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Abstract

Background: Specific cellular states are often associated with distinct gene expression patterns. These states are
plastic, changing during development, or in the transition from health to disease. One relatively simple extension of
this concept is to recognize that we can classify different cell-types by their active gene regulatory networks and that,
consequently, transitions between cellular states can bemodeled by changes in these underlying regulatory networks.

Results: Here we describeMONSTER, MOdeling Network State Transitions from Expression and Regulatory data, a
regression-based method for inferring transcription factor drivers of cell state conditions at the gene regulatory
network level. As a demonstration, we apply MONSTER to four different studies of chronic obstructive pulmonary
disease to identify transcription factors that alter the network structure as the cell state progresses toward the
disease-state.

Conclusions: We demonstrate that MONSTER can find strong regulatory signals that persist across studies and
tissues of the same disease and that are not detectable using conventional analysis methods based on differential
expression. An R package implementing MONSTER is available at github.com/QuackenbushLab/MONSTER.

Keywords: Gene regulatory network inference, Chronic obstructive pulmonary disease, Genomics

Author summary
Biological states are characterized by distinct patterns
of gene expression that reflect each phenotype’s active
cellular processes. Driving these phenotypes are gene reg-
ulatory networks in which transcriptions factors control
when and to what degree individual genes are expressed.
Phenotypic transitions, such as those that occur when
disease arises from healthy tissue, are associated with
changes in these networks. MONSTER is a new approach
to understanding these transitions. MONSTER models
phenotypic-specific regulatory networks and then esti-
mates a “transition matrix” that converts one state to
another. By examining the properties of the transition
matrix, we can gain insight into regulatory changes associ-
ated with phenotypic state transition.We demonstrate the
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power ofMONSTER by applying it to data from four inde-
pendent studies of chronic obstructive pulmonary disease
and find a robust set of transcription factors that help
explain the development of the disease.

Background
Cell state phenotypic transitions, such as those that occur
during development, or as healthy tissue transforms into a
disease phenotype, are fundamental processes that oper-
ate within biological systems. Understanding what drives
these transitions, and modeling the processes, is one of
the great open challenges in modern biology. One way to
conceptualize the state transition problem is to imagine
that each phenotype has its own characteristic gene regu-
latory network, and that there are a set of processes that
are either activated or inactivated to transform the net-
work in the initial state into one that characterizes the
final state. Identifying those changes could, in principle,
help us to understand not only the processes that drive the
state change, but also how one might intervene to either
promote or inhibit such a transition.
Each distinct cell state consists of a set of character-

istic processes, some of which are shared across many

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12918-017-0517-y&domain=pdf
http://orcid.org/0000-0001-5127-4034
mailto: johnq@jimmy.harvard.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Schlauch et al. BMC Systems Biology  (2017) 11:139 Page 2 of 10

cell-states (“housekeeping” functions) and others which
are unique to that particular state. These processes are
controlled by gene regulatory networks in which tran-
scription factors (and other regulators) moderate the
transcription of individual genes whose expression lev-
els, in turn, characterize the state. One can represent
these regulatory processes as a directed network graph,
in which transcription factors and genes are nodes in the
network, and edges represent the regulatory interactions
between transcription factors and their target genes. A
compact representation of such a network, with interac-
tions between m transcription factors and p target genes,
is as a binary p × m “adjacency matrix”. In this matrix, a
value of 1 represents an active interaction between a tran-
scription factor and a potential target, and 0 represents
the lack of a regulatory interaction.
When considering networks, a cell state transition is

one that transforms the initial state network to the final
state network, adding and deleting edges as appropriate.
Using the adjacency matrix formalism, one can think of
this as a problem in linear algebra in which we attempt to

find an m × m “transition matrix” T, subject to a set of
constraints, that approximates the conversion of the ini-
tial network’s adjacency matrix A into the final network’s
adjacency matrix B, or

B = AT (1)

In this model, we describe the differences between cell
states with a lower dimensional transition matrix. This
matrix allows for the estimation of a relatively smaller
number of parameters which focus on larger systemic
shifts in regulatory behavior by TFs. Intuitively, one might
recognize that the true transition matrix between iden-
tical network states is the identity matrix because the
diagonal elements of Tmap network edges to themselves.
Deviations from this identity, specifically the observation
of meaningful non-zero values off of the diagonal, provide
evidence of changes in regulatory network configuration
for TFs between states.
While this framework, as depicted in Fig. 1, is intuitive,

it is a bit simplistic in that we have cast the initial and final
states as discrete. However, the model can be generalized

Fig. 1 Overview of the MONSTER approach, as applied to the transition between smokers and those suffering from chronic obstructive pulmonary
disease (COPD). MONSTER’s approach seeks to find the TF × TF transition matrix that best characterizes the state change in network structure
between the initial and final biological conditions. Subjects are first divided into two groups based on whether they have COPD or are smokers that
have not yet developed clinical COPD. Network inference is then performed separately on each group, yielding a bipartite adjacency matrix
connecting transcription factors to genes. Finally, a transition matrix is computed which characterizes the conversion from the consensus Smokers
Network to the COPD Network
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by recognizing that any phenotype we analyze consists of
a collection of individuals, all of whom have a slightly dif-
ferent manifestation of the state, and therefore a slightly
different active gene regulatory network. Practically, what
that means is that for each state, rather than having a
network model with edges that are either “on” or “off,” a
phenotype should be represented by a network in which
each edge has a weight that represents an estimation of its
presence across the population. In other words, the ini-
tial and final state adjacency matrices are not comprised
of 1’s and 0’s, but of continuous variables that estimate
population-level regulatory network edge-weights. Con-
sequently, the problem of calculating the transition matrix
is generalized to solving B = AT+ E, where E is an p×m
error matrix. In this expanded framework, modeling the
cell state transition remains equivalent to estimating the
appropriate transition matrixT, and then identifying state
transition drivers based on features of that matrix.

Methods
MONSTER: MOdeling Network State Transitions from
Expression and Regulatory data
The MONSTER algorithm models the regulatory transi-
tion between two cellular states in three steps: (1) Infer-
ring state-specific gene regulatory networks, (2) modeling
the state transition matrix, and (3) computing the tran-
scription factor involvement.
Inferring state-specific gene regulatory networks:

Before estimating the transition matrix, T, we must
first estimate a gene regulatory starting point for each
state. While there have been many methods developed
to infer such networks [1–7], we have found the bipar-
tite framework used in PANDA [8] to have features that
are particularly amenable to interpretation in the context
of state transitions. PANDA begins by using genome-
wide transcription factor binding data to postulate a
network “prior”, and then uses message-passing to inte-
grate multiple data sources, including state-specific gene
co-expression data.
Motivated by PANDA, we developed a highly compu-

tationally efficient, classification-based network inference
method that uses common patterns between transcrip-
tion factor targets and gene co-expression to estimate
edges and to generate a bipartite gene regulatory network
connecting transcription factors to their target genes.
This approach is based on the simple concept that genes

affected by a common transcription factor are likely to
exhibit correlated patterns of expression. To begin, we
combine gene co-expression information with informa-
tion about transcription factor targeting derived from
sources such as ChIP-Seq or sets of known sequence bind-
ing motifs found in the vicinity of genes. The process of
building prior networks to use as input toMONSTERmay
be complex, but our tool is agnostic to the source of this

input. Users of MONSTER should use domain specific
knowledge to generate an appropriate prior network.
We then calculate the direct evidence for a regu-

latory interaction between a transcription factor and
gene, which we define as the squared partial correlation
between a given transcription factor’s gene expression,
gi, and the gene’s expression, gj, conditional on all other
transcription factors’ gene expression:

d̂i,j = cor
(
gi, gj|

{
gk : k �= i, k ∈ TFj

})2 ,

where gi is the gene which encodes the transcription fac-
tor TFi, gj is any other gene in the genome, and TFj is the
set of gene indices corresponding to known transcription
factors with binding site in the promoter region of gj. The
correlation is conditioned on the expression of all other
potential regulators of gj based on the transcription factor
motifs associated with gj. The direct evidence is motivated
by the idea that changes in transcription factor expression
may lead to similar changes in in target gene expression.
The coexpression of co-targeted genes is long established
in the literature [9, 10], and evidence also points to the
coexpression of transcription factor genes with targets of
that transcription factor [11, 12]. Moreover, studies across
multiple tissues have shown widely varying expression of
transcription factor genes, indicating that this expression
can be used to predict their regulatory involvement [13].
Naturally, transcription factor behavior depends on many
factors, including those that occur after translation. How-
ever, it makes intuitive sense that the mRNA abundance
of a gene for a transcription factor should correlate with
target genes to some degree.
Next, we fit a logistic regression model which estimates

the probability of each gene, indexed j, being amotif target
of a transcription factor, indexed i, based on the expres-
sion pattern across the n samples across p genes in each
phenotypic class:

logit
(
P

[
Mi,j = 1

]) = β0,i + β1,ig(1)
j + · · · + βN ,ig(N)

j

θ̂i,j = eβ̂0,i+β̂1,ig(1)
j +···+β̂N ,ig(N)

j

1 + eβ̂0,i+β̂1,ig(1)
j +···+β̂N ,ig(N)

j

where the responseM is a binary p × mmatrix indicating
the presence of a sequence motif for the ith transcription
factor in the vicinity of each of the jth gene. And where
g(k)
j represents the gene expression measured for sam-
ple k at gene j. Thus, the fitted probability θ̂i,j represents
our estimated indirect evidence. Combining the scores
for the direct evidence, d̂i,j, and indirect evidence, θ̂i,j, via
weighted sum between each transcription factor-gene pair
yields estimated edge-weights for the gene regulatory net-
work. We score each gene according to the strength of
indirect evidence for a regulatory response to each of the
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transcription factors and combine this with the direct evi-
dence of regulation. Combining our measures of direct
and indirect evidence presents some challenges. Though
both are bounded by [0,1] their interpretations are quite
different. The direct evidence can be considered in terms
of its conditional gene expression R2 between nodes, while
the indirect evidence is interpreted as an estimated prob-
ability. Therefore, we use a non-parametric approach to
combine evidence. Specifically, the targets of each tran-
scription factor are ranked and combined as a weighted
sum, wi,j = (1 − α)

[
rank

(
d̂i,j

)]
+ α

[
rank

(
θ̂i,j

)]
, where

α is a constant bounded between [ 0, 1]. Our choice of the
weight is by default α = 0.5, corresponding to an equal
contribution of direct and indirect evidence. This param-
eter could be adjusted if the context of a study involved
reason to prefer one source of evidence over the other (see
Supporting Information).
Applying this approach to gene expression data from

two distinct phenotypes results in two p × m gene regu-
latory adjacency matrices, one for each phenotype. These
matrices represent estimates of the targeting patterns
of the m transcription factors onto the p genes. This
network inference algorithm finds validated regulatory
interactions in Escherichia coli and Yeast (Saccharomyces
cerevisiae) data sets (see Supporting Information).
Modeling the state transition matrix: Many meth-

ods have been developed for inferring gene regulatory
networks, but more recent work has been proposed
for estimating gene regulatory network differentiation
[14, 15]. Once we have gene regulatory network estimates
for each phenotype, we can model the problem of estimat-
ing the transition matrix within a regression framework.
With this formulation, we solve for them×mmatrix that
best describes the transformation between phenotypes
(1). More specifically, MONSTER predicts the change in
edge-weights for a transcription factor, indexed i, in a
network based on all of the edge-weights in the baseline
phenotype network.

E [bi − ai] = τ1,ia1 + · · · + τm,iam

where bi and ai are column-vectors in B and A that
describe the regulatory targeting of transcription factor i
in the final and initial networks, respectively.
In the simplest case, this can be solved with normal

equations,

τ̂i =
(
ATA

)−1
AT (bi − ai)

to generate each of the columns of the transition matrix T
such that

T̂ = [
τ̂1, τ̂2, . . . , τ̂m

]

The regression is performed m times corresponding to
each of the transcription factors in the data. In this sense,

columns in the transition matrix can be loosely inter-
preted as the optimal linear combination of columns in
the initial state adjacency matrix which predict the col-
umn in the final state adjacencymatrix. The interpretation
of the transition matrix can be best understood by com-
paring it to the identity matrix. A transcription factor, i,
that does not alter its regulatory targets between states
will have expected values of 0 for all entries in column i,
with the exception of entry i. In the context of discover-
ing changes in network configurations for a transcription
factor, we are most interested in evaluating the degree to
which each column has non-zero values for all non-ith
entries. In essence, we are describing one network as a lin-
ear combination of another network. Numerous biological
mechanisms, such as the formation of protein complexes,
protein inactivation, post-translational modification, epi-
genetics, etc. allow for the systematic modification of net-
work structures and drive the changes that are detected in
the transition matrix (see Supporting Information).
This framework allows for the natural extension of

constraints such as L1 and/or L2 regularization (see Sup-
porting Information). For the analysis we present in this
manuscript, we use the normal equations and do not
impose a penalty on the regression coefficients. The inclu-
sion or exclusion of this feature should depend primarily
on assumptions of the underlying network mechanisms.
L1 regularization, for example, will tend to infer a sparse
transition matrix. This is reasonable in contexts in which
the regulatory targeting pattern of TFs is not expected to
change for the vast majority of TFs. For our four observa-
tional studies of COPD, a highly complex disease, it is not
reasonable to assume that transcription factors differ in a
sparse manner.

Computing the transcription factor involvement: For
a transition between two nearly identical states, we expect
that the transition matrix would approximate the identity
matrix. However, as initial and final states diverge, there
should be increasing differences in their corresponding
gene regulatory networks and, consequently, the transi-
tion matrix will also increasingly diverge from the iden-
tity matrix. In this model, the transcription factors that
most significantly alter their regulatory targets will have
the greatest “off-diagonal mass” in the transition matrix,
meaning that they will have very different targets between
states and so are likely to be involved in the state transition
process. We define the “differential transcription factor
involvement” (dTFI) as the magnitude of the off-diagonal
mass associated with each transcription factor, or,

ˆdTFIj =
∑m

i=1 I
(
i �= j

)
τ̂ 2i,j

∑m
i=1 τ̂ 2i,j

(2)

where, ˆτi,j is the value of the element in the ith row and jth
column in the transition matrix, corresponding to the ith
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and jth transcription factors. To estimate the significance
of this statistic, we randomly permute sample labels n =
400 times across phenotypes. From these 400 permuted
results, we infer the standard error for each estimate
under the null. P-values are determined by comparing
the observed estimate to this standard error and FDR
values is computed from these p-values (see Supporting
Information).

Results
MONSTER finds significantly differentially involved
transcription factors in COPDwith strong concordance in
independent data sets
As a demonstration of the power ofMONSTER to identify
driving factors in disease, we applied the method to case-
control gene expression data sets from four independent
Chronic Obstructive Pulmonary Disease (COPD) cohorts:
Evaluation of COPD Longitudinally to Identify Predic-
tive Surrogate Endpoints (ECLIPSE) [16, 17], COPDGene
[18–20], Lung Genomics Research Consortium (LGRC)
[21] and Lung Tissue from Channing Division of Net-
work Medicine (LT-CDNM) [22]. The tissues assayed in
ECLIPSE and COPDGene were whole blood and periph-
eral blood mononuclear cells (PBMCs), respectively, while
homogenized lung tissue was sampled for LGRC and
LT-CDNM.
As a baseline comparison metric, we evaluated the effi-

cacy of applying commonly used network inference meth-
ods on these case-control studies. In analyzing phenotypic
changes, networks are generally compared directly, with
changes in the presence or weight of edges between key
genes being of primary interest. It is therefore reason-
able to assume that any reliable network results gen-
erated from a comparison of disease to controls will
be reproducible in independent studies. We investigated
whether this is the case for our four COPD data sets
using three widely used network inference methods -
Algorithm for the Reconstruction of Gene Regulatory
Networks (ARACNE)[23], Context Likelihood of Related-
ness (CLR)[24], and Weighted Gene Correlation Network
Analysis (WGCNA) [25] - computing the difference in
edge weights between cases and controls for each of
the four studies. We found no meaningful correlation
(R2 < .01) of edge weight difference across any of the
studies regardless of network inference method or tissue
type (Additional file 1: Supporting Figure S3). Edge weight
differences, even when very large in one study, did not
reproduce in other studies. This suggests that a simple
direct comparison of edges between inferred networks is
insufficient for extracting reproducible drivers of network
state transitions. This finding may be unsurprising given
the difficulty in inferring individual edges in the pres-
ence of heterogeneous phenotypic states, technical and
biological noise with a limited number of samples.

The lack of replication in edge-weight differences
between independent data sets representing similar study
designs indicates that we need to rethink how we evaluate
network state transitions. MONSTER provides a unique
approach for making that comparison. In each of the four
COPD data sets, we used MONSTER to calculate the dif-
ferential transcription factor involvement (dTFI, Eq. 2)
for each transcription factor and used permutation anal-
ysis to estimate their significance (Fig. 2, Additional file
1: Additional Figures S1-S3). We observed strongly signif-
icant (p < 1e − 15) correlation in dTFI values for each
pairwise combination of studies. In addition, out of the
top 10 most differentially involved transcription factors in
the ECLIPSE and COPDGene studies, we found 7 to be in
common. Furthermore, three of these seven transcription
factors (GABPA, ELK4, ELK1) also appeared as signifi-
cant in the LGRC results with FDR<0.01 and each of the
top five ECLIPSE results were among the top seven in the
LT-CDNM results (Additional file 1: Additional Table S1,
Additional file 1: Additional Figure S3). This agreement
is quite striking considering that the there was almost
no correlation in the edge-weight differences across these
same studies when we tested the other methods. But it
is exactly what we should expect—that the same method
applied to independent studies of the same phenotypes
should produce largely consistent results.
Many of the top dTFI transcription factors, especially

those identified by MONSTER across all four studies, are
biologically plausible candidates to be involved in the eti-
ology of COPD (Additional file 1: Additional Table S1,
Additional file 1: Additional Figures S1-S3). For example,
E2F4 is a transcriptional repressor important in airway
development [26] and studies have begun to demonstrate
the relevance of developmental pathways in COPD patho-
genesis [27].
Some of the greatest effect sizes across all four stud-

ies were found for SP1 and SP2. An additional mem-
ber of the SP transcription factor family, SP3, has been
shown to regulate HHIP, a known COPD susceptibil-
ity gene [28]. Both SP1 and SP2 form complexes with
the E2F family [29, 30] and may play a key role in
the alteration of E2F4 targeting behavior. Furthermore,
E2F4 has been found to form a complex with EGR-1 (a
highly significant transcription factor in ECLIPSE and LT-
CDNM) in response smoke exposure, which may lead to
autophagy, apoptosis and subsequently to development of
emphysema [31].
Mitochondrial mechanisms have also been associated

with COPD progression [32]. Two of most highly signifi-
cant transcription factors based on dTFI in ECLIPSE were
NRF1 and GABPA (FDR<.001). Indeed, these TFs had
highly significant dTFI (FDR<0.1) in all four studies. NRF1
regulates the expression of nuclear encoded mitochon-
drial proteins [33]. GABPA, also known as human nuclear
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Fig. 2MONSTER analysis results in the ECLIPSE study. a Heatmap depicting the transition matrix calculated for smoker controls “transitioning” to
COPD by applying MONSTER to ECLIPSE gene expression data. For the purposes of visualization, the magnitude of the diagonal is set to zero. b A
network visualization of the 100 largest transitions identified based on the transition matrix in (a). Arrows indicate a change in edges from a
transcription factor in the Smoker-Control network to resemble those of a transcription factor in the COPD network. Edge thickness represents the
magnitude of the transition and node (TFs) sizes represent the dTFI for that TF. Blue edges represent a gain of targeting features and red represents
the loss. c The dTFI score from MONSTER (red) and the background null distribution of dTFI values (blue) as estimated by 400 random sample
permutations of the data

respiratory factor-2 subunit alpha, may have a similar
role in nuclear control of mitochondrial gene expression.
Furthermore, GABPA interacts with SP1 [34] providing
evidence of a potentially shared regulatory mechanism
with E2F4.
Overall, we found a strong correlation across studies

in transcription factors identified as significantly differ-
entially involved (Fig. 3a-b). It is reassuring that we find
the strongest agreement when comparing studies that
assayed similar tissues. However the fact that we see sim-
ilar dTFI signal across studies involving different tissue
types is also notable as it suggests that the transition
from smoker control to disease phenotype affects multiple

tissues and supports the growing evidence for a role in
immune response in COPD pathogenesis.
Gene regulatory networks, and results derived from

their comparison, are notoriously difficult to replicate
across studies [35]. The four studies we used each
has unique aspects, including the choice of microar-
ray platform, study demographics, location, time, and
tissue. Nevertheless, MONSTER identified similar sets
of transcription factors associated with the transi-
tion between cases and controls. This consistency in
biologically-relevant transcription factors, associated with
the transition from the control phenotype to disease, in
four independent studies suggests that MONSTER can
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Fig. 3 Strong reproducibility in top differential transcription factor involvement found in case-control COPD studies. ECLIPSE and COPDGene
profiled gene expression in whole-blood and PBMC while the gene expression data in LGRC and LT-CDNM were assayed in lung tissue. a Results for
studies with gene expression data obtained from the same-tissue. Both the blood based (left) and lung tissue studies (right) demonstrate very high
Spearman correlation of differential involvement. b Despite using data from different sources we found agreement between studies of different
tissues. c Venn diagram depicting the top 20 transcription factors found in each study. The union of all top 20 lists contains 36 transcription factors

provide not only robust network models, but also can
identify reliable differences between networks.
Despite the overall consistency, some transcription fac-

tors had variable dTFI across studies. For example, using
the LGRC dataset, we discovered a highly significant
(FDR < .0001) differential targeting pattern involving
the transcription factors RFX1 and RFX2 (Additional file
1: Additional Table S1). However, these same TFs were
not identified as potential drivers of the control to COPD
transition in either the ECLIPSE or COPDGene study.
This difference is likely due the differences in tissue type
as the RFX family transcription factors are known to regu-
late ciliogenesis [36]. Cilia are critical for clearing mucous
from the airways of healthy individuals, but disruption
can lead to infection and potentially to chronic airflow
obstruction [37–39].
The hypothesis behind MONSTER is that each phe-

notype has a unique gene regulatory network and that a
change in phenotypic state is reflected in changes in tran-
scription factor targeting. That hypothesis translates to
an expectation that transcription factors driving change
in phenotype will have the greatest dTFI scores. One
might expect that these “driving transcription factors”

would be also be differentially expressed. We compared
dTFI to differential expression (ECLIPSE Fig. 4, other
studies shown in Additional file 1: Additional Figure S4)
and found that many of the transcription factors with
high dTFI values were not differentially expressed. This
suggests that there are other mechanisms, such as epi-
genetic modification of the genome or protein modifica-
tions, that alter the structure of the regulatory network
by changing which genes are targeted by key transcription
factors.

Discussion
One of the fundamental problems in biology is model-
ing the transition between biological states such as that
which occurs during development or as a healthy tissue
transforms into a disease state. As our ability to gener-
ate large-scale, integrativemulti-omic data sets has grown,
there has been an increased interest in using those data
to infer gene regulatory networks to model fundamen-
tal biological processes. There have been many network
inference methods published, each of which uses a differ-
ent approach to estimating the “strength” of interactions
between genes (or between transcription factors and their
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Fig. 4 Differentially involved transcription factors are not necessarily
differentially expressed. A plot of the differential expression versus the
differential involvement for transcription factors based on our analysis
of the ECLIPSE data. MONSTER commonly finds transcription factors
which are differentially involved but are expressed at similar levels
across cases and controls. Importantly, these transcription factors
would not have been identified using conventional differential
expression methods. This demonstrates the unique potential
MONSTER has for discovery beyond standard gene expression analysis

targets). But all suffer from the same fundamental limita-
tion: everymethod relies on estimating weights that repre-
sent the likelihood of an interaction between two genes to
identify “real” (high confidence) edges. In comparing phe-
notypes, most methods then subtract discretized edges
in one phenotype from those in the other to search for
differences.
MONSTER represents a new way of looking at pheno-

typic transitions, but one that captures many aspects of
what we should expect. First, we have to recognize that
there is no single network that represents a phenotype, but
that each phenotype is represented by a family of networks
that all vary slightly from each other, yet which have essen-
tial features that are consistent with the phenotype. What
this means is that each regulatory edge in a network rep-
resentation has to be represented by continuous, rather
than discrete, variables. This captures the fact that regu-
latory interactions are stronger in certain individuals and
weaker in others, or present in some and absent in others,
but that, on average, they represent a distribution.
Second, when we consider a change in phenotype, that

will be reflected in altered patterns of gene expression, and
ultimately in the networks that represent the phenotype.
In a transition, some individuals will experience a greater
change while others will experience a smaller change. But

overall, regulatory patterns in the network will shift as the
phenotype changes.
Third, the change in the gene regulatory network

structure between phenotypes will be driven by changes
in the connectivity of the regulators—the transcription
factors that alter when, how, and how strongly genes
are expressed. A natural hypothesis in this model is
that the transition between phenotype is likely associ-
ated with the transcription factors that experience the
greatest change in their regulatory patterns between
states, and that the activation or inactivation of their
target genes, and the functions carried out by those
genes, likely reflect the phenotypic differences between
states.
MONSTER captures these features, creating initial and

final state network representations and estimating the
change in transcription factor regulatory patterns by esti-
mating a transition matrix. For each transcription fac-
tor, the “off diagonal mass” calculated as the differential
transcription factor involvement (dTFI), identifies those
transcription factors that are ultimately likely to drive the
phenotypic state transition.
This approach has several limitations. For example,

MONSTER does not attempt to infer specific regulatory
mechanisms. Rather, by focusing on transcription factors,
the goal of the method is to identify which transcrip-
tion factors change their behavior between study groups.
A deeper and more targeted investigation of the spe-
cific regulatory mechanisms that may be underlying these
changes in transcription factor involvement would be
needed to fully interpret the changes in targeting patterns
that MONSTER is able to identify.
In applying MONSTER to four independent COPD

gene expression data sets surveying both COPD and
smoker controls, a highly consistent picture of the tran-
scription factors associated with disease development
emerges. This consistency is, to some, surprising as gene
expression data is notoriously noisy, with each study find-
ing sets of differentially expressed genes that often are
not concordant. By focusing on transcriptional regulators,
MONSTER seems to be able to separate a cleaner sig-
nal from the noise and one that makes some biological
sense. Indeed, when one looks at the transcription factors
found by MONSTER as associated with the transition, all
are biologically plausible candidates which provide new
and important opportunities for future molecular studies
of COPD pathogenesis. It is also noteworthy that many
of these transcription factors could not have been found
through a simple differential expression analysis as their
transcriptional levels do not change significantly between
disease and control populations. Rather, it is the reg-
ulatory patterns of these transcription factors, possibly
driven by epigenetic or other changes, that shifts with the
phenotype.
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Conclusion
The systems biology research community has long framed
the discussion of the transitions between phenotypes in
terms of gene expression state space, in which a change in
phenotype corresponds to a transition between one char-
acteristic expression profile to another. Here we extend
that framework to the gene regulatory network state
space, recognizing that patterns of gene expression are
driven by alterations in patterns of gene regulation—and
therefore, changes in the corresponding gene regulatory
network. This shift allows us to ask how phenotypic alter-
ations, and the corresponding regulatory changes, are
effected through transcription factor “rewiring,” and to
identify those transcription factors that are altering their
regulatory targets. Thus MONSTER represents a novel
approach to identifying and understanding the factors
that drive changes in biological states and one with broad
potential for application in a range of systems.

Additional file

Additional file 1: (1) A detailed description of the data used for the COPD
network inference and analysis presented in the main text. (2) A detailed
description of the MONSTER approach for defining network state
transitions. (3) Various evaluations of the MONSTER method. (4) An
illustration of the irreproducibility of network differences outside of the
transition matrix formalism. (PDF 5417 kb)
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