovery platform which provides open ac-
cess to one of the largest collections of genes and variants
associated with human diseases. It assigns a confidence
score to measure the reliability between gene-phenotype
relationships. In this work, we downloaded the curated
gene-disease association file (http://www.disgenet.org/web/
DisGeNET/menu/downloads) and filtered the gene-
phenotype relationship with score higher than 0.4. Finally,
for the 113 diseases mentioned above, there are 54 diseases
included in DisGeNET. A total of 572 genes of the
54 diseases are included in the DisGeNET but not in
the OMIM. These genes are used as test gene set to
validate the performance of the proposed algorithms
(The list of these phenotypes and disease genes is
available in the Additional file 1: Table S2).

Workflow for the prediction of disease genes
We demonstrate our workflow for the prediction of dis-
ease genes in Fig. 1. It is mainly conducted in 3 steps. We
start with mapping phenotype similarity information of a
given phenotype onto the original PPI network so as to
construct a phenotype-specific network. Next, with evi-
dence from both topological distance on the network and
functional similarity measured by the number of common
GO terms, we score and rank each candidate by gene
gravity-like algorithm. At last, we conduct performance
assessment to validate proposed network and algorithm.

Construction of phenotype-specific network
In order to make the PPI network more informative to
the phenotype of interest, we propose a simple but effi-
cient way to incorporate phenotype similarity informa-
tion into PPI network. Unlike the methods that enlarge
seed set or construct a heterogeneous network, we im-
prove disease gene prediction by constructing a particu-
larly designed phenotype-specific network for each
phenotype. Specifically, for a given phenotypePi, the ad-
jacent matrix for corresponding phenotype-specific net-
work is defined as follows:

W Pið Þ ¼ W þ
X
j ¼ 1
j≠i

l
sijA

Pjð Þi ¼ 1; 2;…; l ð1Þ

Lin et al. BMC Systems Biology  (2017) 11:121 Page 3 of 12

http://www.disgenet.org/web/DisGeNET/menu/downloads
http://www.disgenet.org/web/DisGeNET/menu/downloads


where W Pið Þ is the adjacent matrix of the phenotype-
specific network for Pi, W is the adjacent matrix of
the original PPI network; sij is the similarity score be-
tween phenotype Pi andPj;A

Pjð Þ is the adjacent matrix
of a gene-gene network, which has the same nodes as
the PPI network and disease genes of the phenotype
Pj (j = 1, 2, …, l, j ≠ i) are linked with each other. Its
element a

Pjð Þ
mn is defined as:

amn
Pjð Þ ¼ 1 m; n∈seeds Pj

� �
0 otherwise

�
; ð2Þ

where seeds(Pj) is the disease gene set for phenotype Pj.
In details, if both gene m and n belong toseeds(Pj), elem-
ent a

Pjð Þ
mn in A Pjð Þ is assigned a value of 1; otherwise, it is

0. In this way, the new network is specific to phenotype
Pi and contains all evidence of phenotype similarity for
Pi in the PPI network. In Fig. 2, we give an example to
illustrate the process of constructing a phenotype-
specific network.

Gene gravity-like algorithm for the prediction of disease
genes
Traditionally, Newton’s law of universal gravitation mea-
sures the gravitation between two objects by their
masses and distance as follows:

Gij ¼ k ∙
Mi∙Mj

r2
ð3Þ

Fig. 1 Workflow for the prediction of disease genes

Fig. 2 An example for the construction of the phenotype-specific network for phenotype Pi Assume that P1, P2 are phenotypes similar to given
phenotype Pi with similarity score si1 and si2 respectively. {e, d, f} is the disease gene set of P1, and {f, g, h} is the disease gene set of P2. The
phenotype-specific network is constructed by mapping phenotype similarity information into the original PPI network, in which links between
genes of the same phenotype are created while corresponding phenotype similarity score is added to the original weight. The dot line denotes
the new generated edge
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where Mi and Mj represent the masses of two objects,
rrepresents the distance between them, and k is the
gravitation constant. This equation means that the gravi-
tation of two objects is proportional to the product of
their masses and inversely proportional to the square of
their distance. Several gravity-like algorithms have been
proposed according to the core idea of Newton’s law of
universal gravitation and been successfully applied in dif-
ferent fields, like transportation flow [22], population
migration [23] and evolution of cancer genomes [24].
In the context of disease gene prediction, we assume

that genes having larger interaction force with known
disease genes are more likely to be disease genes. Thus
we try to use gravitation for the measurement of the
interaction force. In the gravitation eq. (3), we take r as
the topological distance in the background PPI network,
Mi as the set of GO terms for genei, and the gravitation
constant k as 1. The product between Mi and Mj is de-
fined as the number of elements in their intersection set:
Mi ∙Mj = |Mi ∩Mj|. The topological distance between
genes is measured by RWR algorithm. In this way, we
propose a novel predicting algorithm called gene gravity-
like algorithm to score a candidate gene by a set of seed
genes. Formally, the equation is:

G Pið Þ
m ¼

P
n∈seeds Pið Þ Mm∩Mnj j

� �α

P
n∈seeds Pið Þ 1=RRWR

mn

� �� �β
ð4Þ

where Pi denotes the phenotype of interest and seeds(Pi)
is its seed set; gene m is a candidate gene and gene n is
one of seed genes; |Mm ∩Mn| represents the number of
common GO terms shared by gene pair (m, n); α and β
are parameters that control the contribution of masses
and distance respectively. RRWR

mn stands for the probability
that a random walker starting from seed node n reaches
candidate node m in the steady state of a RWR process
on the background network. Note that RRWR

mn is probabil-
ity which is inversely proportional to distance, thus
topological distance between nodes m and n is measured
by 1

RRWR
mn

.
The value of RRWR

mn is calculated by RWR algorithm, a
widely applied method that captures overall topological
property of the network. The algorithm mimics a ran-
dom walker who sets out from a seed node, and at each
moment chooses to either reach its neighboring node
with a rate proportional to the edge weight, or return
back to the seed node with a restart probability. The
random process can be depicted as follows:

xtþ1 ¼ 1−cð ÞWRWxt þ cx0 ð5Þ
WRW u; vð Þ ¼ w uvð Þ=W uð Þ ð6Þ

where WRW is the transition matrix obtained by column-
normalizing the adjacent matrix W, as shown in eq. (6);
x0 is the initial vector, which is constructed such that
equal probabilities are assigned to the seed nodes and
sum up to 1; xt is the vector whose i ‐ th element holds
the chance of the walker arriving at node i at the mo-
ment t; c denotes the restart probability. RWR process is
a finite Markov chain. Since finite Markov chain in con-
nected non-bipartite graph guarantees to reach steady
state, when the walker walks iteratively in sufficient time,
we can get the final probability vectorx∞. Usually, the
steady state is obtained when |xt + 1 − xt| < η (η is a rather
small value) [25].
Finally, candidates are scored by eq. (4) and ranked in

a descending order. The top ranked genes above certain
cutoff are predicted as disease genes of the phenotype
under study.

Performance assessment of the proposed algorithms
To estimate the predicting capacity of a method, we
conduct leave-k-out cross validation for all disease
genes. In each round of validation, k genes are ran-
domly removed from the seed set and termed as test
genes. Next, the test genes are ranked together with
other candidates based on their scores calculated by
the left seed genes [26].
In principle, seed set is composed of all known disease

genes, and candidate set can either be the whole genome
in the PPI network or the chromosomally nearest 100
genes of the test genes. In this work, we take the whole
genome as candidates and the disease genes extracted
from the OMIM database as seed set. Performance
assessment are conducted by leave-one-out and leave-
10%-out cross validations. In detail, leave-10%-out
cross validation is to take out 10% seed genes as test
genes and the left seed genes serve as seed set in each
round of validation.
After obtaining the ranks of all test genes in the leave-

k-out cross validation, we can systematically compare
different methods by following evaluation criteria:

1) Compare the number of disease genes which are
ranked above top K. This criterion attaches greater
importance to precision. Given that computational
method is for efficiently narrowing down experimental
screening, only top K genes actually matter for
downstream work.

2) Pool together all test genes’ rank and calculate the
fraction of disease genes by varying rank cut off in
the interval 0; 100½ �.

3) Plot ROC curve and compute AUC value. ROC
(false positive rate vs true positive rate) curve is
plotted by thresholding the rank cutoff from 1 to
100. In detail, false positive rate is the fraction of
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non-seed genes ranked above the threshold, while
true positive rate is the proportion of seed genes
ranked above the threshold. AUC is the area under
the ROC curve, which lies in the interval [0.5, 1]. It
will be 0.5 if all disease genes are distributed at random
in the rank, and larger area indicates better
performance [27].

Note that, since some undiscovered true disease genes
are defined as false positives in the validation, those cri-
teria may underestimate the actual performance.

Results and discussion
In this section, we started out the discussion by evaluat-
ing the performance of phenotype-specific networks in
contrast with the original PPI network and heteroge-
neous network. Then, based on phenotype-specific net-
work, we tested whether gene gravity-like algorithm
outperforms RWR algorithm. Next, we investigated the
influence of parameters in eq. (4) and eq. (5). Further,
we compared the performance of gene gravity-like algo-
rithm and RWR algorithm on the two types of networks
when it comes to predict the test genes from the DisGe-
NET database. At last, we employed proposed network
and algorithm to predict disease genes for obesity, pros-
tate cancer and lung cancer, and manually checked
whether the prediction results are supported by litera-
ture or database evidence.

Performance of phenotype-specific network
To validate the improvement of phenotype-specific net-
works for the prediction of disease genes, we compared
the new networks with the original network by RWR algo-
rithm and the heterogeneous network by RWRH algo-
rithm (Random Walk with Restart on Heterogeneous
Network), respectively. RWRH algorithm is a state-of-art
method that utilizes phenotype similarity information to
detect disease genes. In essence, RWRH is an application
of RWR algorithm on a heterogeneous network, which is
constructed by connecting the gene network and pheno-
type network using the gene-phenotype bipartite graph.
In this section, we employed RWR algorithm to con-

duct disease gene prediction based on the three types of
networks respectively. Leave-one-out and leave-10%-out
cross validation were used to compare the performance
of different types of background networks.
In the leave-one-out cross validation, 113 diseases with

633 known disease genes were applied in validation. For
the validation of the phenotype-specific networks, we
first constructed 113 phenotype-specific networks. Next,
we validated each known disease gene based on the
phenotype-specific network that it belongs to. Finally,
we pooled together the ranks of all disease genes and an-
alyzed the overall performance. For the validation of the

original network, each known disease gene is scored by
RWR algorithm according to its connectivity with the
rest disease genes of a given disease based on the ori-
ginal PPI network (HumanNet). For the validation of the
heterogeneous network, we constructed one heteroge-
neous network with the same data sources as the
phenotype-specific networks have. First, the PPI network
is the HumanNet network and the phenotype network is
constructed from MimMiner database. Then we con-
nected the two networks by gene-phenotype relationship
collected from the OMIM database. In each round, a
seed gene is taken out for validation and the corre-
sponding gene-phenotype link is removed from the het-
erogeneous network. The given phenotype and the
remaining disease genes of this phenotype are used as
seed nodes. At last, we scored all candidate genes by
RWRH algorithm (actually RWR algorithm based on this
heterogeneous network).
In the leave-10%-out cross validation, we chose 30

diseases with 470 disease genes from the 113 diseases,
so as to keep the number of seed genes for each disease
larger than 6. In each round of validation, 10% seed
genes for the given disease were taken out as test genes.
If the number is not an integer, we rounded it up. The
validation process is similar to that of leave-one-out
cross validation.
The comparison results are elaborated in Table 1 and

Fig. 3. As listed in Table 1, in the leave-one-out cross
validation, the phenotype-specific networks outperform
the other types of networks in all top K criteria while
the original network has the worst performance. Al-
though the heterogeneous network is inferior to the ori-
ginal one in the top 1 criterion (with 49 to 63), it has
better overall performance in the other three top K cri-
teria. In detail, in the leave-one-out cross validation
(Fig. 3a), there are 46% disease genes ranked within top
100 by phenotype-specific networks, while only 43% and
39% by the heterogeneous network and the original net-
work, respectively. In the leave-10%-cross validation
(Fig. 3c), the phenotype-specific networks improve the
performance by 10% over the original PPI network. Also,
the new networks recover 58 disease genes as top 1
while only 28 by the original one. We further plotted the

Table 1 Top K comparison for the number of validated disease
genes based on phenotype-specific networks, the heterogeneous
network and the original network

Rank Phenotype-specific
networks

The heterogeneous
network

The original
network

Top1 73 49 62

Top5 125 103 102

Top10 158 150 129

Top100 289 274 249
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ROC curve and computed the AUC value for the predic-
tion results based on each type of networks. In Fig. 3b,
d, it is observed that the difference of AUC values be-
tween the three types of networks is very small. In prac-
tice, top K genes are more vital to the identification of
novel disease genes. On the whole, the phenotype-
specific networks have the highest precision and com-
parable AUC value. They are seconded by the heteroge-
neous network which has moderate precision and AUC
value. The original network is the weakest in recovering
the disease genes.
In summary, the validation results suggest that the

phenotype-specific networks are more capable of discrim-
inating disease genes among genome than the other two
networks. It also validates previous assumption that
phenotype similarity information has positive effect on
disease gene prioritization. The preferable performance of
phenotype-specific network can be ascribed to the reason-
able augment of the connectivity among functionally re-
lated genes by taking phenotype similarity into account.

Performance of gene gravity-like algorithm on
phenotype-specific network
In this section, we used phenotype-specific networks as
background networks to conduct disease gene prediction
using the gene gravity-like algorithm and RWR algorithm,

respectively. Leave-one-out and leave-10%-out cross vali-
dations were applied to compare the two algorithms. Here
we set α = β = 1 in eq. (4). The results are illustrated in
Table 2 and Fig. 4. Obviously, in the two kinds of valid-
ation, gene gravity-like algorithm outperforms RWR algo-
rithm by a large margin no matter in the aspect of
precision (Fig. 4a, c) or AUC value (Fig. 4b, d). Meanwhile,
compared with the results of RWRH shown in the last
section, the proposed algorithm also does better than
RWRH algorithm in both aspects. As shown in Table 2, in
the leave-one-out cross validation, the new algorithm
predicted 117 true disease genes as top 1, 188 as top 5,
223 as top 10. In contrast, only 73 as top 1, 125 as top
5 and 158 as top 10 were predicted by RWR algorithm.
In total, there are 63% disease genes ranked within top
100 by gene gravity-like algorithm while only 46% by
the RWR algorithm (Fig. 4a). In the leave-10%-out cross

Fig. 3 The performance comparison of phenotype-specific networks (PNets), the heterogeneous network (HNet) and the original network (ONet).
a, c fraction of disease genes ranked within top 100 in leave-one-out cross validation and leave-10%-out cross validation, respectively; (b), (d) ROC
curves for the prediction of disease genes in leave-one-out cross validation and leave-10%-out cross validation, respectively

Table 2 Top K comparison for the number of validated disease
genes by gene gravity-like algorithm and RWR algorithm

Rank Gene gravity-like algorithm RWR algorithm

Top1 117 73

Top5 188 125

Top10 223 158

Top100 401 289
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validation, the result is in accordance with that of
leave-one-out cross validation (Fig. 4c, d).
Consequently, the comparison results indicate that our

algorithm is superior to RWR algorithm. The good per-
formance of gene gravity-like algorithm can be attrib-
uted to the functional similarity information included in
eq. (4), which takes the number of common GO terms
between two genes as the product of masses. In addition,
we reinforced the importance of topological distance by
letting the random walker start from each seed node ra-
ther than from all the seed nodes simultaneously. In
short, the results support our attempt to use the gravita-
tion equation for the measurement of the interaction
force between genes.

Parameter tuning in the gravity-like algorithm
In the gene gravity-like algorithm, three parameters,
namely parameter c in Eq. (5), parameters α and β in Eq.
(4), need to be selected. The parameter c denotes restart
probability in the RWR algorithm. As previous studies
have suggested, the value of c makes no big difference
when ranging in the interval of 0:1; 0:9½ � [10]. In this
work, we set it as 0.4. Parameter α and β control the
contribution of mass and distance in the gravity-like
equation, respectively. In leave-one-out cross validation,
the two parameters were selected from the set{1, 2, 3, 4,

5}. We tuned the two parameters with 25 groups of
combination and assessed their performance by top K
criteria. The results are depicted in Fig. 5. In most cases,
when α = 1, the overall performance is better. Moreover,
it is observed that there is no obvious fluctuation when
β is taken from the set{3, 4, 5}, and when β = 1, the per-
formance difference of different α is most significant. In
fact, the prediction results are not very sensitive to the
two parameters. Therefore, we took α = β = 1. This com-
bination has good performance in top K criteria and can
reduce the computing complexity.

Evaluation of new predictions using the DisGeNET
database
In this section, we validate the capacity of the gene
gravity-like algorithm to predict new disease genes. We
extracted 572 genes associated with 54 diseases from the
DisGeNET database and used them as test genes. In
order to fairly assess the predicting capacity of the pro-
posed algorithms, there is no intersection between the
test genes from the DisGeNET database and the known
disease genes from the OMIM database. At the same
time, the 572 suspectable disease genes are included in
the PPI background network.
We took the known disease genes extracted from the

OMIM database as the seed set. Then, all candidates

Fig. 4 The performance comparison of gene gravity-like algorithm and RWR algorithm. a, c fraction of disease genes ranked within top 100 in
leave-one-out cross validation and leave-10%-out cross validation, respectively; (b), (d) ROC curves for the prediction of disease genes by the two
algorithms in leave-one-out cross validation and leave-10%-out cross validation, respectively
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(including the 572 disease genes) are ranked based on
their connectivity with the seed set. Next, we computed
the fraction of the 572 test genes which were ranked
within the interval of [0,100]. The predictions were con-
ducted by the three algorithms respectively, namely
RWR algorithm on the original network, gene gravity al-
gorithm and RWR algorithm on the phenotype-specific
networks. As Fig. 6 indicates, the performance of the
gene gravity-like algorithm on the phenotype-specific
networks is the best no matter in the number of test
genes ranked within top 100 or in the ROC curve.
Therefore, the performance of RWR on the new

networks is better than that of RWR on the original net-
work in the prediction of new disease genes.
In general, the result in Fig. 6 supports the conclusion

made in the previous sections. That is, the new algo-
rithm is superior to the RWR algorithm and the
phenotype-specific networks improve the predicting cap-
acity over the original network.

Case studies: Identifying new disease genes for obesity,
prostate cancer and lung cancer
In this section, we tried to predict potential disease
genes for obesity, prostate cancer and lung cancer by

Fig. 5 Prediction performance for different combination of α and β. a the number of disease genes ranked within top 1; (b) the number of
disease genes ranked within top 5; (c) the number of disease genes ranked within top10; (d) the number of disease genes ranked within top100

Fig. 6 Identification of the test genes in the DisGeNET database by the three algorithms. a fraction of the test genes ranked within top 100;
(b) ROC curves for the prediction of test genes
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gene gravity-like algorithm based on the phenotype-
specific networks. First, we built three phenotype-
specific networks for the three diseases. Then we used
their known disease genes in the OMIM database as
seed set and employed gene gravity-like algorithm to
predict more disease genes. At last, we performed litera-
ture or database search to verify the predicted genes. We
took the top 20 ranked genes as predicted disease genes
and listed the results in Table 3.
Obesity (MIM: 601,665) is a metabolic disease involv-

ing the dysfunction of multiple genes in various biology
processes. Over the decades, with energy consumption
over energy expenditure, obesity has been one of epi-
demic diseases that challenge the whole society. How-
ever, the genetic mechanism underlying obesity is still
ambitious. Here we used the 15 known disease genes in
the OMIM database as seeds and ranked candidates over
the whole genome. As shown in Table 3, of the top 15
predicted genes, 14 known disease genes are successfully
detected, with precision of 93%. For genes that are not
included in the OMIM database yet, we tried to verify
them with evidence collected from various databases
and literatures. ESR1 and MC3R are obesity-associated
genes supported by Hancock et al. [28]. The 19th ranked
gene MC1R is an important paralog of MC4R, which is

a known causal gene for obesity in the OMIM database,
and they have similar GO annotations including G-
protein coupled receptor activity and hormone binding.
In GeneCards database (http://www.genecards.org/),
LEP turns out to be the most relevant gene to obesity.
Therefore, 19 genes ranked within top 20 are guilty of
inducing obesity.
Prostate cancer (MIM: 176,807) is a kind of reproduct-

ive disease that varies according to geographic regions
and races. Here we constructed a prostate-specific net-
work, and took the 12 prostate-related genes in the
OMIM database as seed set. They are successfully
ranked within the top 12, with 100% accuracy. The 13th
ranked gene TP53 (Tumor Protein P53) encodes a
tumor suppressor protein with the function of transcrip-
tional activation, DNA binding, and oligomerization do-
mains. Sung-Gil Chi et al. found that the gene mutations
of TP53 are significantly expressed in prostate cancer,
indicating the possible involvement of a carcinogenic
agent [29]. In addition, when we retrieved the relevant
genes for prostate cancer in the GeneCards database,
EGFR and BRCA1 are ranked prior to the known causal
gene PTEN and BRCA2 respectively. Also CTNNB1,
MYC and MAX (MYC Associated Factor X) are judged
as causative genes for prostate cancer according to

Table 3 Top 20 predicted disease genes for obesity, prostate cancer and lung cancer

Obesity Prostate cancer Lung cancer

rank Gene symbol Class rank Gene symbol Class rank Gene symbol Class

1 ADRB2 √ 1 AR √ 1 EGFR √

2 PPARG √ 2 PTEN √ 2 ERBB2 √

3 ADRB3 √ 3 ZFHX3 √ 3 BRAF √

4 MC4R √ 4 BRCA2 √ 4 KRAS √

5 ENPP1 √ 5 CDH1 √ 5 CASP8 √

6 GHRL √ 6 CHEK2 √ 6 PIK3CA √

7 UCP3 √ 7 HIP1 √ 7 PARK2 √

8 NR0B2 √ 8 MXI1 √ 8 FASLG √

9 POMC √ 9 MAD1L1 √ 9 MAP3K8 √

10 CARTPT √ 10 KLF6 √ 10 RASSF1 √

11 UCP1 √ 11 MSR1 √ 11 IRF1 √

12 PPARGC1B √ 12 CD82 √ 12 ERCC6 √

13 AGRP √ 13 TP53 * 13 SLC22A18 √

14 SDC3 √ 14 BRCA1 * 14 PPP2R1B √

15 HNF4A ~ 15 MAD2L1 ~ 15 DLEC1 √

16 ESR1 * 16 EGFR * 16 HRAS *

17 SIM1 √ 17 SIN3A * 17 AKT1 *

18 MC3R * 18 MAX * 18 TP53 *

19 MC1R * 19 CTNNB1 ~ 19 GRB2 ~

20 LEP * 20 MYC * 20 TGFBR2 *

Genes with class mark √ is known disease genes in the OMIM database; * denotes the predicted disease genes with literature or database support; ~ is the
predicted genes without evidence
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GeneCards database. Finally, 18 of the top 20 genes are
associated with prostate cancer.
Lung cancer (MIM: 211,980) is the most common

cancer-related death in men and second in woman. It is
induced by the rampant cell growth in malignant lung
tumor. Lung cancer can be classified into two types:
Small cell lung cancer and Non-small-cell lung cancer.
We took the 16 known disease genes in the OMIM data-
base as seed nodes and predicted the top 20 ranked
genes as disease genes for lung cancer. Among the top
16 of the prediction list, there are 15 known causal genes
unraveled as true positives. HRAS, the 16th ranked gene,
belongs to the Ras oncogene family. Dysfunction in this
gene is implicated in a wide spectrum of cancers.
TGFBR2 is a transforming Growth Factor Beta Receptor
2 which may induce Esophageal Cancer. Aforemen-
tioned two genes are susceptible to the lung cancer ac-
cording to GeneCards database. As for AKT1 and TP53,
they participate in the Small cell lung cancer pathway
according to PathCards database (https://pathcards.gen-
ecards.org/). Therefore, 19 genes ranked within top 20
have supportive evidence.
On the whole, the results in Table 3 implicate the cap-

acity of proposed algorithms in capturing novel disease
genes. It validates the advantage of our prediction algo-
rithm which integrates the information of phenotype
similarity, functional similarity and topological similarity.

Conclusion
To make better use of phenotype and functional infor-
mation into the network-based prediction of disease
genes, we proposed gene gravity-like algorithm based on
phenotype-specific networks. First, for each phenotype
we constructed a phenotype-specific network by inte-
grating phenotype similarity information into PPI net-
work. Being used as background network in the
prediction of disease genes, the phenotype-specific net-
work shows notably better performance than the original
PPI network and the heterogeneous network. It demon-
strates the importance to consider phenotype modularity
in detecting gene-phenotype relationship. Moreover,
compared with the heterogeneous network, our pheno-
type network projects phenotype information into back-
ground network in a more reasonable way. Next, we
devised a novel computational model called gene
gravity-like algorithm, inspired by Newton’s law of uni-
versal gravitation, to identify gene-phenotype relation-
ship. In this algorithm, we employed RWR algorithm to
measure the topological distance between seed and can-
didate, and calculated the number of their common GO
terms as the product of their masses. The validation re-
sults preferred our algorithm to RWR and RWRH algo-
rithm, which can be ascribed to the augment of
topological similarity and the use of functional similarity

information from GO database. Moreover, disease genes
in the DisGeNET database served as test gene set to val-
idate the better performance of the gene gravity-like al-
gorithm and phenotype-specific network over the RWR
algorithm and the original network, respectively. At last,
we tested the predictive capacity of the proposed net-
work and algorithm through case studies on the obesity,
prostate cancer and lung cancer. Once again, the results
proved the superiority of the proposed network and al-
gorithm in real applications. In conclusion, our work
could shed new light on the way to integrate the similar-
ity of disease phenotypes, biological functions and net-
work topologies in the prediction of disease genes.
In spite of the good performance of our methods, we

suggest that there is still broad space to improve. First,
the phenotype similarity information used in this work is
rather limited. Actually, Mimniner database has not up-
dated since published. In future, more efforts need to be
devoted to digging the similarity of wider spectrum of
phenotypes. Second, instead of using GO information in
eq. (4), future work could consider to combine more
functional similarity information, such as gene co-
expression [30, 31] and tissue-specific expression [32].
Third, the quality of PPI network is at the core of dis-
ease gene prediction. Although there have been several
methods that focus on integrating heterogeneous data
resources [33–36], it is still challenging to balance cover-
age against quality in network integration. Consequently,
sparking new ideas in data digging and integration is
crucial to make a breakthrough in disease gene discov-
ery. Also, we would like to see in the future that most
data sources can annotate genes with standardized and
objective vocabularies like GO database does, which will
definitely facilitate data interoperation and fusion. At
last, innovation of computational tools is in desperate
need. Current algorithms mainly rely on RWR to glo-
bally infer topological distance, whereas this method is
well biased towards hub nodes [26]. Future work should
pay more attention to alleviate this kind of bias.
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