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Abstract

Background: Photosynthetic (PS) gene expression in Rhodobacter sphaeroides is regulated in response to changes
in light and redox conditions mainly by PrrB/A, FnrL and AppA/PpsR systems. The PrrB/A and FnrlL systems activate
the expression of them under anaerobic conditions while the AppA/PpsR system represses them under aerobic
conditions. Recently, two mathematical models have been developed for the AppA/PpsR system and demonstrated
how the interaction between AppA and PpsR could lead to a phenotype in which PS genes are repressed under
semi-aerobic conditions. These models have also predicted that the transition from aerobic to anaerobic growth
mode could occur via a bistable regime. However, they lack experimentally quantifiable inputs and outputs. Here,
we extend one of them to include such quantities and combine all relevant micro-array data publically available for
a PS gene of this bacterium and use that to parameterise the model. In addition, we hypothesise that the AppA/
PpsR system alone might account for the observed trend of PS gene expression under semi-aerobic conditions.

Results: Our extended model of the AppA/PpsR system includes the biological input of atmospheric oxygen
concentration and an output of photosynthetic gene expression. Following our hypothesis that the AppA/PpsR
system alone is sufficient to describe the overall trend of PS gene expression we parameterise the model and
suggest that the rate of AppA reduction in vivo should be faster than its oxidation. Also, we show that despite both
the reduced and oxidised forms of PpsR binding to the PS gene promoters in vitro, binding of the oxidised form as
a repressor alone is sufficient to reproduce the observed PS gene expression pattern. Finally, the combination of
model parameters which fit the biological data well are broadly consistent with those which were previously
determined to be required for the system to show (i) the repression of PS genes under semi-aerobic conditions,
and (i) bistability.

Conclusion: We found that despite at least three pathways being involved in the regulation of photosynthetic
genes, the AppA/PpsR system alone is capable of accounting for the observed trends in photosynthetic gene
expression seen at different oxygen levels.
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Background
Induction and repression of PS genes that encode pro-
teins required for the formation of photosynthesis appar-
atus in the purple non sulfur bacterium Rhodobacter
sphaeroides depends on redox and light signals. These
PS genes mainly consist of the puc (encoding structural
and assembly proteins of light harvesting complex II),
puf and puh (encoding structural and assembly proteins
of light harvesting complex I and reaction centre), bchl
(encoding enzymes involved in bacteriochlorophyll
biosynthesis) and crt (encoding enzymes involved in
carotenoid biosynthesis) operons [1, 2]. In the presence
of sufficient oxygen (= 200 pM dissolved oxygen concen-
tration), R sphaeroides uses respiration to generate
energy and PS gene expression is almost completely re-
pressed. When oxygen is reduced below a certain level
(< 3 uM dissolved oxygen concentration) they switch to
photosynthetic growth and the extent of PS gene expres-
sion depends on the available light intensity [3]. In
addition, R. sphaeroides can undergo anaerobic respir-
ation using a terminal electron acceptor such as DMSO
(dimethyl sulfoxide) [4].

In R sphaeroides, PS gene expression is under the
control of three main transcriptional regulatory sys-
tems: PrrB/A (RegB/RegA) [5, 6], AppA/PpsR [7] and
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FnrL [8, 9]. A schematic diagram illustrating the mech-
anism of their regulation is shown in Fig. la. PrrB/A is
a two component global regulatory system which acti-
vates the expression of PS genes under anaerobic
conditions. The FnrL system also induces PS gene ex-
pression under anaerobic conditions while the AppA/
PpsR system is a repressor of PS gene expression under
aerobic conditions. Recently two new regulators of photo-
synthesis gene expression, CrpK and MppG (RSP_2888)
have been suggested by Imam et al, [10, 11] but the
mechanisms of regulation by these transcription factors
are not yet known. They have also experimentally demon-
strated an overlapping nature of the CrpK and FnrL
regulons [10].

The two-component system, PrrB/A consists of a
histidine sensor kinase PrrB and its cognate response
regulator, PrrA. Under anaerobic conditions, PrrB auto-
phosphorylates and transfers the phosphoryl group to
PrrA [12]. Phosphorylated PrrA binds the promoter of
PS genes and activates their expression. Under aerobic
conditions, electron flow through the cbb3-oxidase
inhibits the kinase activity of PrrB and enhances its
phosphatase activity [13], thus preventing activation of
PS gene expression by PrrA. It has also been suggested
that photosynthetic electron transport during anaerobic
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Fig. 1 Schematic diagrams for photosynthetic gene regulation and the existing model for the AppA/PpsR system. a A diagram of light and redox
dependent regulation of photosynthesis genes by PrrB/A, AppA/PpsR and FnrlL in Rhodobacter sphaeroides. Note that the FnrlL system activates PS
genes expression under anaerobic condition, in cooperation with PrrB/A, while it inhibits expression under aerobic conditions. Here, the red thick
line with red arrow on top denotes expression, black arrows represent activation, and the line with bar end denotes inhibition of PS genes. The
bidirectional arrow represents the phosphorylation and dephosphorylation of PrrB and PrrA. A dotted and zigzag line shows sensing of oxygen /
redox and blue light, respectively. b The simple model for the light and redox dependent interaction of AppA and PpsR (copied from Pandey et al,,
2011 [26] with permission). Here, [O,] represents the oxygen concentration and LI blue light irradiance. Oxidised and reduced forms of PpsR are
denoted by tetrameters with disulfide bonds (S-S) and thiol groups (S-H), respectively. AppA has two cofactors attached: (i) FAD, and (i) heme. The h*
and h™ represent oxidised and reduced form of heme cofactor, respectively. The lines with bar end denote repression of PS genes by PpsR, and the
thickness of that shows the strength of repression; oxidised form of PpsR (PpsR.,) is a strong repressor compared to the reduced form (PpsR;cq)
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growth reduces the electron flow through cbb3-oxidase
that results in activation of PS genes under these condi-
tions [14].

The AppA/PpsR system is composed of two proteins,
PpsR and AppA. At high oxygen levels PpsR binds the
upstream region of PS genes and inhibits the expression
of these genes [2, 15, 16]. It has been proposed that oxy-
gen directly increases the binding affinity of PpsR by
forming an intramolecular disulfide bond in PpsR [17].
Under anaerobic conditions this bond is reduced which
results in a lower binding affinity of PpsR for PS gene
promoters, thereby relieving repression and allowing PS
gene expression. It has been shown that the disulfide
bond reduction of PpsR is mediated by a flavoprotein,
AppA [17]. However, the exact mechanism underlying
this observation is still elusive and unsettled. For ex-
ample, it has been shown that the C-terminus of AppA
is capable of reducing the disulfide bonds in PpsR [18],
but on the other hand deletion of this domain does not
abolish the antirepressor properties of AppA [19, 20].
According to Masuda and Bauer, AppA regulates the
activity of PpsR in two ways; (i) by reduction of the
oxidised form of PpsR as described above and (ii) by re-
duced AppA forming a complex with reduced PpsR
(AppA-PpsR,) [17]. They have also shown that this com-
plex formation is inhibited by blue-light illumination
[17]. Initially it was assumed that this complex is tran-
scriptionally inactive but a recent study suggests that it
could bind DNA and form a ternary complex AppA-
PpsR,-DNA [20]. AppA is capable of sensing both
oxygen and blue light using heme [19, 21] and flavin
adenine dinucleotide (FAD) cofactors, respectively
[22-24]. It is proposed that the light and redox
dependent interaction of AppA and PpsR is respon-
sible for a phenotype in which PS gene expression is
repressed by blue light under semi-aerobic conditions
[17, 23, 25-27].

The FnrL system is composed of a single protein,
EnrL, which is a homologue of FnR (a global anaerobic
regulator) of Escherichia coli [8, 9, 28]. An furL dele-
tion mutant strain is unable to grow photosynthetically
or anaerobically using DMSO as a terminal electron
acceptor in the dark [9, 29]. FnrL exerts its regulatory
effect by binding the FnrL consensus sequence
TTGTCN,TTCAA [8]. Under aerobic conditions, FnrL
represses expression of the hemA gene (encodes 5-
aminolevulinate synthase) and puc operons while
under anaerobic condition it activates expression of
both operons [28]. It has been proposed that the FnrL
control of PS gene expression is additive and co-
operative with the PrrB/A system [28].

Recently, two mathematical models for AppA/PpsR
regulation of PS gene expression in R. sphaeroides have
been developed [26, 27]. These models suggest that the
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phenotype where PS genes are repressed by blue light at
intermediate oxygen levels will occur if PpsR is reduced
on a faster time scale than AppA. In both models, au-
thors demonstrated that in the steady state response
curve of reduced PpsR a maximum developed at inter-
mediate oxygen levels and it was proposed that this
maximum is responsible for the specific repression of PS
genes under semi-aerobic conditions.

The first and simple model, shown in Fig. 1b, pre-
dicted that in addition to the above mentioned condi-
tion, if (i) the copy number of AppA is higher than that
of PpsR by at least a factor of two, (ii) the electron trans-
fer from AppA to PpsR is effectively irreversible and (iii)
the rate of reoxidation of PpsR is faster than that of
AppA then the transition from aerobic to anaerobic
growth conditions would occur via a bistable regime
[26]. This model was mainly based on the experimental
observations that: (i) reduced AppA can reduce oxidised
PpsR, and (ii) under low oxygen levels reduced PpsR
and reduced AppA form a transcriptionally inactive
complex and that this complex formation is inhibited by
blue light [26].

A subsequent study extended the first model [26] by
incorporating a more detailed description of blue light
regulation [27]. In addition to the prediction of the de-
velopment of a maximum (role explained above) and
bistability, the model results were compared with avail-
able data for PS gene expression inhibition at varying
blue light irradiance under semi-aerobic conditions. Also
the extended model was able to explain the reduced blue
light sensitivity of an appA mutant.

Crucially, it is important to note that both models ex-
cluded the roles of PrrB/A and FnrL in PS gene regula-
tion. In addition, the models have an input (Kp), which
compares the rate of oxidation and reduction of AppA,
and output (PpsR ,eq/0x) neither of which are measurable
in vivo. Features such as bistability also require specific
values for certain parameters in the model such as the
rate of reduction of PpsR being faster than that of AppA,
and the copy number of AppA being greater than that
of PpsR by at least a factor of two [26]. Many parame-
ters, including the rate of reduction and oxidation of
AppA and PpsR, are not experimentally tractable in vivo.
The major limitation of these models is that due to
above reasons we cannot directly compare and test the
model predictions although micro-array data are publi-
cally available for PS gene expression under diverse
growth condition. Therefore, we need a model that has
measurable inputs (oxygen level and or light intensity)
and outputs (e.g. PS gene expression level).

Here, we set out to extend one of these models and in-
corporate the biologically relevant input (oxygen con-
centration) and output (relative level of a PS gene, pucB,
transcription), which will allow us to estimate the
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unknown model parameters using micro-array data. We
combined all relevant micro-array data sets available for
a PS gene (pucB) of this bacterium.

Results

Combining the publically available micro-array data sets
for pucB gene

We normalised and combined the various publically
available micro-array datasets for a PS gene expression
under different growth conditions. We collected MAS
5.0 (Microarray Suite 5.0) values provided for the gene
expression levels in NCBI (National Center for Biotech-
nology Information) Gene Expression Omnibus (GEO)
database which are already normalised values for a
submitted data series. The MAS 5.0 is a name of the
algorithm used for producing gene expression level by
Affymetrix. However, in order to compare the data
from different data series, often from different research
groups, we had to re-normalise that. We chose pucB
(locus tag RSP 0314 and probe id 1194-1198) of the
puc (or pucBA) operon as a representative PS gene as it
is highly represented with five copies in the probe set
of the R sphaeroides 2.4.1 genechip [30]. It encodes
polypeptides of the B800—-850 light harvesting complex
(LH II) [31]. We used rpoZ, encoding the DNA-
directed RNA polymerase » subunit to normalise the
gene expression levels of pucB across diverse genechip
datasets. rpoZ was chosen because: (i) the expression
level of rpoZ (locus tag RSP 1669, probe id 2587) from
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the same genechip data series remains almost un-
changed under anaerobic, semi-aerobic and aerobic
growth regimes (Additional file 1: Figure S1), and (ii)
rpoZ has previously been used as a control in qPCR re-
actions validating the genechip data [30]. We collected
and analysed all micro-array gene expression data for
pucB and rpoZ submitted to the GEO database by dif-
ferent research groups for R. sphaeroides 2.4.1 under
diverse growth conditions. We omitted the data sub-
mitted by Arai et al., [32] as their data for 2% oxygen
level shows a high standard deviation. The obtained
mean relative expression levels and the obtained gene
expression pattern are shown in Fig. 2a. The obtained
transcriptomic profile supports the general hypothesis
that under anaerobic conditions in the presence of low
light (= 10 W/m?) pucB is highly expressed to facilitate
photosynthesis, whereas it is strongly repressed under
aerobic conditions. However, in the presence of high in-
tensity white light (~ 100 W/m?) under anaerobic con-
ditions, pucB expression is reduced compared to that at
10 W/m?> (Fig. 2b), which is consistent with the previ-
ous study [3]. A similar pattern has also been reported
for gene RSP3361 (encoding putative restriction endo-
nuclease or methylase) which is positively regulated by
PrrA [33]. In addition, Fig. 2c confirms the phenotype
in which pucB is repressed by blue light illumination
under semi-aerobic conditions [34]. Overall, our
methodology for normalising and combining diverse
micro-array datasets appears to recapitulate the known
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Fig. 2 Transcriptomic patterns of pucB gene obtained from combining publically available micro-array data. Here, gene expression data is shown
with the symmetric error of one standard deviation. a We present the data obtained after normalisation and combination of the micro-array data.
The filled circles represent the mean relative expression of pucB at different oxygen levels. In absence of oxygen, cells are grown in white light of
10 W/m? light intensity and under semi-aerobic and aerobic conditions cells are grown in the dark. b The inhibition of pucB expression by high
intensity white light in absence of oxygen. The data presented here are obtained from our analysis of the micro-array data. ¢ The data obtained
from our analysis that shows the known repression of PS genes by blue light illumination at an intermediate oxygen level (10% oxygen). Note
that, like panel (a) the data presented in panels (b) and (c) come from multiple studies
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and observed biological phenotypes validating this
approach.

Extending the existing model to have biologically
relevant inputs and outputs

In order to compare the existing model [26, 27] to ex-
perimental data (obtained from our data analysis) we
had to extend the simple model [26] to include the bio-
logically relevant input (atmospheric oxygen concentra-
tion) and output (relative levels of photosynthetic gene
transcription). The output from the previous model
(summarized in Additional file 1 and published else-
where [26]) is concentration of reduced PpsR (PpsR,eq)
or oxidized PpsR (PpsR,,), which is not quantifiable in
vivo. To extend our model to have the physiologically
relevant output of pucB expression it is necessary to
model the interaction of PpsR with the puc promoter.
PpsR is thought to regulate photosynthetic gene expres-
sion by binding to two consensus palindromic PpsR
binding sites, TGTcN;ogACA (N is nucleotide and lower
case letters represent lesser conservation) upstream of
these genes [2, 15, 16, 35]. There are several possibilities
for the role of the binding of PpsR molecules to these
binding sites. It has been observed that in vitro, both
forms of PpsR (PpsR,x and PpsR,q) can bind a DNA
fragment containing the tandem PpsR binding site with
different binding affinities [17]. The in vitro ECsy (50%
DNA binding) for PpsR, and PpsR ,q are 31 nM and
69 nM, respectively [17]. In addition, it has been re-
ported that PpsR represses PS gene expression, but we
do not know which form of PpsR (oxidised or reduced)
binds in vivo or whether one or both forms bind to
achieve gene regulation. We therefore modelled the
binding of PpsR,, and PpsR,q to the pucB promoter
and used Hill functions to model these protein-DNA
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interactions. As our purpose was to allow us to estimate
the main parameters for the established model we did
not consider more complex cases, for example those in
which AppA-PpsR, could also compete with various
forms of PpsR for DNA binding. We therefore investi-
gated five initial possibilities for the PpsR-puc binding
(Fig. 3a) of the general form:

Level of pucB mRNA = Mmax< (1)

K"
K" 4 PpsR™

where M., is maximum expression level of pucB gene,
n is the Hill coefficient and K is the EC5, value for bind-
ing between PpsR and the puc promoter. The ECs, for
the binding of PpsR,, has been estimated 31 nM and the
binding of PpsR..q as 69 nM through in vitro experi-
ments [17]. From the obtained transcriptomic data
shown in Fig. 2a, we suggest the maximal pucB expres-
sion level under anaerobic conditions to be 5.1 in arbi-
trary unit (a.u.). Therefore, we believe that the 5.1 a. u.
could be a reasonable estimate of M,,,,. For PpsR,, we
estimated a Hill coefficient (n;) =4.1 from curve fitting
of the data for the isothermal curve published elsewhere
[17] (Fig. 3b). For PpsR,.q the value for the Hill coeffi-
cient (ny) = 3.4 was estimated in a previous study [27]. A
full description of all five models and parameters are
given in Additional file 1.

Note that for all following results obtained using this
extended model, we assume that the electron transfer
from AppA to PpsR is effectively irreversible (i.e. param-
eter K=o, see Additional file 1). Also, we do not at-
tempt to estimate the parameter & (defined in the
Additional file 1 and elsewhere [26]) of the model as it
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reduced form, ox: oxidised form. b Estimating the Hill coefficient for the binding of oxidised PpsR to a DNA fragment containing the puc promoter.
Here, we fit the data obtained from binding isotherms for oxidised PpsR published elsewhere [1
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has been shown that the steady state behaviour of the
AppA/PpsR system is independent of it [26].

Our model results suggest that the binding of
PpsR,x as a repressor (case i) or in combination with
PpsR,.q binding as a co-repressor (case iv) or as a
co-activator (case v) would be capable of reproducing
the experimentally observed pattern of pucB gene ex-
pression under certain parameter combinations
(Fig. 4a, Additional file 1: Figure S2 and S3). How-
ever, the binding of PpsR,.q alone to the promoter as
either a repressor (case ii) or activator (case iii) of
expression (puc) would not be compatible with the
experimentally observed pattern of puc gene expres-
sion (Figs. 5 and 6). Given that PpsR.q has been
shown to bind in vitro to the promoter with an affin-
ity which is only half of that of PpsR,, [17], we set
out to investigate why it appeared to have so little
effect on puc expression within our models. We de-
termined the levels of free PpsR,.q, free PpsR,, and
the amount of PpsR which is complexed with AppA
in our model at different oxygen concentrations for
case (i); the outcome is shown in (Fig. 4b). Based on
that we suggest that the reason that PpsR,.q binding
has so little effect on puc expression in this case is
due to the very low levels of free PpsR,q in a cell
under these conditions which are defined by the
combination of model parameters that fit the data. It
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should be noted that we do not propose that PpsRcq
can be ignored, only suggest that in wild-type cells
most PpsR..q is complexed with AppA under these
conditions (Fig. 4b). This result is entirely consistent
with the observation that an AppA null mutant was
unable to grow under photosynthetic conditions [36]
as in the absence of AppA, all of the PpsR,.q will be
free and hence able to bind and repress transcription
of the PS genes. For this reason, we continued our
studies using the simplest model in which PpsRgy
alone binding to the puc promoter represses its
transcription.

Estimating biological parameters of the established

model

We started from the hypothesis that the AppA/PpsR sys-
tem alone might account for the observed pattern of
photosynthesis gene expression under semiaerobic con-
ditions. This supposes that the PrrB/A and FnrL systems
are involved in setting the absolute levels of expression
but do not influence the shape of the transition curve at
intermediate oxygen concentrations (or over all shape of
the gene expression pattern).

In the existing simple model for AppA/PpsR regula-
tion ([26], summarized in Additional file 1), oxygen
concentration is expressed in units of the parameter Ko
which is defined as
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lines in all panels. That particular parameter combination is considered as the default parameter values in all simulations. The default parameters
are: /=0.001, a=6, 3=500, y=2.1,6=1, and Koy = e. Like in Fig. 4, we have assumed that 30% O, = 200-380 pM and 0% O, =0 uM as well as
the total concentration of PpsR is assumed to be 100 nM. We have increased and/or decreased each parameter value by at least two orders of
magnitudes from their default values. The model results in this case are unable to explain the experimental gene expression pattern. Here, we do
not feel the need of calculating normalised SSE as from the visual inspection we do not see any hope for a good data fitting

% oxygen

_ kAr _ rate constant for the reduction of AppA
~ kAo  rate constant for the oxidation of AppA

K,

The unit of the rate constant for the oxidation of App
(kao) is: sec”/unit of O, and unit of the rate constant
for the rate of reduction of AppA (ku,) is sec '. This
leads to the conclusion that the unit of the parameter
Ko is the unit of oxygen level in the present study.

The experimental range of oxygen level is from 0 to
30% of the mixture of the gas that is bubbled into the
culture while generating the micro-array data. In the
experiments in order to mimic the aerobic condition re-
searchers have used a mixture of gas that contains 30%
oxygen, 69% N,, and 1% CO,, for low oxygen condition
a mixture of 3% O,, 96%N,, and 1% CO, and for anaer-
obic condition a mixture of 99% N,, and 1% CO,. How-
ever, experimentalists have used another definition of
the aerobic, semi-aerobic and anaerobic conditions in
terms of dissolved oxygen in the medium and there is a
general understanding that = 200 uM dissolved oxygen
constitutes aerobic, = 100 uM semi-aerobic and <3 pM
anaerobic conditions [14, 23, 26].

In order to calculate a value range for Ko we have as-
sumed that the oxygen levels in the aerobic samples are
between the experimentally assumed concentration of

~ 200 pM and the saturation limit of oxygen in water
at 30 °C which is ~ 380 pM. Previously, when cultures
were grown in 60 mL glass tubes and sparged with a
gas mixture containing 10% O, 89% N, and 1% CO,,
researchers have claimed that it is equivalent to
120 uM dissolve oxygen concentration [25]. This means
that the maximum oxygen level, 30% oxygen in the
experiment, is equivalent to the maximum value of the
parameter O of the model, which is a dimension less
quantity. In our model the fully aerobic condition is
defined as being when the concentration of free PpsR,y
accounts for more than 50% of the PpsRy, and the PS
genes are fully repressed for the parameter combination
which fits the data well. From Fig. 4 this can be seen to
be when O = 30. Therefore, this maximum value of the
parameter O will be between 200 uM/Kg and 380 pM/
Ko resulting in a value range for the parameter Ko~
6.7-12.7 pM. Because the value of Ko >1, we would
suggest that the rate of reduction of AppA is faster than
its rate of oxidation.

Note that the output from our model is designed to be
insensitive to the exact value of Ko or the oxygen
concentration in the aerobic culture as these are both re-
lated and are absorbed into the dimensionless parameter
O (see Eq.2 in Additional file 1 or Eq. 9 in [26]). Thus,
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b, 3 in cand y in d. We see that like case (i) the model results in this case also unable to explain the experimental gene expression pattern.
Here, similar to Fig. 5 we do not calculate normalised SSE for each curve as from visual inspection we do not see any hope for good data fit-
ting. The default parameters are: /= 0.001, a=6, 3 =500, y=2.1, 6= 1, and K¢, = o=. Here, we have assumed that 30% O, = 200-380 uM and
0% O, =0 uM as well as the total concentration of PpsR is assumed to be 100 nM
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Fig. 7 Effects of changes in model parameters one by one for the Case (i). Similar to Figs 5 and 6 model results for varying parameter values are
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array data. a Effect of changes in blue light irradiance (/). b Simulation results for different values of parameter a. ¢ Effect of changes in (.
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Table 1 The main model parameters and their recommended
values based on this study

Model Biological Meaning Recommended
Parameters Values
a Compares the rate of re-oxidation 6
of PpsR with that of AppA
B Compares the rate of reduction of 500
PpsR with that of AppA
Y Ratio of the concentration of AppA 2.1
and PpsR in a single cell
PpsRiotal Total concentration of PpsR =100 nM
Ko Compares the rate of reduction of = 6.7-12.7 uM
AppA with its rate of oxidation
/ Blue Light Irradiance 0.001

whether the concentration of dissolved oxygen in the
cultures representing our aerobic conditions are 200 uM
or 380 pM will only change the value of Ko and not
the parameter O. This is because O =oxygen concen-
tration/Ko and so if the assumed oxygen concentra-
tion under aerobic conditions is slightly larger, Ko
will also be larger to compensate. Therefore, increas-
ing the assumed concentration of dissolved oxygen
only serves to give a larger value for Ko and hence
more likelihood that the rate of reduction of AppA is
faster than the rate of its oxidation.

Using our full model from atmospheric oxygen con-
centration as an input to puc gene expression as an out-
put we evaluated the effects of changing each parameter
in the model in turn. Biologically, the parameter I repre-
sents light irradiance of blue light. The parameter o
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compares the rate of re-oxidation of PpsR with that of
AppA. The parameter [ represents the time scale separ-
ation in the rate of reduction of PpsR and that of AppA.
The parameter y represents the ratio of the copy num-
ber of AppA and PpsR in a single cell. The steady state
behaviour of the model is independent of the parameter
O (published elsewhere [26] and defined in Additional
file 1) [26]. Figure 7 shows the results of varying each
parameter in our full model for case (i). We find that the
model best recapitulates the observed biological data
when [ is very small (around 0.001), a is around 6, f is
around 500 and y is 2.1. We also found that the total
concentration of PpsR (PpsRietar), Which is a parameter
in the new model, should be approximately 100 nM
(Fig. 4c). The recommended parameter combination is
summarised in Table 1.

In order to determine which parameter combination
leads to a better fit and recapitulate the observed data,
we calculated normalised SSE (sum of squared error)
values for each curve obtained from changing the model
parameters. This value indicates how good our model
predictions are (the method is explained in the Method
section) and a smaller value of it suggests a better fit.
We find that for this parameter combination we have a
relatively small normalised SSE value. However, there
could be other model parameter combinations for which
model results are consistent with the experimental data
(although with a larger normalised SSE) for example for
I=0.001, a = 3.8, p =800 and y=2.15 (Fig. 8a and b).

An [ value of 0.001 is consistent with the fact that the
biological data were from cells grown either in the dark
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and 0% O, =0 uM. Normalised SSE values are calculated as described in the Method section. ¢ and d Appearance of bistability and changes in
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or under 10 W/m? white light and hence there should
only be a small component of blue light present to elicit
a blue light response. An a value >1 (e.g. 6 or 3.8) sug-
gests that the rate of re-oxidation of PpsR is larger than
that of AppA. This was shown to be one of the key re-
quirements for bistability to exist in this system on the
transition between aerobic and anaerobic growth condi-
tions in the original model [26]. A y value of 2.1 suggests
that the copy number of AppA in the cell should be
roughly twice that of PpsR. This was also shown to be a
requirement for the system to show bistability in the ori-
ginal model [26]. A large B value (of 500 or 800) sug-
gests that the rate of reduction of PpsR is faster than
that of AppA, in vivo which supports the previous
model prediction (published elsewhere [26]). Note that
the simple model of AppA/PpsR system predicted that
the phenotype in which PS genes are repressed under
semi-aerobic conditions can occur if B is large. There-
fore, we suggest that such phenotype at intermediate
oxygen level would be due to the dominant role of the
AppA/PpsR system under those conditions. These re-
sults also suggest that the AppA/PpsR system alone
might account for the observed trend of PS gene expres-
sion under semi-aerobic conditions.

In addition, our «, B and y values are consistent with
those required for the system to show bistability [26].
According to the original model [26], bistability in the
aerobic «<»anaerobic growth transition requires a large f.
However, examining the effects of increasing p (Figs. 7c,
8c and d) shows an interesting trend. When we increase
B up to a value of about 100 we find that the fraction of
oxidised PpsR decreases at each given oxygen concentra-
tion, and hence provides a progressively worse fit to the
experimental data (relatively higher values of normalised
SSE). However, increasing f beyond 100 results in the
opposite trend in that the fraction of oxidised PpsR
starts to increase again for each given oxygen concentra-
tion (Fig. 8c), and therefore progressively better fit
(Fig. 8d). Whilst our best fit for the higher B value is
500, a value at which bistability is still not observed for
the system (Figs. 4b, 7c and 8b), there could be other
parameter combinations for which the model results
would fit the data equally well. It is therefore not pos-
sible to preclude the fact that there could be another
combination of parameters which fit the experimental
data with P large enough for bistability to exist in this
system, for example /= 0.001, a = 3.8, p =800 and y=2.15
(Fig. 8a and b). Such inability to find a unique parameter
value through fitting experimental data is not new, has
been extensively studied and is widely known as the par-
ameter identifiability issue [37—40]. In our case, with the
current data, the identifiability issue means that we can-
not unambiguously estimate a unique value of . There-
fore, based on this study we cannot confirm or reject the
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possibility of bistability in this system. In fact, we do not
aim to make such decisions here; for that more compre-
hensive studies should be performed. However, we wish
to convey that modelling is essential to obtain these pa-
rameters as some of them such as a, p and Ky are not
tractable to experimental measurement.

Discussion

Regulation of the transition between aerobic and photo-
synthetic growth requires one of the largest changes in
gene expression profiles for bacteria. Despite extensive
study by both experimental and mathematical modelling
we still don’t have a complete understanding of how this
regulation is achieved, even in the well-characterised bac-
terium Rhodobacter sphaeroides. Moreover, there is a vast
amount of micro-array data available for this bacterium.
This is partly due to the fact that various research groups
have measured PS gene expression under the environmen-
tal conditions required for their particular study, and
therefore there is no complete dataset for PS gene expres-
sion under all relevant oxygen and light levels.

Here, we obtained publically available micro-array
datasets from diverse research groups and combined
them. Note that we used the MAS 5.0 value of the
gene expression which is a normalised gene expression
level itself but we had to re-normalise as we wanted to
compare the data sets from different data series (from
different research groups). This allowed us to generate
a pattern of PS gene expression across a wide range of
oxygen and light levels. Our normalised and combined
data recapitulates the known biology of the system
such as increased repression of PS genes as the con-
centration of oxygen increases (Fig. 2a), reduced PS
gene expression with increased light intensity (Fig. 2b)
in the absence of oxygen and decreased PS gene ex-
pression under semi-aerobic growth in the presence of
blue light (Fig. 2c).

Many areas of biology are benefiting from advances in
mathematical modelling. However, there are still signifi-
cant challenges in parameterising these models using
biological data. Here, we present a method to extend
mathematical models to include biologically relevant in-
puts and outputs and then to use normalised microarray
data to estimate parameters which cannot be experimen-
tally determined. We applied our procedure to the well-
studied pathway regulating bacterial photosynthetic gene
expression in Rhodobacter sphaeroides. Taking the avail-
ability of mathematical models of AppA/PpsR and
published transcriptomic data into consideration we ex-
tended an existing model of the AppA/PpsR system to
include the biologically meaningful input of oxygen con-
centration and output of relative PS gene expression. In
order to estimate the parameters of that established
model, we compared the data obtained from our micro-
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array data analysis with the extended model. We ob-
served that the trend in PS gene expression at different
oxygen concentrations could be described by the model
for AppA/PpsR regulation alone. This suggests that the
AppA/PpsR system could be primarily responsible for
regulating gene expression trends in response to changing
oxygen conditions under semi-aerobic conditions. Also,
the model of AppA/PpsR system would work in biologic-
ally relevant range of oxygen (0 to 30%) if the rate of
reduction of AppA is faster than its rate of oxidation.

Previous analysis of the existing model for AppA/PpsR
regulation of PS gene expression showed that there are a
range of parameters for which the system would show
bistability [26] and that there are areas of parameter
space in which bistability could exist in the system
provided certain conditions are met. Our model param-
eterisation shows that one of the best fits to the experi-
mental data are when the y ~ 2.1, a ~ 6 and p is ~500.
This parameter combination is consistent with the
model parameters required in the previous study for the
occurrence of PS gene repression at intermediate oxygen
levels and bistablity. Hence, the present study supports
our previous model prediction that the PS genes can
indeed be repressed under semi-aerobic conditions in
high blue light illumination if PpsR is reduced on a
faster time scale than AppA. Whilst, to the best of
our knowledge, bistability has not been observed to
date in this system although it is a common
phenomenon in biology and has, for example, been
observed in sugar uptake systems of Escherichia coli
[41, 42]. Given the steep nature of oxygen gradients
in the environment and the length of time it takes
for a bacterium to change from aerobic to photosyn-
thetic growth, bistability could provide a distinct
advantage to cells experiencing rapidly fluctuating
oxygen levels under semi-aerobic conditions.

Furthermore, our model predicts that the total
concentration of PpsR in the cell should be around
100 nM (Fig. 4c) and as our estimated value for y is
approximately 2, the total concentration of AppA
should be around 200 nM, a value which could be
experimentally validated. It should be noted that the
absolute concentration of AppA should be dependent
on oxygen levels as appA gene is indirectly regulated
by the PrrB/A system [43].

The major limitation of this study is that we are not
able to confirm or reject the model prediction of bistab-
lity. Furthermore the current microarray data are not
sufficient to overcome the identifiability issues we have,
especially for the parameter B. In addition, we have
shown the gene expression pattern of only one PS gene
out of several. However, one can carry out similar stud-
ies to get the transcriptomic pattern of other PS genes
for diverse environmental conditions.
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Conclusions

We have demonstrated that our method of combining
micro-array data for a PS gene is able to recapitulates the
known biology of the system. Also, we presented a method
to extend mathematical models to include biologically rele-
vant inputs and outputs and then to use normalised
micro-array data to estimate parameters which cannot be
experimentally determined. We applied our procedure to
the well-studied pathways regulating bacterial photosyn-
thetic gene expression in Rhodobacter sphaeroides, extend-
ing the model to include available oxygen as the biological
input and gene expression as the output. We found that
despite at least three pathways being involved in this regu-
lation, one regulatory pathway (AppA/PpsR) alone could
be able to account for the observed trends in photosyn-
thetic gene expression measured under semi-aerobic
growth conditions. Parameters determined from compar-
ing results from an extended model of the system with
normalised micro-array data from a range of research
groups are broadly consistent with those previously deter-
mined to be required for the AppA/PpsR system to show
bistability in vivo. In addition, parameterisation of the ex-
tended model using the data obtained from our analysis
suggests that the rate of reduction of AppA would be faster
than its rate of oxidation.

This study demonstrates how combining mathematical
modelling with experimental data can provide insights
into a systems behaviour which are not tractable by ei-
ther approach alone. This general framework of model
extension could be useful for other systems. This study
also highlights the need for further experimental data
allowing a new and extended version of the mathemat-
ical model to incorporate cross talk between the AppA/
PpsR, FnrL and PrrBA systems along with the sugges-
tion of the formation of an AppA-PpsR,-DNA ternary
complex at the puc promoter.

Methods

Combining the micro-array data from different data series
We obtained the micro-array data from Gene Expression
Omnibus (GEO) database of National Center for Biotech-
nology Information (NCBI) (http://www.ncbi.nlm.nih.gov/
geo/). The gene expression data available there are in raw
and normalised both forms. They have used either MAS
5.0 or RMSA (Robust Multi-Array Analysis) method of
normalisation. In the present study we have used the
MAS 5.0 value for the gene expression level from GEO.
In order to compare the data from different data series (or
for normalisation), we first calculated a relative expression
level of pucB in each data sample. For this, we divided the
pucB gene expression level with the rpoZ gene expression
level for each data sample. After that, these relative pucB
expression levels from different samples of different data
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series are compared to get the transcriptomic pattern of
pucB gene for different oxygen levels and light intensities.

Calculating the normalised sum of squared error

We calculate a normalised SSE (sum of squared error)
value for each transcriptomic pattern obtained from the
extended model for a particular combination of parame-
ters to decide how good that model prediction is. In
general, a SSE value which is also called SSR (sum of
squared residuals) indicates how well a model result is
fitting the data. We use following expression to calculate
SSE for a particular oxygen level.

SSE=Y " (7-Y)

where n denotes number of data points at a particular
oxygen level (% oxygen). A y; value denotes a gene ex-
pression level for the i data point at a particular oxygen
level in the micro-array data. A model predicted value of
the gene expression level at that particular oxygen level
is represented by Y. Therefore, the total SSE is

Total SSE = Z};Z; -y’

Here, j denotes a particular oxygen level. In our data
we have total 6 oxygen levels. Note that in our transcrip-
tomic data, number n also varies for each oxygen levels.

We observe that in our experimental gene expression
pattern variance at each oxygen level is different. In fact,
variance is very high at low oxygen levels, and therefore the
normalisation is required so that each data point has a
comparable contribution for the total SSE. We normalise
the individual SSE for a particular oxygen level by dividing
it with variance of the micro-array data at that oxygen level.

Zzn (J’i‘Y/)z
o

Nomalised SSE for j % level of oxygen =

where o represents standard deviation.
Finally, we calculate normalised SSE for a gene expression
pattern obtained from the model using following expression.

Normalised SSE = Zf: L (Nomalised SSE for i % level of oxygen)

or

n 2
Normalised SSE = Zi M
j=1 o;

A normalised SSE value close to zero suggests that the
curve obtained from the modelling fits the micro-array
data very well. Therefore, a smaller value of it indicates
a better fit.
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Softwares and tools

All computational work has been done using MATLAB
[44] and MATLAB toolboxes: (i) MATCONT [45] and
(ii) Curve Fitting Tool Box.

Additional files

Additional file 1: Figure S1. Gene expression pattern of rpoZ at
different oxygen levels and light intensities. We see that the expression
of rpoZ is independent of environmental conditions. Figure S2. Case (iv)
when both PpsR,, and PpsR,.q are able to bind the puc promoter and
both act as repressor. Figure S3. Case (v) when in vivo both oxidised and
reduced PpsR are able to bind the promoter region of pucB but PpsRx
represses whereas PpsR,eq activates transcription. (DOCX 1003 kb)

Additional file 2: List of micro-array data series used for this study and
data. (DOCX 118 kb)
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