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Abstract

Background: The ability of a transcription factor to regulate its targets is modulated by a variety of genetic and
epigenetic mechanisms. Alternative splicing can modulate gene function by adding or removing certain protein
domains, and therefore affect the activity of protein. Reverse engineering of gene regulatory networks using gene
expression profiles has proven valuable in dissecting the logical relationships among multiple proteins during the
transcriptional regulation. However, it is unclear whether alternative splicing of certain proteins affects the activity of
other transcription factors.

Results: In order to investigate the roles of alternative splicing during transcriptional regulation, we constructed a
statistical model to infer whether the alternative splicing events of modulator proteins can affect the ability of key
transcription factors in regulating the expression levels of their transcriptional targets. We tested our strategy in
KIRC (Kidney Renal Clear Cell Carcinoma) using the RNA-seq data downloaded from TCGA (the Cancer Genomic
Atlas). We identified 828of modulation relationships between the splicing levels of modulator proteins and activity
levels of transcription factors. For instance, we found that the activity levels of GR (glucocorticoid receptor) protein,
a key transcription factor in kidney, can be influenced by the splicing status of multiple proteins, including TP53,
MDM2 (mouse double minute 2 homolog), RBM14 (RNA-binding protein 14) and SLK (STE20 like kinase). The
influenced GR-targets are enriched by key cancer-related pathways, including p53 signaling pathway, TR/RXR
activation, CAR/RXR activation, G1/S checkpoint regulation pathway, and G2/M DNA damage checkpoint regulation
pathway.

Conclusions: Our analysis suggests, for the first time, that exon inclusion levels of certain regulatory proteins can
affect the activities of many transcription factors. Such analysis can potentially unravel a novel mechanism of how
splicing variation influences the cellular function and provide important insights for how dysregulation of splicing
outcome can lead to various diseases.
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Background
Regulation of gene expression is one of the most import-
ant biological processes in cellular systems. Previously
studies suggest that transcriptional regulation can be
affected by many factors, such as post-translational
modifications of transcription factors, and competitive

binding of multiple Transcription factor (TF) [1, 2]. It
has been observed that alternative splicing could regu-
late gene function by adding or removing protein
domains, affecting protein activity, or altering the
stability of the transcript of the resulting protein [3–6].
However, the role of alternative splicing on the modula-
tions of transcriptional regulation has not been system-
atically investigated.
Alternative splicing is a critical step of gene regulation

and it enables individual genes to generate multiple
protein products with different structures and functions
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by the insertion or deletion of important functional do-
mains encoded by alternatively spliced exons [7]. Differ-
ences in the gene expression levels of splicing regulatory
factor have been observed in many cancers, and these
proteins often affect the splicing patterns of many genes
that function in certain cancer-specific biological path-
ways, including cell cycle progression, cellular prolifera-
tion and migration, and RNA processing [8–10].
Although alternative splicing is one of the most wide-
spread mechanisms involved in gene regulation, their
roles of acting as modulators to regulate the activity of
transcription factor have not been explored.
As demonstrated in Fig. 1, splicing-centric modulation

relationship is defined as the ability of one transcription
factor (TF) regulating the expression levels of its target
genes (T) is influenced by the percentage of inclusion
(PSI) of certain alternatively spliced exons of the modu-
lator protein (M). One example is that when the PSI
value of a specific exon in M is high, the expression
levels of the putative transcription factor correlates with
its targets, while such correlation relation is lost when
the PSI value is low.
In this study, we develop a simple regression-based

statistical model for evaluating whether the interactions
of the percentage of inclusion level of a putative modula-
tor protein and the expression levels of transcription
factors jointly contribute to the expression levels of the
target genes. A significant interaction term indicates a
potentially functional modulation relationship. Tested in
KIRC (Kidney Renal Clear Cell Carcinoma) data in the
TCGA database [11], our model has the power to
identify hundreds of statistically significant modulation
relationships using RNA-seq data from only a moderate
number of samples. Further investigation suggested that
the activity of GR (glucocorticoid receptor) protein has
been influenced by the splicing outcomes of p53 and

MDM2. This result suggested a potential novel mechan-
ism of how these two proteins influenced cell prolifera-
tion and growth in cancer.

Results
Model framework
In this study, we construct a regression-based linear
model to infer the interactions between the activity of
transcription factor (TF), evaluated by correlation be-
tween the expression levels of the TF and its targets (T),
and the percentage of inclusion of a putative exon in a
modulator protein (M). A schematic diagram of work-
flow is provided in Fig. 2, using the RNA-seq data of the
479 KIRC samples from the TCGA database [11], and
the TF-target relationships, derived from the ENCODE
(The Encyclopedia of DNA Elements) database. Briefly,
the gene expression levels of transcription factors (TF)
and their targets (T) were downloaded from the TCGA
data portal, which provides the 18,802 values for 20,531
genes. The percentage of inclusion (PSI) of 165 exons
was directly derived from.bam files of the RNA-seq data,
using a probabilistic model called Mixture of Isoforms
(MISO) [12]. These 165 exons were selected from 42,485
annotated skipped exons that are derived using the gene
structures of ENSEMBL database, for their correlations
with the overall survival outcomes. A complete list of the
165 exons is included in the supplementary information
(Additional file 1: Table S1). The splicing outcomes of
these 165 exons are considered putative modulators.
In addition to RNA level datasets, the relationships

between TFs and their targets were downloaded from
the factorbook table, disseminated from the ENCODE
database [13]. We focus our analysis on transcription
factors and putative targets that with the expression
samples over 400. This analysis obtained 226,025 TF-
target pairs composed of 83 TFs and 15,597 targets.

Fig. 1 Splicing-centric modulation relationship. The ability of one transcription factor (TF) regulating the expression levels of its target genes (T) is
influenced by the percentage of inclusion (PSI) of certain alternatively spliced exons of the modulator protein (M)
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We developed a regression-based linear model in
deriving the relationship between the activity levels of
a transcription factor and the inclusion ratios of an
exon in a modulator protein. One equation is formed
for describing the relationships among a triplet, [T,
TF, M], denotes the expression level of a TF target,
the expression level of the TF, and the percentage of
inclusion (PSI) of an exon in the modulator,
respectively.
We can estimate the relationship as follows:

Y target ¼ β0 þ β1 Xtf þ β2 Xm þ β3 Xtf Xm þ �

where,

Xtf and Ytarget are expression levels of transcription
factor and target, respectively,
Xm is percentage of inclusion of the exon in the
candidate modulator protein,
β1 and β2 represent the effect of the TF and the
modulator on the expression level of the TF target by
themselves alone
β3 represents the effect of their interactions.

A positive modulation relationship is equivalent to a
non-zero β3 value, suggesting a statistically significant
interaction factors.

Widespread alternative splicing events modulating
transcriptional regulation
Based on the model above, we calculated modulation
relationships (β3≠0) among all the 226,025 potential triplets
of TFs, targets and candidate modulators. After adjusting
for multiple hypotheses correction, we identified 9973 trip-
lets with significant β3 values at FDR (false discovery rate)
<0.05 Fig. 3a demonstrated the percentage of targets of in-
dividual TFs that are modulated by the splicing outcome of
specific modulators. This percentage ranges from 0 to
55.9%. Figure 3b is a bipartite plot that demonstrates the in-
teractions between a candidate modulator (triangle) and a
TF (sphere) with more than 30% of its targets influenced.
This modulator network is composed of 116 inferred TF-M
relationships that include 22 TFs and 40 modulators. In this
network, three TFs have relationships with the most num-
ber of predicted modulators, including GR, BRF1, and
STAT2, with 10, 24, and 17 modulators.
We further examine whether some of the predicted TF-

modulator relationships have experimentally-derived inter-
action relationships. We therefore focused our analysis only
on the TF-modulator pairs that have evidence of physical
interaction documented in the human protein-protein
interaction (PPI) STRING database. Heatmap in Fig. 3c
shows the percentage of targets of 53 TFs (rows) that are
influenced by the splicing patterns of 40 modulators (col-
umns). In this network, 11,718 TF-modulator pairs were
identified with any (>0) targets influenced, and 3137TF-

Fig. 2 Hypothesis and statistical model. This diagram describes the workflow of data analysis. In the equation portion, Xtf and Xtarget represent
that the gene expression level of transcription factor and its target, Xmis the percentage inclusion of a splicing event, p value <0.01 indicates the
relationship between TF and its target would be influenced by specific modulator
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modulator pairs with 10% of TF targets affected. The latter
sub-network includes 19 TFs and 11 modulators, whose bi-
partite relationships are shown in Fig. 3d. Five connections
in this network (red line) are composed with TFs with more
than 20% of their targets influenced by the modulator pro-
tein. These five relationships include 3 modulator proteins
and 4 TFs, among which the splicing outcome of TP53
modulates the transcriptional regulation of 3 TFs, including
GR, STAT2, and BRF1, and the activation level of GR is in-
fluenced by the splicing outcomes of two transcription

factors, MDM2 and TP53, two key genes that are involved
in the P53 pathways.

Transcriptional activity of GR is modulated by the splicing
outcome of multiple proteins
As shown in Fig. 3b, glucocorticoid receptor (GR) is one
of the transcription factors whose transcriptional activity
is influenced by the splicing patterns of many modulator
proteins. GR is a transcription factor that regulate
diverse physiological functions ranging from mitosis to

a b

c d

Fig. 3 Statistical analysis the relationship between TFs and candidate modulators. Global analysis of TFs and candidate modulators based on the
statistical model. a. The results of influenced targets percent of 82 TFs via the modulation of 165 differential splicing events. In the heatmap, each
row represents a TF and each column indicates a splicing event, the color much darker means a much higher percent targets of TF. b. The
bipartite network demonstrates the interactions between TFs and candidate modulators which influenced targets percent is more than 30%. Each
circle with green color indicates a differential splicing event (modulator), each triangle with blue color represents a TF, the edge between TF and
modulator means a physical interaction. c. The heatmap shows the percentage of targets of TFs that are influenced by the splicing patterns of
modulators. All the TFs and modulators in c should have protein-protein interaction relationships. Each row represents a TF and each column in-
dicates a splicing event. d. This network shows the predicted interaction between TFs and modulators which targets percent more the 10%. The
red wider indicate target percent over 25%, and all these TFs and modulators here have physically interaction evidence

The Author(s) BMC Systems Biology 2017, 11(Suppl 5):89 Page 48 of 102



apoptosis. It is essential for embryo maturation, develop-
ment, metabolism, inflammation, cellular proliferation
and survival [14–16]. There are two major mechanisms
of gene regulation by GR [17, 18], direct positive regula-
tion via glucocorticoid-response elements (GRE), and in-
direct regulation that is mediated via crosstalk with
other TF proteins, including MDM2 and TP53 [19–21].
We systematically evaluate how the splicing patterns

of all the putative modulator proteins influenced the GR
transcriptional activity. Histogram of the percentage of
GR targets that are affected by each of the 165 modula-
tor AS events are shown in Fig. 4a. Among 165 candi-
date modulator events evaluated, splicing outcomes of
105 events each influences more than 10% of its targets.
After removing of duplicated gene symbols and unan-

notated genes, 102 genes are associated with theses 105
alternative splicing events, among which, 81 genes can
be mapped to the Ingenuity Knowledge Base that are
subject to core functional analysis. Canonical pathway
analysis suggests that, most of these GR-related modula-
tors are enriched in cell cycle and cell death related
pathways, including G2/M DNA damage checkpoint
regulation pathway, G1/S checkpoint regulation path-
way, CAR/RXR Activation pathway, TR/RXR Activation
pathway and p53 Signaling pathway (Fig. 4b).
Based on the human PPI network from STRING data-

base (version 10.0) [22], GR physically interacts with 6

candidate modulator proteins, including SUMO2, RBM14,
MCL1, SLK, TP53, and MDM2. The percentage of influ-
enced GR targets ranges from 1% to 31% (Fig. 4c), among
which, MDM2 and TP53 influenced the highest percent-
age of GR-target relationships (31% and 24%, respectively).
For each putative modular, the number of targets whose
regulatory relationships are positively or negatively influ-
enced differs (Fig. 4d). The positively-influenced targets
suggest that more positive (or less negative) relationships
between GR and its targets are observed in the samples
with higher inclusion levels of the exons in the modular
proteins. Similarly, the negatively influenced targets are
the targets with more negative (or less positive) relation-
ships with GR in the samples with higher inclusion levels.
As shown in Fig. 4d, expression levels of 218 targets were
influenced through the modulation of the splicing patterns
of MDM2, including 87 and 76 positive-response negative-
response targets, respectively. TP53 affects the regulation of
163 GR-targets in total, which is composed of 116 and 102
positively and negatively influenced targets, respectively.

Splicing outcome of MDM2 protein modulates GR activity
Inclusion ratio of the 9th exon in MDM2 protein influ-
enced the effects of GR on 31% of its targets. Containing
multiple isoforms in both tumors and normal tissues, it is
the principal cellular antagonist of the p53 tumor suppres-
ser gene, and inhibits p53 trans-activity by forming a tight

a b

dc

Fig. 4 Modulator modulated GR activity. Complete results of GR activity via the modulation of differential modulators. a Distribution of GR
influenced targets percent via the differential splicing events. b Results of Inferred GR modulators enriched canonical pathways. c Influenced
targets percent via the modulation of 6 different modulators, with exist physical interaction evidence with GR. d The number of influenced target
genes. The histogram shows the exacted number of genes with FDR < 0.05 based on statistical model we constructed in the study. The blue
color means β3 positive genes, and yellow color represents β3 negative genes
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complex with p53 [23]. As documented in the UCSC data-
base and described in previously studies, human MDM2
protein is composed of 497 amino acids with eleven
exons, and can be divided into four functional-domains,
including p53 binding domain, Acidic domain, Zn finger
domain and RING domain (Fig. 5a). The alternatively
spliced exon is the IX exon, which including L5 protein
binding within the central acidic domain (residues 221–
276). Previously study reported that GR and MDM2
physically interaction to regulated other proteins or tran-
scription factors. If the splicing event of MDM2 without
Acidic domain, it may effect lots of genes binding
performance, hence effect their activities with GR.

In order to visualize how inclusion ratios of the alter-
natively spliced exon (IX exon in MDM2) influenced the
relationship between TF and its target, we assess the
difference in correlation between the expression level of
GR and its targets within the groups of samples with
higher and lower inclusion ratios on the IX exon, re-
spectively. The two groups of samples were selected
based on the percentage of inclusion (PSI) of the IX
exon in MDM2. The high and low inclusion group
contain samples with top and bottom 30% of PSI values.
As shown in Fig. 5b, the expression level of GR showed
clear trend of positive or negative correlation in the
group of samples with lower inclusion ratio, while such

a

b

c

Fig. 5 MDM2 as a modulator influence the activity of GR. a Genomic and protein structure of MDM2. b The heatmap shows the expression level
of GR and its targets via the modulation of MDM2. Each row represents a targets, each column indicates a patient, and each row is ordered by
the expression level of GR from high to low. c The result of GO enrichment of GR targets that influenced by the modulation of MDM2
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trend disappears in the high inclusion group. This result
clearly indicates that the expression level of GR and its
targets indeed are affected by splicing outcomes of the
MDM2 protein.
We conducted Gene Ontology (GO) Enrichment ana-

lysis on the GR targets whose GR-induced expression
changes are influenced by the splicing outcome of
MDM2 protein. Most of these GR targets are enriched
in cellular component and biological process related cat-
egories, from biosynthetic process to intracellular part.
The result of GO analysis is shown in Fig. 5c, and the
top 5 enriched classes are intracellular organelle, intra-
cellular organelle part, intracellular membrane-bounded
organelle, RNA binding, and regulation of endocytosis.
In order to further subcategorize how the inclusion ra-

tion of the IX exon in MDM2 influenced its activity, the
differences in the correlation between the expression
levels of GR and its targets within the samples with high
or low inclusion ratios were examined.
As summarized in Table 1, splicing outcome of MDM2

totally affect the GR activity on 218 of its targets, with116
and 102 targets positively and negatively influenced, re-
spectively. Among the 116 positively influences targets, 93
targets showed increased correlation with GR, either from
no correlation to significantly positive correlation (23 tar-
gets) or from negative correlation to no correlation (70
targets). In addition, we observed reduced negative correl-
ation on 6 targets, and transition from significant negative
correlation to positive correlation on 12 target genes.
Similarly, the 102 negatively-influenced targets, 65 genes
transition from positive correlation to no correlation,
while 18 genes change from no correlation to significant
negative interaction. There are also 7 targets showed posi-
tive correlation, and 12 targets changes from significant
positive correlation to negative correlation.
To further visualize the changes on the correlation

levels between GR and its targets with different levels of
exon inclusion in MDM2, we randomly selected 8 targets
from each category in Table 1, and generated 3D plot
demonstrating the relationship among the triplet [TF, T,
and M] for samples with low and high PSI values respect-
ively (Fig. 6). For example, no correlation between GR and
target WDR1 was observed for the samples with low PSI

values on MDM2 gene, as opposed to the positive correl-
ation for the samples with high PSI values.
We conducted Ingenuity pathway analysis (IPA) on

positively- and negatively-influenced GR targets, respect-
ively (Table 2). Different sets of enriched pathways were
observed for two groups of targets. Cell death and
survival, post-translational modification and cellular de-
velopment pathways are significantly enriched for the
positively influenced targets, while pathway related to
cell morphology, molecular transport, cell-to-cell signal-
ing and interaction are significantly enriched for the
negatively influenced ones. Interestingly, Organismal in-
jury and abnormalities were observed in both two
groups of targets, while cancer is only identified in the
positively-influenced targets.

Splicing outcomes of TP53 modulates GR activity
Another key predicted modulator that physical inter-
action with GR is TP53. TP53 is a protein of 393 amino
acids with ten exons and can be divided into five sub-
domains, including Transaction domain, Proline rich do-
main, DNA binding domain, Tetramerization domain
and Negative regulation domain (Fig. 7). In this study,
we foucs on exon IX ranging from residues 221 to 276,
which contains a portion of Teramerization domain and
Negative regulation domain.
Figure 6b shows that the relationship between the ex-

pression level of GR and its targets differs in the samples
with low PSI values in TP53 gene comparing to the sam-
ple with high PSI values. Enrichment analysis suggests
that 5 GO categories are enriched for the TP53-
modulated GR targets, including mitochondrion
organization, cellular macromolecule metabolic, spliceo-
somal complex, cellular macromolecule biosynthetic,
and nucleus signaling pathway.

Discussion
In this study, we proposed a regression-based linear
model to infer the interactions between the activity of a
transcription factor (TF) and the exon inclusion percent-
age of a modulator protein (M). Using the RNA-seq data
from TCGA KIRC program, we investigated 83 TFs and
165 candidate modulator proteins and identified 116

Table 1 Targets action changed by the modulator of MDM2

Predicted model of action Counts Active Repress Inverts

Positive 116 Non-sig → + 23 ‘-’ → ‘-’ 6 ‘-’ → ‘+’ 12

- → Non-sig 70 ‘+’ → ‘+’ 0

Negative 102 + → Non-sig 65 ‘-’ → ‘-’ 0 ‘+’ → ‘-’ 12

Non-sig → - 18 ‘+’ → ‘+’ 7

MDM2 as modulator affect the relationship between GR and its targets. Among all the GR targets, MDM2 plays a positive modulation role in 116 targets and plays
a negative role in 102 targets (*positive and negative were indicated by β3value)
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significant TF-M interactions (total 9973 TF-M-target
triplets). Then, we constructed an interaction network
using TF-M pairs and further refined the network by
only including TF-M pairs that have documented phys-
ical interaction from STRING database.

Among the inferred interactions, GR is one of the TFs
whose transcriptional activity is affected by multiple modu-
lator proteins, including MDM2 and TP53. The percentage
of GR targets influenced by the MDM2 and TP53 is 31%
and 24%, respectively. We further examined these

Fig. 6 Different modulators influence GR activity. Visualization of the differential correlation between GR and its targets via differential splicing events.
These blue/red points represent genes are regulated by modulators in low psi portion and high psi portion, respectively. X-ax is expression level of TF,
y-ax is expression level of Target, z-ax is psi value of modulator

Table 2 Disease and Bio Functions analysis of influenced targets

Up-regulated targets Down-regulated targets

Molecular and Cellular Functions

Cell Death and Survival 25 Cell Morphology 15

Cell Morphology 7 Molecular Transport 8

Cellular Development 8 Protein Synthesis 3

Cellular Growth and Proliferation 7 Protein Trafficking 2

Post-Translational Modification 16 Cell-To-Cell Signaling and Interaction 7

Diseases and Disorders

Infectious Disease 6 Developmental Disorder 11

Cancer 101 Hereditary Disorder 21

Organismal Injury and Abnormalities 103 Metabolic Disease 13

Tumor Morphology 3 Organismal Injury and Abnormalities 65

Connective Tissue Disorders 10 Renal and Urological Disease 10

IPA analysis results for GR influenced targets when MDM2 as modulator, the list of top 10 terms of function enrichment and related diseases. (p-value <0.01)
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interactions in PPI network and found that GR protein
does have physical interaction with both MDM2 and TP53,
further validating the effectiveness of our model. Mean-
while, pathway analysis shown that many influenced GR
targets are enriched in pathways that are associated with
cancer, including p53 signaling pathway, G1/S checkpoint
regulation pathway, and G2/M DNA damage checkpoint
regulation pathway. Previous study reported that endogen-
ous TP53 and GR can form a ligand-depend trimetric com-
plex with MDM2 in the cytoplasm, which may act as

opposing forces in the decision between cell death and sur-
vival [24]. Our results suggest that differential splicing sta-
tus of MDM2 and TP53 may play distinctly functions on
modulating GR transcriptional activity, leading to different
decision between cell death and survival.
Previously, several computational methods have been

developed to identify modulators whose expression
levels could affect the regulation activity of transcription
factors toward its target genes. Wang and Califano et al.,
[25] proposed an information theoretic algorithm for

a

b

c

Fig. 7 TP53 as a modulator affects the activity of GR. a Genomic and protein structure of TP53. b The heatmap shows the expression level of GR
and its targets via the modulation of TP53. Each row represents a targets, each column indicates a patient, and each row is ordered by the
expression level of GR from high to low. c The result of GO enrichment of GR targets that influenced by the modulation of TP53

The Author(s) BMC Systems Biology 2017, 11(Suppl 5):89 Page 53 of 102



detecting modulators. They tested the CMI (conditional
mutual information) between the expression levels of TF
and T, and its dependency on the modulators. Building
upon the same principle, Babur et al., [9] presented a
probabilistic method for detecting modulators of TF
using a priori knowledge and gene expression profiles.
Wu et al., [26] proposed an approach to infer ER/modu-
lator/target relationship, where gene expression data and
Chip-seq data were used to construct a genomic/non-
genomic regulatory networks. All these three studies
focus on how the expression levels of modulator pro-
teins affect transcriptional regulation. However, different
isoforms of a protein may have different functions. In
our study, we systematically investigated the role of al-
ternative splicing in modulating transcriptional regula-
tion and for the first time reported that exon inclusion
levels of regulatory proteins can act as modulators and
affect the activities of many transcription factors. Such
analysis will provide important insights into how dysreg-
ulation of RNA splicing can lead to various diseases.

Conclusions
Our study suggested a novel mechanism of alternative
splicing acting as modulators to modulate transcriptional
regulation. Using clear cell renal carcinoma as an example,
we comprehensive analyzed GR whose interaction with
targets could be altered due to differential splicing status
of the modulator protein MDM2 and TP53. Based on the
results, we demonstrated that this modulation existed
generally within the cell, which might be also observed in
other cancer types and normal cells. Our finding added
another level of transcriptional regulation and raised the
potential of alternative splicing as a therapeutic target.

Methods
Expression datasets obtain
Paired-end RNA-seq of KIRC including 480 patients was
download form TCGA. Using the software mixture-of-
isoforms (MISO) to calculate the exon inclusion level (PSI,
Percent of Spliced In) of skipped exons, it was obtained from
unpublished data of XiRao previously analysis in our lab.
Transcription factors were obtained from UCSC fac-

torbook (http://factorbook.org) [27] and used Chip data
from ENCODE project (http://www.genome.gov/En-
code/) to predict target genes. We defined the promoter
region is upstream/down 1000 bp of a gene. By search-
ing the binding site of a gene promoter region, we ob-
tained the candidate target genes. Filtering those TFs
and target genes without expression data in kidney can-
cer. 165 alternative splicing events as candidate modula-
tors which highly correlation with kidney cancer survival
were obtained from XiRao unpublished data.

Regulation function and preprocessing data
In order to accurate assess the correlation among each
triplet, we filtered out those outlier samples beyond the
border of mean ± 3std of each gene (target and tran-
scription factors) expression level. Reset psi value range
from [0.01 ~ 0.99] as following:

Xm ¼
0:01; Xm ¼ 0

Xm; Xm∈ 0; 1ð Þ
0:99; Xm ¼ 1

8
<

:

Meanwhile, we made a log2(Xtf + 1), log2(Xtarget +
1) transformation to the expression level of TF, target,

and transform psi value into log2
Xm

1−Xm

� �
þ 1

h i
,

respectively.
After transforming our expression data and splicing

data, our model becomes:

Y target
′ ¼ β0 þ β1 Xtf

′ þ β2 Xm
′ þ β3 X

′
tf Xm

′ þ �′

where,
Xtf′ and Ytarget′ are transformed expression levels of

transcription factor and target,
Xm′ is transformed psi value of candidate splicing

modulator,
ϵ′ is the error.
Given a set of expression profiles and the psi values of

modulate splicing events, we estimate β3 coefficient by
calculating the proportion of target conditional on TF and
modulator. We then select triplets with a high β3 coeffi-
cient that satisfy a false discovery rate threshold after mul-
tiple hypothesis testing condition. In this model, we
assume that the more significantly the β3 coefficient the
more interactions will be affected between TF and targets.

Database and related software
Statistical analysis and processing of the data were per-
formed using R version 3.0.1 (www.r-project.org). RNA-
seq expression data was download from TCGA, and al-
ternative splicing values were calculated by MISO (Mix-
ture of Isoforms) software. DAVID [28, 29] and IPA
(Ingenuity pathway analysis) were used to make gene
function and pathway analysis. Protein-protein interac-
tions was predicted by STRING database (http://string-
db.org) [22]. Transcription factor Chip-seq data was
download from ENCODE (the encyclopedia of DNA Ele-
ments, http://encodeproject.org) [13].

Additional file

Additional file 1: Table S1. 165 Alternative Splicing Events whose PSI
values show high level of correlation with kidney cancer survival
outcome. (XLS 77 kb)
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