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Abstract

Background: Parameter estimation in systems biology is typically done by enforcing experimental observations
through an objective function as the parameter space of a model is explored by numerical simulations. Past studies
have shown that one usually finds a set of “feasible” parameter vectors that fit the available experimental data equally
well, and that these alternative vectors can make different predictions under novel experimental conditions. In this
study, we characterize the feasible region of a complex model of the budding yeast cell cycle under a large set of
discrete experimental constraints in order to test whether the statistical features of relative protein abundance
predictions are influenced by the topology of the cell cycle regulatory network.

Results: Using differential evolution, we generate an ensemble of feasible parameter vectors that reproduce the
phenotypes (viable or inviable) of wild-type yeast cells and 110 mutant strains. We use this ensemble to predict the
phenotypes of 129 mutant strains for which experimental data is not available. We identify 86 novel mutants that are
predicted to be viable and then rank the cell cycle proteins in terms of their contributions to cumulative variability of
relative protein abundance predictions. Proteins involved in “regulation of cell size” and “regulation of G1/S transition”
contribute most to predictive variability, whereas proteins involved in “positive regulation of transcription involved in

exit from mitosis,”

mitotic spindle assembly checkpoint” and “negative regulation of cyclin-dependent protein kinase

by cyclin degradation” contribute the least. These results suggest that the statistics of these predictions may be
generating patterns specific to individual network modules (START, S/G2/M, and EXIT). To test this hypothesis, we
develop random forest models for predicting the network modules of cell cycle regulators using relative abundance
statistics as model inputs. Predictive performance is assessed by the areas under receiver operating characteristics
curves (AUC). Our models generate an AUC range of 0.83-0.87 as opposed to randomized models with AUC values

around 0.50.

Conclusions: By using differential evolution and random forest modeling, we show that the model prediction
statistics generate distinct network module-specific patterns within the cell cycle network.
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Background

In systems biology research, mathematical models of suf-
ficient predictive power allow researchers to interrogate
biological systems under a wide variety of experimental
conditions that may be difficult to achieve in the labora-
tory. Such in-silico experiments may lead to discoveries
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that affect life in important ways, for example, in under-
standing the molecular basis of certain diseases and in
designing drugs for their treatment [1, 2]. What makes a
model reliably predictive? Before using a model for pre-
dictive purposes, it is essential to show that the model is
capable of reproducing major known experimental trends.
In other words, incorporation of experimental data into
a model by parameter optimization is a critical first step.
Due to limitations in direct experimental measurements
of kinetic parameters, a common approach is to estimate
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all unknown model parameters by minimizing the
difference between model simulations and experimental
data [3]. This approach often generates a set of parame-
ter vectors with equivalent (or comparable) performance.
Such parametric uncertainty can be used to advantage
by extracting information about critical and dispens-
able parts of a model using global sensitivity analysis or
identifying the most informative future experiments.
This information can be used to constrain the model’s
parameters [4] or to refine the model’s structure [5].

Creating an ensemble of parameter vectors with similar
(or identical) performance (with respect to a known set of
experimental observations) is especially useful when one
would like to predict the potential outcome(s) of novel
experimental designs. We refer the reader to [6] for a
comprehensive survey of experimental design studies
(with an emphasis on objective function formulations)
from several fields including systems biology. More recent
work in the area of experimental design within systems
biology includes a study that compares the performances
of several alternative methods with and without a pre-
determined network topology [7] and a novel framework
for model selection implemented for both stochastic and
deterministic models [8].

In the literature, “ensemble modeling” is a common
term used to describe studies of multiple models [5, 9, 10]
or a single model with multiple parameter vectors [11].
Here, we focus on the latter case with a complex model
of the budding yeast cell cycle (more than 100 model
parameters). Of special interest to us is parameter space
exploration with a discontinuous objective function that
is the sum of many discrete constraints. Recent work
in ensemble modeling includes using simulated anneal-
ing with a multi objective function to extract robust and
fragile model features [12], implementation of Metropolis
Monte Carlo and multi ellipsoidal sampling [11], explo-
ration of parameter space by adaptive sparse grids with
control objectives [13], and identifying model fragilities
with random walks [14]. More recently, ensembles of
parameter vectors were generated to understand param-
eter adaptations underlying phenotypic transitions [15]
with an application in pharmacological intervention [16].
In [17], Rumschinski introduced a set-based framework
for detecting incorrect model hypotheses and refining
parameter estimates with the help of infeasibility certifi-
cates and a bisection algorithm that identifies parts of
parameter spaces consistent with incomplete and noisy
experimental data. This approach was illustrated using
two simple models with four species and 3-5 parameters.
More recently, Rodriguez-Fernandez et al. implemented
a mixed-integer nonlinear programming (MINLP) for-
mulation to simultaneously perform model selection and
parameter estimation using in silico generated data of
homeostasis in E. coli [18]. For this biological system,
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the authors identified the best model among 1700 nested
models in a computationally efficient manner rather than
fully analysing each candidate model separately. Starting
with 21 model parameters, the resulting solution showed
that parameters were precisely estimated, while identifia-
bility issues and scalability to models of larger complexity
were mentioned as limitations of this model identification
approach [18].

A common element in these ensemble modeling studies
is the use of time-series data for optimizing parame-
ters and for exploring the parameter space for alternative
“feasible” vectors that provide acceptable fits to the data.
Here, we use an ensemble modeling methodology for
complex models when the constraining data are not
quantitative time-series of model variables (which are
often unavailable in experimental studies of cell phys-
iology) but discrete qualitative observations (in our
case, the observed phenotypes of many different yeast
strains carrying mutations of cell cycle genes). In addi-
tion, the model we consider is much more complex,
with many more adjustable parameters and much more
experimental data, than the models studied in the work
cited above.

Ensemble modeling with qualitative constraints has
recently been explored by Pargett et al. [19], who
combined “optimal scaling” and gradient-based multi-
objective optimization for incorporating a heterogeneous
set of experimental constraints into ODE models of stem
cell regulation in Drosophila. Starting from a core model
with 10 states and 18 unknown parameters, the authors
generated several additional models by considering alter-
native connections between components of the regula-
tory network. Following the parameter optimization step,
experimental design was implemented (based on rank-
ing the predictive variances of measurements) in order to
decrease the uncertainty of model parameter values and
model structure. Each candidate model was represented
by ensembles of optimal parameter vectors and Pareto
optimality was used for comparing model performance
and for identifying informative experiments.

In [20], temporal logics (typically used with discrete
models) was implemented to express the dynamical fea-
tures of a continuous (ODE-based) model of an enzymatic
reaction network involved in cancer. Furthermore, global
robustness and sensitivity analysis was used for iden-
tifying the boundaries between distinct regions of the
model’s parameter space (producing different states such
as stable steady states and oscillations) and for gener-
ating several novel biological insights regarding system’s
dynamics [20].

For a recent review on the use of qualitative data for
estimating the parameters of continuous models, we refer
the reader to [21]. This review covers the application of
alternative data normalization techniques depending on
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the nature of the experimental data at hand (qualitative vs.
quantitative), formulation of multi-objective optimization
using heterogeneous experimental data sets, and Pareto
optimality based analysis of tradeoffs between such mul-
tiple objectives.

The proposed approach in this paper extends our recent
work on parameter optimization of a complex model of
the budding yeast cell cycle [22]. Starting from an ensem-
ble of optimally performing parameter vectors, we pro-
pose several ways to explore the parameter space for more
such vectors. In this search, our aim is to find param-
eter vectors with diverse predictions (i.e., an extended
range of predictions for the phenotypes of novel genetic
strains). We demonstrate that differential evolution (DE)
[23], which is a metaheuristic method, can effectively
find feasible parameter vectors with extended predictive
ranges provided an additional feasibility criterion (in addi-
tion to the criterion of optimal model performance) is
enforced so that the search does not get stuck in a small
region of parameter space. We show how DE can be forced
to widen the range of predictions during the search for
optimal parameter vectors.

The application of DE in similar contexts include [24]
in which DE is hybridized with Kalman Filter for improv-
ing the parameter estimation accuracy compared to pure
DE and genetic algorithm (GA) based approaches. In
[24], simple models of glycolysis and the cell cycle, with
artificially generated noisy time series data, are used to
demonstrate the improved performance of the hybrid
approach. More recently, the 18 parameters of an ODE-
based dynamic model of endocytosis are optimized with
several metaheuristic methods including DE under dif-
ferent observability settings (complete vs. incomplete
observability of system variables), multiple levels of mea-
surement noise, and with real and artificially generated
time series data [25]. In this study, DE turned out to be
the best performer in terms of estimation accuracy and
convergence speed while practical parameter identifiabil-
ity problems suggested the need for additional experi-
mental data to further constrain the model’s parameters.
Recent studies on the use of metaheuristic methods in a
wide range of science and enginnering applications are
surveyed in [26] with more than 200 references (includ-
ing the applications of several DE variants). An earlier
review paper focuses on the application of metaheuris-
tic methods to systems biology problems [27] including
experimental design [28—30] and parameter identifiability
[31-33].

Our modified-DE approach generates an ensemble of
feasible parameter vectors (i.e., vectors that satisfy a max-
imum number of discrete experimental constraints) with
a broad “range of predictions” (i.e., vectors that extend
the number of different phenotypic patterns predicted for
a predefined set of mutant yeast strains). We then use
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this ensemble to test whether relative protein abundance
predictions are influenced by the topology of the cell cycle
regulatory network by ranking cell cycle regulators in our
model with respect to their cumulative variability scores.
The results suggest that the statistics of these predictions
may be generating patterns specific to individual network
modules. To test this hypothesis, we develop random for-
est models for predicting the network modules of cell
cycle regulators using relative protein abundance statistics
as model inputs. Our overall approach that ties the statis-
tical features of model predictions to the modules of the
cell cycle network, starting from optimizing the settings
of DE for exploring the feasible region of the model in the
parameter space is summarized in Fig. 1.

Methods

Problem formulation

The cell cycle is the ordered sequence of events that
govern cell growth, replication of the cell’s genome, and
division into two daughter cells that are capable of repeat-
ing this cycle in successive generations [34, 35]. The four
phases of the cell cycle are DNA synthesis (S phase) and
mitosis (M phase) separated by two gaps (G1 and G2). G1,
S, G2 and M phases progress sequentially in a repeated
manner, which is crucial to maintaining a constant num-
ber of chromosomes per cell after each cycle of DNA
replication and cell division. Furthermore, the duration
of a single cell cycle (i.e., from birth to division) has to
be balanced (on average) with the time needed for dou-
bling the amounts of all other cellular components. If this
condition is not met (i.e., the mass doubling time is sub-
stantially different from the cell cycle time), then average
cell size becomes progressively smaller or larger lead-
ing to cell death. In addition, a number of “checkpoints”
prevent G1-S-G2-M progression in cases such as DNA
damage or improper alignment of replicated chromo-
somes on the mitotic spindle. All of these features of cell
cycle progression are controlled by the periodic activation
of cyclin-dependent kinases (CDKs) [34]. Since the fun-
damental molecular mechanisms governing the activation
of CDKs are similar among all eukaryotes, an improved
understanding of cell cycle controls has potential bene-
fits far beyond the intrinsic challenge of unraveling this
complex molecular control system.

To this end, we have proposed a variety of determin-
istic, stochastic and hybrid models of the CDK control
mechanism in budding yeast cells and other eukaryotes
[36—41]. Using the model in [40, 41], comprised of 26
ODEs and 126 kinetic parameters, we previously pro-
posed a method for optimizing the parameter values
under 119 qualitative experimental constraints [22]. (The
parameters and variables of this model are listed in Addi-
tional file 1: Tables S1 and S2, respectively.) This model
includes three classes of variables (or regulatory proteins).
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Training Set:
Phenotypes of wild-type
yeast cells and 110 mutant strains
based on experimental data

Explore the model's feasible region
and identify phenotypic predictions

Prediction Set:
Phenotypes of
129 novel mutants

A complex model of
the budding yeast
cell cycle

/

T~

Optimize the selection of
the initial population

Optimize the feasibility criteria
to widen the range

Extract the statistical features of
relative protein abundance

of parameter vectors of model predictions predictions

|

Build machine learning models that predict the network
modules of cell cycle regulators using relative
protein abundance statistics

Fig. 1 Schematic of the implemented modeling strategy for predicting the network modules of cell cycle regulators using relative protein

abundance statistics

Class-1 variables are modeled by mass action kinetics
of transcription factor activity and proteolytic degrada-
tion, whereas Class-2 variables (fractions of proteins in
their active forms) are modeled by sigmoidal functions
representing the phosphorylation and dephosphorylation
reactions. On the other hand, Class-3 variables (or pro-
tein complexes) are modeled by maximum or minimum
functions based on the quasi steady state assumption due
to the fast time scales associated with these complex for-
mation processes. The regulatory network represented by
this model is composed of three distinct modules of pro-
teins (START, S/G2/M, and EXIT) as shown in Fig. 2.
The cell cycle events that take place in each module are
summarized below.

o START module: START (or G1/S transition) is an
event in G1 phase when a new round of DNA
synthesis and mitosis are committed by a cell. The
most critical step of the START transition is the
translocation of Whib, a stoichiometric inhibitor of
SBF and MBF (transcription factors of Cln2 and CIb5
synthesis modeled as a single variable named SBF),
from nucleus to cytoplasm. In early G1, SBF is not
active since it is inhibited by Whi5. As the cells grow,
Cln3 and Bck2 concentrations rise enough to
phosphorylate Whi5 (inhibitor of SBF), and as a
result SBF becomes active, promoting Cln2 and Cln5

synthesis. Increasing concentrations of Cln2, Cln3,
and CIb5 support progression of bud emergence.
S/G2/M module: Increasing Cln2 concentration
following the START transition leads to
phosphorylation and degradation of CKI. As a result
of this, Clb5 is released. The active form of Clb5
promotes DNA synthesis, further inhibiting CKI
through phosphorylation. Cln2 and CIb5 inhibit
Cdh1 (responsible from Clb2 degradation) and Clb2
concentration increases resulting in the activation of
Mcml1 (transcription factor of Clb2), and further
Clb2 accumulation. By phosphorylating and
inactivating SBF, Clb2 also halts the synthesis of Cln2
and Clb5 and the cells get ready for mitotic exit.
Activation of APC by Clb2 and the cooperation of
APC with Cdc20 are some of the key steps required
for metaphase-anaphase transition and mitotic cyclin
degradation. For Clb2 and Clb5 to be degraded, APC
has to be phosphorylated and spindle assembly
checkpoint needs to be released. Both of these
processes are driven by Clb2.

EXIT module: Activation of Cdc14 is the most
critical event in the EXIT module since it is essential
for exit from mitosis and return to G1 state. Cdc14
dephosphorylates several proteins previously
phosphorylated by CDKs in S/G2/M, thereby leading
to the activation of Cdhl and CKI, as well as the
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Fig. 2 Wiring diagram of the budding yeast cell cycle network (from [40]). The network consists of three modules, namely START (in a), S/G2/M (in b)
and EXIT (in €). Red and blue icons represent components that are in their active forms and orange icons represent components that are inactive.
Solid lines represent chemical reactions (synthesis and degradation, phosphorylation and dephosphorylation, association and dissociation), whereas
dashed lines represent activating or inhibitory influences of components on the chemical reactions. For simplicity, some interactions are not shown

in the figures

repression of Clb2 and CIb5. Two pathways, namely
FEAR (Cdc fourteen early anaphase release) and
MEN (mitotic exit network), are involved in the
activation of Cdc14. The release of Espl from Pdsl
(through Cdc20 activity) in the FEAR pathway leads
to chromatid separation and phosphorylation of
Netl. As a result, Cdcl4 is released from Net1:Cdc14
complex and free Cdc14 drives exit from mitosis. In
order for budding yeast cells to return to G1 state by
the robust phosphorylation of Net1, the FEAR
pathway is supported by the MEN pathway through
the activation of Cdc15 and Tem1 that form a
complex (MEN). This results in the full release of
Cdcl14, activation of Cdhl, complete degradation of
Clb2, as well as the stabilization of CKI and a fully
restored G1 phase.

In [22], starting from an initial parameter vector that
captured 72 of the 119 experimental phenotypes in the
Training Set, we improved the number of captured phe-
notypes to 111. In the process, the optimization algo-
rithm produced more than 3000 parameter vectors that
captured the same 111 phenotypes of the Training Set.
We call this collection an ensemble of “feasible” param-
eter vectors. (The ranges of model parameter values in
this ensemble are given in Additional file 1: Tables S3
and S4.) In this paper, our goal is to extend the ensem-
ble of feasible parameter vectors identified by [22] to
maximize the range of model predictions for a spe-
cific group of novel mutant strains (the Prediction Set).
These mutants were not included in the Training Set
because their phenotypes have not yet been characterized
experimentally.
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Mutant strains in the Prediction Set originate from the
elimination of certain phosphorylation and dephosphory-
lation reactions that were predicted to be critical [22] only
in certain gene deletion backgrounds (not in wild type
background) as shown in Table 1. We first set these rates
to zero one-by-one to create nine single-mutant strains.
The background is wild type (WT) for these strains.
In the second step, we create double-mutant strains by
setting these nine rates to zero in pairs, which results in 36
additional strains. Finally, we generate triple mutants by
following the same strategy (84 more strains) resulting in a
total of 129 novel strains in the Prediction Set (Additional
file 1: Table S5). The initial conditions (species concentra-
tions) for simulating these strains come from the cell state
right after the last division in the WT simulations. For all
simulations (listed in Additional file 1: Tables S5 and S6),
Euler’s method with 0.05 min step size is used to inte-
grate the model equations. The total simulation time per
mutant (or WT) is 2000 min.

The range of model predictions

With m as the total number of feasible parameter vectors
and 7 as the vector dimension (total number of parame-
ters in the model), a collection of parameter vectors that
capture the 111 phenotypes (Additional file 1: Table S7)
out of the 119 total phenotypes in the Training Set defines
an m x n feasible ensemble matrix.

x§1) xgl) . x;l)
x§2) x§2) o xﬁ[Z)

X= . 1)
xgm) xém) . xilm)
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Here, x]@ is the value of the jth parameter in the ith
parameter vector of X, which also generates an m x [
prediction matrix.

1 1 1
PIORSOIRY

(12) (22) {2)
p p .. p
p=| 0 @
p(lm) p(2m) . p;m)

where p;i) € {0, 1,2} characterizes the phenotype for the
jth novel genetic strain for the ith parameter vector and / is
the total number of novel strains. Phenotype values are set
according to the following rules. If, during the simulation
of a novel strain, cell size exceeds 25 (arbitrary units) at
any time, then the strain’s phenotype is inviable (p;i) =2).
On the other hand, if cell size at last division is within
5% of the cell sizes at the two previous divisions, then the
phenotype is viable (p;l) = 1). Finally, if the model gener-
ates cycles of multiple periodicity and cell size at division
oscillates between values that differ by more than 5%,
then the phenotype is “multiply periodic” (p;l) = 0). The
number S(P) of unique rows in P is defined as the range
of the prediction vectors in P. As we explore different
schemes for computing prediction matrices, we compute
S values for the ensembles created by these schemes. For
each ensemble generation scheme, the sampling efficiency
(es) is computed as S/nss, where ngy; is the total number
of samples taken from the parameter space. This mea-
sure allows us to compare different ensemble generation
schemes based on the ranges of phenotypic predictions
they produce.

Table 1 Phosphorylation and dephosphorylation reactions that induce synthetic lethality upon their elimination

Eliminated reaction
(rate constant)

Single mutation strains that are viable before and
inviable after setting the rate constant to zero

Whi5 phosphorylation by Bck2 (kpjsk2)

CKI phosphorylation by CIn2 (eki )

CKI phosphorylation by Clb2 (eki2)

CKI dephosphorylation by Cdc14 (kdpxi,14)
Whi5 phosphorylation by CIn3 (kpisn3)

SBF phosphorylation by CIb2 (kpps>)

Whi5 phosphorylation by CIn2 (kpjsn2)
Whi5 dephosphorylation by Cdc14 (kdpjs14)
Net1 dephosphorylation by PPX (kdpnet,px)

cin3A, Multicopy BCK2, cdh1A, sic1A, swi5A,
CLB5-dbA, netl-ts, GAL-CLB2, APC-A

bck2A, GAL-SICT, neti-ts, APC-A

GAL-CLN3, cdh1A, GAL-CLB5, CLB1 clb2 A
bck2A, cdh1A, GAL-CLB2, APC-A

bck2A, cdh1 A, APC-A

cdh1A, CLB5-dbA, APC-A

bck2 A, APC-A

APC-A

Multicopy CDC15

Upon setting a phosphorylation or dephosphorylation rate constant to zero as specified in the left column, viability is lost in several single mutation strains (specified in the
right column). These rate constants are eliminated to create the single, double, and triple mutants (a total of 129 novel mutant strains in the Prediction Set). The phenotypes
and the relative abundances of species in these mutant simulations are the predictions of the model



Oguz et al. BMC Systems Biology (2017) 11:30

Based on our previous study [22], which demonstrated
that DE is an effective tool for exploring the parame-
ter space of our high dimensional model given a discrete
multi objective function (i.e, the number of phenotypes
in the Training Set captured by the model), we con-
tinue using DE, this time for identifying the range of
model predictions. While searching for an implementa-
tion of DE to meet this objective with efficient sampling,
we encounter technical limitations with the standard
implementation of DE that is typically used for parame-
ter optimization, and we surmount these limitations by
(i) improving the selection of the ensemble that serves
as the starting point of DE, and (ii) adding new con-
straints to DE that force the method to search for fea-
sible parameter vectors expanding the range of model
predictions.

Differential Evolution

Let EP denote real D-dimensional Euclidean space, and let
x = (x1, ..., xp) € EP be a vector of parameter values.
The vector x includes both the 126 kinetic constants in the
model and the 26 ODE initial conditions (D = 152). For
each vector x € EP proposed by the optimization algo-
rithm, we calculate the phenotype p}l) € {0,1,2} (for the
jth strain for the ith parameter vector) for each of the 119
yeast strains in the Training Set. The objective function
O(x) is an integer-valued function that counts the num-
ber of phenotypes in the Training Set that are correctly
captured by the model, given the parameter values in the
vector x.

In DE, parameter vectors are propagated from gener-
ation to generation by processes of mutation, crossover,
and selection. Each generation (indexed by ¢ = 0,1,...)
consists of N parameter vectors x“?. Hence, the real
number x;t’i) is the value of the jth parameter in the ith

parent in the tth generation. Let u'*” be the trial parame-

ter vector born from the ith parent in the tth generation,

whose components are constructed in two steps called

“mutation” and “crossover”. Then, given the parent param-

eter vector ) and trial parameter vector #*?, a decision

is made as to which one is propagated to generation ¢ + 1.
The steps of DE are described below.

1. Mutation. First, for each i, 1 < i < N, we create a
“mutant” vector

G () Ry S [ ) R () - <x(""/) _ x(t,i/,))
(3)

by perturbing a parental parameter vector x4,
where the perturbation vector d#? is the difference
between the parameter vectors of two distinct
additional parents i and i’ chosen at random from
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the tth generation of parents, and 0 < F < 1
(F = 0.1 in this study).

. Crossover. Foreachi (1 <i<N)andj (1 <j<D),

and uniform [0, 1] random variables U/;;, define the
offspring by
(t,i) V;M) ,0=<U;;<C,
u, = (4,0) .
% otherwise.

(4)

We choose the “crossover probability” C = 0.5 so
that neither parental values nor mutant values are
given an advantage during the crossover step.

. Selection. The next generation parent x**19 is

either the parent x4? or the trial vector u®?. As DE
explores the parameter space under different settings
in this study, depending on the settings of the
particular DE run, we impose three distinct feasibility
criteria for selection, which are described below.

e Feasibility Criterion 1 (FCy): Trial vector u(%9
satisfies FC; if the model it defines captures the
111 phenotypes listed in Additional file 1: Table
S7 out of the 119 phenotypes in the Training
Set. FCj is always enforced by DE for creating
Ensembles 1 through 16 in Table 2. For each
ensemble generation scheme, the efficiency of
sampling in terms of identifying parameter
vectors that satisfy FC; (efc,) is computed as
NEC, /Mot Where npc, is the number of
parameter vectors that satisfy FC; and nyy; is the
total number of samples taken from the
parameter space.

® Feasibility Criterion 2 (FCy): FC, requires that
trial vector 4 can only replace parent vector
x®D if 415D Jeads to an expansion in the feasible
region’s estimated volume. For this, we compute
the estimated volumes of two Ensembles X7 and
X5. The first ensemble X consists of all the
parent vectors of the current tth generation of
DE (all satisfying FC7) including x®?. This
ensemble excludes ) since it is not a parent
vector. The second ensemble X5 includes 1%
in addition to all the parent vectors excluding
2D FCy dictates that the trial vector u®? can
only replace x®? if the estimated volume of the
second ensemble is greater than the estimated
volume of the first one (V(X3) > V(X71)). (We
describe our approach for estimating the volume
spanned by an ensemble of parameter vectors in
Section 1 of the Additional file 2: Supplementary
Text.) With ensemble creation Schemes 4 to 7
in Table 2, DE enforces FC, together with FC;
so that a trial vector replaces the corresponding
parent if and only if the trial vector that
reproduces the 111 target phenotypes of the



Page 8 of 24

Oguz et al. BMC Systems Biology (2017) 11:30

(91 YBnoIY3 | S3|qUIaSUT) 6 PUB 8 '/ ‘9 'S S3|1} [RUOILIPPY PUB ‘(3POD UOHRINWIS) + 3|1 [2UOIIPPY Buisn paonpoidal 3¢ ued sa|quiasus |je 1oy sabues uondipaid ay] 'suondipald didAlouayd jo abuel suoneindod (eiiul

341} 9dUBYUS 0} PasN S| UOND3|3s paselg PUWs ‘sia1aweled d1IauU €71 JO saxe ay 01 10adsal yum uoieindod [eniul ay3 Ag pauueds sunjoA pa1ewsa ayi puedxa 01 pasn sl UoN1D3|3s paseld :(£71)*°WA “(€ 2|qe]) sia1aweled (eI 1sou
U3} a1 Jo saxe a1 03 10adsas Yum uonejndod [eniul ayi Ag pauueds auNnjoA palewss syl puedxa 01 pasn S| Uonda|as paselg :(01) ¥/ (d X1rew uondipaid syl Jo smod anbiun) a|quiasua Jad paielausb si01d9A uondipaid oidAousyd
2y1 Jo 9buel By S '8S 3|qe] 1| 3|l [eUOnIPPY Ul sadAlousyd ay1 BuIssiu 3)Iym ‘/S 3|qe] 1| 3|l [eUORIPPY Ul paisl) sadAiouayd ayi 21n1ded S3|qUISSUD |[e Ul SI01D9A J91aURIRd *| 2|qWIasSUT WO} 2. SHT Joj pasn sabuel Ja1aweled

L/9 4 00zt €4 pue 1O4 (ET1)*PWA R *PUg 05051 8 9l
€6¢ 4 00zt €34 pue 414 (€T1)*PWA R g 02561 L Sl
19€¢ ! 0091 €4 pue 154 (€T1)*PWA R *PUg 0SSP 8 vl
cLe L 0091 €4 pue 154 (€z1)™PHp R XPUs 08Y 8 €l
g€l L 0091 €54 pue ey o4 (€z1)™Pip R XPUs 18YE L 4
4N L 0091 €4 pue 'y 14 (€zL)™PHp R XPUs v0L€E L LL
56 l 0091 O pue 14 (€TL)Pup R s o8l 9 ol
an l 0091 4 pue 14 (€T1)ewp R Xl L0ee 9 6
08 ﬁ 0091 ¢4 pue 154 (€71)**¥A €s/€ S 8
76 ! 0091 4 pue 154 (€T1)**¥A Sove S L
69 ! 0091 4 pue 154 OL**A 9zelL 4 9
9 L 0091 4 pue 154 OL*¥A 7651 4 S
% ﬁ 00 1D4 (01)*A €681 € 4

SI01D9A J1aWeled
9 l 00 154 Ppa123]95 Ajwiopuey 34V 14 €

sojdwies SH
000'0G Woly 154 Ajsires
Ks - pa1oeIIXS 9|qUIasUT SI01D9A J9)aUdeIRd - [S74 | 4
[¢7] uoneziwndo ut 104 Aysines

0§ - palelauab ajquiasul SI01D9A J219WRIRY - olE |

| 9|quJasu]

(suonoipaid 3qjo dais woyj uonendod
40 abuey) sunijg unJ3q Jad uol129]9s Ul pasn Elel 1oyl 9IS # #
S # suonesauab # 2D AjIgISes JO UOID3|9S d|quuasu] awayds 9|quuasug

SOWIBYDS JUISHIP YIM P1eIauab SI01D3A 3|qIseay JO S9|quiasu] g ajqel



Oguz et al. BMC Systems Biology (2017) 11:30

Training Set, and leads to an expansion in the
feasible region’s estimated volume.

e Feasibility Criterion 3 (FC3): FC3 requires that
trial vector (4 can only replace parent vector
x @D if &) yields a prediction vector for the 129
mutant strains of the Prediction Set that has not
been derived from any parent vector up through
the tth generation of DE. In other words, if a
trial vector u¥? satisfies FC, u®? replaces its
parent x“? if and only if the prediction vector p
generated by %) is not among the rows of the
prediction matrix generated by all the parent
vectors up through the point of generation of
u®? . For creating Ensembles 11, 12, and 15 in
Table 2, DE enforced all three criteria so that a
trial vector replaces the corresponding parent if
and only if the trial vector defines a model that
captures the 111 target phenotypes of the
Training Set, leads to an expansion in the
feasible region’s estimated volume, and
produces a new phenotypic prediction vector
for the 129 novel mutants in the Prediction Set.
Ensembles 13, 14, and 16 are created by
enforcing only first and the third criteria.

Results and discussion

Exploring the parameter space with Latin hypercube
sampling

Our starting ensemble in this study is derived from the
3415 feasible parameter vectors identified in [22]. The
size of this ensemble is reduced by 8% since only 3146
of these vectors are FCj-feasible when truncated to 32-
bit IEEE single precision. (We are eliminating parameter
vectors that are very sensitive with respect to FC;.) We
call this collection of vectors “Ensemble 1”. (Throughout
this paper, parameter vectors are considered feasible only
if their truncated 32-bit values are also feasible.) Applying
Ensemble 1 to the Prediction Set, we generate 30 unique
prediction vectors.

We explore this initial feasible region by Latin hyper-
cube sampling (LHS). The bounds of the hypercube are
formed by the minimum and maximum values of each
parameter from Ensemble 1. 50,000 samples are gener-
ated as described in Section 2 of the Additional file 2:
Supplementary Text. Out of these sample vectors, only
243 (0.5% of the total) are FCj-feasible. These feasi-
ble vectors form Ensemble 2, which produces 51 unique
prediction vectors; a 70% improvement (51/30) in the
total range of predictions (previously defined as the
number of unique prediction vectors).

Exploring the parameter space with DE
The results of LHS point out the possibility of finding
feasible parameter vectors with a wider range of model
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predictions compared to those of Ensemble 1. We next
investigate the possibility of using DE to identify alterna-
tive feasible ensembles with wider prediction ranges.

First, we created an initial random selection of 19
parameter vectors from Ensemble 1. (The population size
of 19 is dictated by computational limitations imposed by
the complexity of the model and the size of the Train-
ing Set [22]). Starting from this initial population of
parameter vectors, DE explores the parameter space with
mutation, crossover, and selection operations (described
in Methods). (Rather than maximizing the total number
of captured phenotypes by the model as we did previously
[22], we only look for parameter vectors that capture the
the 111 phenotypes listed in Additional file 1: Table S7
while missing the remaining eight phenotypes (Additional
file 1: Table S8). Such vectors are feasible according to
FC; as described earlier). In 400 generations, DE gener-
ates 7143 vectors (Ensemble 3 in Table 2) whose truncated
32-bit values satisfy FCj. Despite its large size, Ensem-
ble 3 yields only six unique prediction vectors for the 129
strains in the Prediction Set.

Why did DE perform so poorly compared to LHS even
though, in our previous study, it was superior to random
sampling in optimizing model performance (capturing
phenotypes in the Training Set)? The answer comes from
a comparison of the volumes the parameter space that are
spanned by Ensembles 2 and 3. Ensemble 3 has an esti-
mated volume that is 83 orders of magnitude smaller than
that of Ensemble 2. In other words, DE zooms into a much
smaller region of parameter space than LHS.

Following this observation, we conjectured that select-
ing the volume covered by the initial population of DE in a
systematic way, rather than a random way, might improve
the performance of the search. Therefore, we next choose
an initial DE population such that the estimated volume
spanned by the population vectors is maximized with
respect to the axes of the ten most critical model param-
eters listed in Table 3. The details of the procedure for
picking such a population are described in the Additional
file 2: Supplementary Text (Section 3). A DE run for
400 generations, starting with this new initial population,
finds 1893 feasible vectors (Ensemble 4), which account
for 41 unique prediction vectors. This six-fold improve-
ment compared to Ensemble 3 (6 vs. 41) shows that the
outcome is highly dependent on the selection of the initial
population, and supports the proposed scheme for maxi-
mizing the volume of the initial population of parameter
vectors. We also note that Ensemble 4, although four-fold
smaller than Ensemble 3 in terms of the total number of
feasible parameter vectors, generates a much wider range
of predictions.

Nonetheless, the range of the predictions generated by
Ensemble 4 is less than the range generated by Ensem-
ble 2 (LHS). Why is this the case? The answer lies in
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Table 3 The ten most critical model parameters

Parameter name

Total amount of Cdc14

SPN synthesis rate

Total amount of Esp1

Total amount of Net1

Degradation rate of Cdc20

PPX inactivation by Esp1

Efficiency of Cdc14-Net1 complex (RENT) formation
Time scale for protein activation

Net1 phosphorylation by Clb2

Total amount of Mcm1

Based on the sensitivity analysis in [22], the listed model parameters had the largest
effects on the objective function (number of phenotypes captured by the model)
upon perturbations. Criticality decreases from top to bottom

the evolution of the volume spanned by the trial vectors
generated during DE. Figure 3 (black line for Ensemble
4) shows that as DE progresses, the estimated volume
spanned by the most recent feasible vectors, which serve
as the parent vectors producing trial vectors in DE, con-
tinually shrinks as the generations pass. Details of the
computation of this dynamic estimated volume are in
Section 4 of the Additional file 2: Supplementary Text.
One way to prevent this shrinkage is to increase the value
of F in Eq. 3. However, increasing the value of F from 0.1
to 1 leads to a 37—64 fold drop in the sampling efficiency
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erc, with Schemes 2 and 3 (both schemes described
in Table 2).

Therefore, to prevent this drop in dynamic volume,
we introduce a new constraint (FCy) as described in the
Methods section. To enforce FCy, the estimated volumes
of two distinct ensembles are computed every time a new
trial vector that satisfies FC; is found. The first ensem-
ble includes all parameter vectors satisfying FC; until that
point of DE, except the newest trial vector generated.
Hence, this ensemble includes the trial vector’s competi-
tor: the parent vector. The second ensemble is generated
by including the trial vector instead of the parent vector,
with the remaining members being identical to those of
the first ensemble. If the estimated volume of the second
ensemble is greater than that of the first one, the trial vec-
tor replaces the parent vector in the next generation of DE
in the search for feasible vectors. Otherwise, the parent
vector is not replaced, but the trial vector is recorded since
it satisfies FC; and its predictions for the phenotypes of
the Prediction Set are evaluated after DE is complete. Suc-
cinctly, FCy allows a trial vector to replace a parent only if
it leads to an expansion of the feasible region. As shown
in Fig. 3 (green and red lines), this new feasibility criterion
prevents the volume of the feasible region from shrink-
ing as the generations pass (two independent DE runs).
Additional file 3: Figure S1 (blue line) and Additional
file 1: Table S9 show that without this volume maxi-
mization strategy, the ranges of nearly all parameters are
diminished after 400 generations. On the other hand,
with estimated volume maximization, the majority of the
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Fig. 3 Dynamic evolution of the estimated volume V spanned by the parameter vectors generated during different DE realizations. Details
regarding the computation of the estimated volume are provided in Section 4 of the Additional file 2: Supplementary Text. Ensembles 5 and 6 are
generated by the Scheme 4 that uses FC; and FC,, whereas Ensemble 4 is generated by Scheme 3 which only uses FC; as its feasibility criteria
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parameters have about a 10% variation after 400 gener-
ations (green line in Additional file 3: Figure S1). These
parameter ranges are calculated by dividing the maxi-
mum parameter values by the minimum parameter values
among all parent vectors at the 400 generation. Due to
this improvement in the parameter ranges, we allow DE to
explore for an additional 1200 generations. Additional file
3: Figure S1 (red line) shows that about 10% range for most
parameters is still preserved among the parent vectors in
the 1600 generation. We perform two realizations of DE
with this approach for 1600 generations, thereby creat-
ing two more ensembles (Ensembles 5 and 6 in Table 2).
These ensembles generate 64 and 69 unique phenotypic
prediction vectors, respectively.

A further improvement comes from selecting the initial
DE population to maximize the volume spanned by the
vectors with respect to all 123 kinetic parameters rather
than just the 10 most critical parameters. (Note that the
kinetic parameters ks,2, f, and MDT have fixed values in
Additional file 1: Table S3.) Two independent DE real-
izations for 1600 generations produce an average of 87
unique phenotypic prediction vectors (Ensembles 7 and
8 in Table 2) further increasing the range of predictions
compared to those of Ensembles 5 and 6. This is also a
significant improvement over LHS (51 unique prediction
vectors) even though DE required about 30,000 samples
(1600 generations x 19 vectors) to identify ~ 70% wider
(87/50) range of predictions compared to 50,000 LH sam-
ples. Having gotten DE to a point where it is more efficient
than random sampling in terms of exploring the feasible
region, we next seek ways to improve the performance of
DE even further.

Increasing the phenotypic diversity of the initial
population of DE

As we previously stated, 3146 feasible parameter vectors
from the initial DE optimization run on the Training Set
[22] (Ensemble 1) generate 30 unique phenotypic predic-
tion vectors for the Prediction Set. Interestingly, 97% of
these vectors generate only five of the total 30 prediction
vectors as shown in Additional file 3: Figure S2. Due to
this, the initial population of parameter vectors used in the
last two DE runs (Scheme 5 in Table 2) produces a total of
four unique prediction vectors all of which are in this set
of five dominant prediction vectors. In other words, the
diversity of the initial population in terms of phenotypic
predictions is very low, only 13% (4/30) of the diversity is
utilized. Therefore, to increase this diversity, we select the
initial population of feasible parameter vectors such that
each one generates a different prediction vector (a total of
19) for the 129 strains in the Prediction Set. While using
this initial selection scheme, we also maximize the esti-
mated volume spanned by the selected vectors (Scheme
6 in Table 2). The details of this diversification procedure
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are in the Additional file 2: Supplementary Text (Section
5). This strategy further expands the range of predictions,
with two independent runs (each for 1600 generations)
increasing the average number of unique prediction vec-
tors from 87 to 106 (Table 2). Thus, improved predictive
diversity among the parent parameter vectors in the initial
population results in feasible vectors (generated during
DE) that are predictively more diverse.

Enforcing an increased range of predictions during DE

In order to explore the phenotypic prediction space of
the model further, we enforce a third criterion during DE.
With this new criterion, a parent parameter vector is only
replaced by a trial vector if the trial vector generates a
new prediction vector, one not heretofore generated by
any feasible parameter vector during this DE run. (For the
descriptions of parent and trial parameter vectors, refer to
Methods section.) In other words, with this modification,
the trial parameter vector has to satisfy three constraints
to replace the parent vector. It should reproduce 111 phe-
notypes in Additional file 1: Table S7 (FC;), increase the
estimated volume of the feasible region upon replacing
the parent vector (FC,), and generate a new prediction
vector (FCs3). Two independent realizations with this new
scheme (for 1600 generations) increase the average num-
ber of unique predictions from 106 to 122.5 (average of
Ensembles 11 and 12 in Table 2). We note that since the
occurrence of a trial vector that satisfies the first two crite-
ria is not very frequent (less than 10% among the samples
generated by DE), simulating the 129 mutant strains of
the Prediction Set on-the-fly (during DE) adds negligible
computational time compared to the time required to run
DE for 1600 generations with the 119 phenotypes in the
Training Set.

Since our major goal in this study is to devise a method
that discovers as many unique phenotypic prediction vec-
tors as possible, we next drop the second feasibility crite-
rion FC, (maximization of the feasible region’s estimated
volume during DE) but keep the first and third criteria
(FC;1 and FCs). As shown in Additional file 3: Figure S3
(green line) and Additional file 1: Table S10, even though
FC, is dropped, DE is still able to keep some parametric
variability among the feasible vectors after 1600 genera-
tions. This variability is due to the presence of FCs that
indirectly forces diversity in parameter values by guiding
the search towards new prediction vectors. More impor-
tantly, dropping FC, results in an average of 340 unique
phenotypic prediction vectors (Ensembles 13 and 14 in
Table 2), almost a 200% increase (122.5 to 340) in the range
of predictions. Hence, not enforcing the second feasibil-
ity criterion allows us to exploit DE’s search capability for
expanding the range of predictions. es value of Scheme
8, computed as the number of unique prediction vectors
found per sample taken in the parameter space, is equal
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0.01

0.008
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from two independently generated ensembles (per scheme)

Fig. 4 Comparison of es with different schemes. es is the efficiency of sampling computed as the ratio between the range of phenotypic predictions
(S) and the total number of samples taken from the parameter space (nyo). LHS is used in Scheme 1, whereas DE is used in the remaining schemes.
The detailed settings used for ensemble generation with each scheme are given in Table 2. For schemes 4-8, we average two es values computed

6 7 8
Scheme number

to 0.011 (340 unique prediction vectors found in 1600
generations X 19 parameter vectors per generation). The
same efficiency value is 0.001 for random LHS (51 unique
prediction vectors found in 50000 randomly generated
parameter vectors), a 10-fold difference in favor of our DE
based approach. Figure 4 provides a snapshot of the per-
formances (es values) of different schemes. We also note
that random selection of the initial population decreases
the eg value of Scheme 8 by 81%, whereas selecting an
initial population with expanded volume (with respect to
the axes of 123 kinetic parameters), but without enhanced
predictive diversity, causes a 64% drop in Scheme 8s eg
value (results based on two DE runs for 1600 genera-
tions in both cases). These results show that the selection
of the initial population of DE is critical for the efficient
exploration of the prediction space of the model.

At this point, we have two top performing DE based
schemes (Schemes 7 and 8 in Table 2) for exploring the
prediction space of the model. Top performing Scheme 8
is illustrated in Fig. 5. Next, we will compare the perfor-
mances of the two top performing schemes in a more thor-
ough way, using the aggregates of ensembles from several
DE runs with a higher number of generations per DE
run. Then, from these ensembles, we will extract future
experiments for which the model produces wide (or nar-
row) prediction ranges. Our goal will be to differentiate
between the strong predictions of the model (e.g., novel
phenotypes that are viable regardless of the parameter

vector location in the feasible region) and the model pre-
dictions with some variability within the feasible region of
the model’s parameter space.

Comparison of the two most efficient ensemble generation
schemes

In order to compare the performances of Schemes 7
and 8 more thoroughly, we perform four DE runs with
each scheme (2200 generations per run). As shown in
Table 2, Scheme 8 produces 671 unique prediction vectors
(from 15050 feasible parameter vectors in Ensemble 16),
whereas the number of unique prediction vectors is 293
for Scheme 7 (from 15520 feasible parameter vectors in
Ensemble 15), reiterating our previously stated conclusion
that Scheme 8 is more efficient in exploring the pheno-
typic prediction space. Lower performance of Scheme 7
suggests that maximizing the feasible estimated volume
during DE (through FCy) may have no benefit.

However, in this section, we will show that Scheme 7
outperforms Scheme 8 in terms of a “robustness” measure
based on parametric perturbations to be defined. After
each of these perturbations, we simulate the model to
check if the outcome of the simulation (mutant pheno-
type) is the same as the phenotype before the perturba-
tion. For this robustness analysis, we limit our focus to the
ten most critical model parameters (Table 3) and the ten
most fragile phenotypes (Table 4), which were previously
identified by the sensitivity analysis in [14].
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Fig. 5 Flowchart of the parameter space exploration approach with the top-performing Scheme 8. Prediction matrix P is generated by simulating
the novel genetic strains (the Prediction Set) in Additional file 1: Table S5 with all DE vectors that satisfy FC; on the Training Set, from a total of tyax
number of generations. The range of phenotypic predictions (S) is computed as the number of unique rows in P. With Scheme 8, the diversity of the
initial population of parameter vectors is enhanced with Vg (biased selection for enhancing the volume spanned by the population) and Spax
(biased selection for enhancing the range of population’s phenotypic predictions)

G

Yes

Each critical parameter is perturbed +20%, +40%,
+60%, £80% (eight perturbation levels) from its nom-
inal value and also set to zero (the ninth perturbation
level). Each of these individual perturbations defines a
new parameter vector. With each new vector, each of
the ten fragile phenotypes is simulated (initial conditions
come from the WT simulation as described before). In
each simulation, the phenotype derived from the feasible

Table 4 The ten most fragile phenotypes

Phenotype # Phenotype name

61 CLB2-dbA multicopy SICT (Viable)

18 cInTA cIn2A cdh1A (Viable)

63 CLB2-dbA clb5A clb6 A in galactose (Viable)
105 cdc15A netl-tscdh1 A (Viable)

56 GAL-CLB2 cdh1A (Inviable)

20 cInTA cIn2A cdh1A GAL-CLN2 (Viable)
59 CLB2-dbA in galactose (Inviable)

77 APC-A (Viable)

78 APC-AsiclA (Viable)

73 CLB5-dbA pdsT1A (Viable)

Based on the sensitivity analysis in [22], these are the phenotypes that are most often
lost (i.e., incorrectly simulated) when perturbations are applied to individual model
parameters in feasible parameter vectors. Fragility decreases from top to bottom

vector before the perturbation is either maintained or lost.
We have 900 simulations (9 perturbation levels x 10 per-
turbed parameters x 10 simulated phenotypes) that are
used to quantify the robustness of each parameter vec-
tor. The robustness score of the ith parameter vector is
defined by

9

1010
Ri=)"3"> Rijas (5)
=1 k=

11/=1

where j is number of the critical parameter that is per-
turbed, k is number of the fragile mutant that is simulated,
[ is the number of the perturbation level, and R; 1, is 0 (1)
if the fragile phenotype from Table 4 is lost (maintained)
after the parametric perturbation. The highest robustness
score within an ensemble of m parameter vectors is

R= max R;. 6)

R; = 900 is the highest possible robustness score for a
feasible parameter vector that satisfies FC; prior to per-
turbations. One way to compare different ensembles in
terms of robustness is to compare the distributions of R;.
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In addition, each parameter vector i and fragile
phenotype-critical parameter pair (k, j) define the robust-
ness score

9

Rijx = ZRi,j,k,l» (7)

=1

which helps us differentiate between different ensem-
ble generation schemes listed in Table 2 in terms of
the robustness linked to particular phenotype-parameter
pairings. The maximum robustness of such a pair in an
ensemble of parameter vectors is defined by

Ry = max Rijk- (8)

As shown in Fig. 6a, feasible parameter vectors in
Ensemble 15 (produced with Scheme 7) generate a
bimodal distribution of robustness R, computed for each
feasible vector. Ensemble 15’s first mode with low robust-
ness overlaps with Ensembles 1 and 16 (both ensembles
have a unimodal distribution of IAQ). On the other hand,
Ensemble 15’ second mode with higher robustness has
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no overlap with the two other ensembles’ distributions.
Hence, maximizing the estimated volume of the feasible
region through the mutation and crossover operations
of DE leads to the discovery of feasible points in the
parameter space with superior robustness. The maximum
robustness value R among Ensemble 15 is 672, but only
512 among Ensemble 1, a 31% improvement with Ensem-
ble 15 (generated by Scheme 7). On the other hand, R
is 514 among Ensemble 16 (generated by Scheme 8),
approximately equal to the R value among Ensemble 1.
In addition, as depicted in Fig. 6b, ¢, and d, Scheme
7 improves the maximum robustness among 70 critical
parameter-fragile phenotype pairs, whereas the number of
such pairs is only 21 for Scheme 8. Here, the maximum
robustness (per ensemble) is quantified by a R value per
parameter-phenotype pair (Eq. 8).

From these results, we conclude that by forcing the
DE search to expand the range of predictions, one can
explore the prediction space effectively as demonstrated
by Scheme 8’s superior predictive diversity over its alter-
natives (Table 2). However, by forcing DE to maximize
the feasible region’s estimated volume, it is possible to
improve the robustness of the model in reproducing

a
Ensehb]e 1
Ensemble 15
0254 - - l Ensemble 16 |
0.2r
2
el
5 3
c >
% 5 0.15
© @
i §
8 01F - RHl ]
0.05
q\ ﬂ
0} — : .
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Fig. 6 Robustness-based comparison of different ensembles. a Robustness score distributions of feasible parameter vectors in Ensembles 1, 15, and
16. Each parameter vector's robustness is computed by perturbing the ten most critical model parameters with nine distinct perturbation levels to
simulate the ten most fragile phenotypes (Table 4). The total number of perturbations that do not lead to phenotype losses in these 900 simulations
is recorded as the robustness score R per feasible parameter vector. b-d Comparison of the maximum robustness R per phenotype-parameter pair
among Ensembles 1in b, 15 in ¢,and 16 in d. The relative robustness in Ensemble 15 or 16 is -1 (1) if the particular robustness value is lower (higher)

than Ensemble 1

700

Relative robustness
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experimentally verified phenotypes, but at the expense
of predictive diversity. Therefore, one should select the
appropriate scheme for parameter space exploration,
depending on one’s preference between higher robustness
(Scheme 7) or diversity of model predictions (Scheme 8).
Higher robustness against parametric perturbations may
be enforced in some cases. For instance, one may need
to modify the values of parameters in feasible vectors in
order to capture additional experimental constraints while
still capturing the original data [42], and this would favor
the selection of Scheme 7 over Scheme 8.

Relative protein abundance predictions

Up to this point, we have only considered the phenotypic
prediction range for the 129 mutant strains in the Predic-
tion Set. Next, we consider predictions of relative protein
abundances. In simulations, the time average concentra-
tion of a protein represents the model’s prediction for that
protein’s abundance in an asynchronous population of
budding yeast cells. For theoretical and experimental rea-
sons, it is better to focus on relative protein abundances,
i.e., the ratio of the abundance of one protein with respect
to another. Relative abundances of proteins are typically
measured by Western Blotting [43] or mass spectrometry
[44]. Relative abundance measurements have been useful
in estimating the parameters of systems biology models in
the past [45, 46).

We compute the relative abundances of all species (cell
size and 25 different proteins in Additional file 1: Table S2)
over 2000 min in deterministic simulations of the 86 novel
mutants that are consistently predicted to be viable by the
parameter vectors in Ensembles 1, 15, and 16 (about 33000
feasible vectors in total). There are 91, 89, and 86 viable
mutants (among the 129 strains in the Prediction Set) in
these ensembles, respectively. The variability of each rela-
tive abundance prediction is quantified by its coefficient of
variation (CV=standard deviation/mean) across the fea-
sible parameter vectors within each ensemble. In order
to show the effectiveness of characterizing the feasible
region beyond Ensemble 1, we compare the ranges of all
relative abundance predictions among the three ensem-
bles (after collecting these CV values (one value per rela-
tive abundance) in a separate array for each ensemble). As
shown in Fig. 7a and Additional file 3: Figure S4, Ensem-
bles 15 and 16 generated by our parameter exploration
schemes 7 and 8, respectively, exhibit significantly wider
CV distributions than Ensemble 1 once again demonstrat-
ing the capacity of our DE-based approach to explore the
parameter space. According to Additional file 1: Table S11,
both the mean and standard deviation values of CV distri-
butions from Ensembles 15 and 16 are consistently greater
than double those from Ensemble 1. Figure 7b-d show
an example, where the ranges of model predictions made
by Ensembles 15 and 16 (Fig. 7c and d) for two relative
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abundances are significantly wider and much less sparse
in the prediction space compared to Ensemble 1 (Fig. 7b).

As we ranked the 86 novel viable mutants in terms of
decreasing value of a prediction variability statistic gen-
erated by Ensemble 16, namely the sum of relative abun-
dance CV’s predicted for each mutant strain, we observed
that the ten highest ranked strains with most variabil-
ity (Table 5) are composed of three double mutants and
seven triple mutants (no single mutant), suggesting that
the increased number of mutations in a genetic strain
provide model predictions with wider relative abundance
ranges. Figure 8a and Additional file 1: Table S12 confirm
this trend. Here, we see that a higher prediction variability
statistic is associated with double and triple mutants com-
pared to single mutants. Histograms of the CV distribu-
tions for the WT strain and the five highest ranked novel
mutant strains (Fig. 8b-g) indicate that these mutants
generate predictions with significantly higher variabilities
compared to the WT strain. Interestingly, these five dou-
ble and triple mutants have common mutations (Table 5).
For instance, even though Mutant 57 has an additional
mutation compared to Mutant 11, the distributions of
the CV values of the predicted relative abundances are
almost identical. Hence, this additional mutation does not
increase the prediction variability in the relative abun-
dance measurements. A similar trend is observed with
Mutant 21 (double mutant) and Mutants 90 and 85 (triple
mutants), once again indicating a common mutation pair
that is responsible for the wide prediction ranges. Mutant
21 is created from two single mutations (Mutants 2 and 6
in Additional file 1: Table S5). As depicted in Fig. 8h and
Additional file 1: Table S13, these two individual muta-
tions synergize upon creating Mutant 21 and generate
overall ranges of predictions (each CV value corresponds
to the range of one prediction) wider than either of the
single mutations alone. These analyses highlight the use-
fulness of our approach to designing genetic strains that
generate informative model predictions. For instance, the
pair of relative abundance predictions shown in Fig. 7d
have CV values that are higher than 0.40 among Ensem-
ble 16. In contrast, the two relative abundance predictions
shown in Additional file 3: Figure S5 have CV values that
are less than 0.01 among the same ensemble. Hence, the
presented parameter space exploration approach enables
us to differentiate between informative genetic strains
with high prediction variability (Fig. 7b, ¢, and d) and the
genetic strains that generate model predictions with low
variabilities (Additional file 3: Figure S5).

Similar approaches have been used in two previous
model driven experimental design studies [47, 48]. In [47],
Dong et al. presented an experimental design process
called “Computing Life” and illustrated it for the biological
clock of Neurospora crassa. At each experimental design
cycle, the authors chose the Maximally Informative Next
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Table 5 The ten novel phenotypes with highest predictive

variance

Mutant # Mutation 1 Mutation 2 Mutation 3
90 €2 =0 kppmy =0 kdpis14 =0
21 €2 =0 kppmy =0 -

57 kpisko = 0 exip2 =0 kdpisis = 0
1 kpiska = 0 ekip2 =0 -

85 exin2 =0 kpisn3 = 0 kppmy =0
58 kpisko =0 exip2 =0 kdpnetpx = 0
81 ekn2 =0 kdpyiia =0 kppmz =0
128 kpofoo = 0 kdpis14 = 0 kdppetpx = 0
42 kppa =0 kdpnetpx = 0 -

106 eip2 =0 koo = 0 kdpnetpx = 0

Based on the relative abundance predictions generated by the parameter vectors in
Ensemble 16, these mutants mutants have the highest variability values (i.e, Mutant
90 has the largest sum of CV values from the relative abundance predictions among
the 129 novel mutants). Variability decreases from top to bottom

Experiment (MINE) from a large set of potential network
models and microarray experiments using a criterion
that enforced maximal independence between observ-
ables. This analysis identified several genes (from a total
of 11,000 genes) under the direct control of a key clock
oscillator and also discovered a link between this clock
and ribosome biogenesis. In [48], Donahue et al. imple-
mented a sparse grid approximation using polynomials
to explore their objective function (based on time series
data) in order to discriminate simultaneously between
uncertainties in model structure and in parameter val-
ues (without an initially determined feasible region). One
disadvantage of the sparse grid search is the required
smoothness of the objective function, whereas typically
rugged objective function landscapes [49] are observed
for large and nonlinear network models. This is especially
the case in our study where many discrete experimental
constraints determine the feasibility of model parame-
ter vectors. For detailed theoretical discussions regarding
the use of prediction variability statistics in model-based
experimental design, we refer the reader to two excellent
reviews [4, 6].
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As shown in Fig. 9, starting from Ensemble 16, one
can also refine the feasible ranges of parameters upon
incorporating a relative abundance measurement into the
model. Here, we see that low values of kiyg, CDC14r,
and sz, and medium values of y and yy produce
high values (greater than 120) of the relative abundance
APCP/Cdc20A-APC in Mutant 128 (relative abundance
measurement with the highest variability based on its CV
value). Hence, it is possible to use new data from an exper-
iment that is predicted to be informative and eliminate
some of the parameter vectors in the feasible ensemble. In
other words, future measurements selectively taken based
on model predictions by targeting highly variable relative
protein abundances within particular mutants could be
useful for reducing parametric uncertainty. However, we
did not perform experimental design in our study since it
is outside our scope.

Ranking cell cycle proteins and biological processes in
terms of prediction variability

In order to study the potential relationships between the
variabilities of relative abundance predictions linked to

individual cell cycle proteins and the topology of the cell
cycle network, we first identified the total variability asso-
ciated with each of the 26 proteins. To this end, for each
protein, we computed the sum of the CV values for each
protein abundance ratio with that particular protein in
its numerator. We refer to this sum as the “variability
score” of the protein. (We have verified that our rank-
ing of proteins based on their variability scores does not
depend on whether we use the protein in the numerator or
denominator in the summation process (data not shown)).

Next, we ranked the cell cycle proteins with respect to
their total variability scores (Table 6). Five of the seven
species in the EXIT module were in the group of “low
variability” proteins (the bottom half of the group). In
contrast, four of the five proteins within the START
module were within the “high variability” category (the
top half). The less variable nature of the EXIT module
aligns with our previous study, which identified the EXIT
module as the most fragile network module [22], as well
as an experimental study which showed the cell cycle
was least tolerant to overexpression of CDCI4 (a major
regulator in the EXIT module) among 31 cell cycle genes
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studied by Moriya et al. [50]. Similarly, two other proteins
in the EXIT module, namely NETI and PDS1 were among
the more fragile genes (ranked 8 and 10” among 31
genes in terms of cell cycle’s tolerance limit to their over-
expression) in [50] in agreement with the “low variability”
status of these proteins in our model (Table 6).

Ten regulators in the S/G2/M module, on the other
hand, were evenly distributed among both categories.
Two regulators in this module, namely Cdc20A-APC
and Cdc20A-APCP had strikingly different predictive
variability scores. Cdc20A-APC complex has the high-
est score of 231.4), whereas Cdc20A-APCP complex was
ranked 207 with a score of 115.58. These two com-
plexes are responsible from the degradation of CIb5, Clb2,
and Pdsl through ubiquitin-mediated proteolysis [51].
Interestingly, Cdc20A-APCP is 9.3, 3.8, and 6.5—fold
more potent than Cdc20A-APC (based on the average
parameter values in Ensemble 16) in terms of degrad-
ing CIb5, Clb2, and Pdsl, respectively. Hence, a potent
(or critical) regulator turned out to have less predic-
tive variability compared to a weaker regulator in our
model once again pointing to a potential relationship
between the cell cycle network and the variability scores of
individual model variables (more critical variables have
less predictive variance). After ranking cell cycle proteins
by denominator-based formation of relative abundance-
network module pairs (i.e., each relative abundance is
matched to the module of the protein in its denominator),
we computed the Pearson correlation coefficient between

the vectors formed from the order of the two rank-
ings (numerator-based vs. denominator-based) as 0.99.
Hence, the ranking of cell cycle proteins was indepen-
dent of the way network modules were assigned to relative
abundance values.

Next, we compiled all of the gene ontology based biolog-
ical processes [52] associated with the cell cycle proteins
and ranked them using the variability score associated
with each regulator (Table 7). In cases where a biologi-
cal process was associated with more than one protein,
we computed the mean and standard deviation of the
variability scores associated with each process. Accord-
ing to Table 7, the biological processes with the largest
predictive variability values (85%-100% percentile range),
were identified as the regulation of cell size and regulation
(both negative and positive) of the G1/S transition. These
processes are known to be closely tied to each other
[53]. Budding yeast cells that are exceptionally small at
birth than others spend more time in G1 before entering
S phase due to an experimentally verified size thresh-
old requirement [54]. Later studies showed that this size
control mechanism acts for the most part in daugh-
ter cells (in our simulations, the “daughter cell” is the
smaller cell at each asymmetric division) through multi-
ple daughter-specific transcription factors [55] and also
showed that this mechanism is “imperfect” [56] since cell
size at birth is not perfectly correlated with the length
of G1 phase. It is also thought that size fluctuations can
not be compensated in a single cycle due to the imperfect
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Table 6 Cell cycle regulators ordered in terms of their variability scores (decreasing from top to bottom)

Rank Regulator Variability score Percentile Category Network module Class label
1 Cdc20A-APC 2314 100 High variability S/G2/M 2
2 Cln3 2083 94 High variability START 1
3 BUD 195.71 91 High variability - -
4 APCP 191.2 87 High variability S/G2/M 2
5 WHI5dep 160.63 82 High variability START 1
6 SBFdep 156.26 79 High variability START 1
7 Polog 154.48 75 High variability EXIT 3
8 Cln2 152.8 71 High variability START 1
9 Tem1 147.02 67 High variability EXIT 3
10 ORI 146.3 64 High variability - -
1 Clb57 139.93 60 High variability S/G2/M 2
12 CKlIr 129.58 56 High variability S/G2/M 2
13 Cdhig4 124.2 52 High variability S/G2/M 2
14 SPN 122.95 48 Low variability - -
15 Polor 122.16 44 Low variability EXIT 3
16 Bck2 120.28 40 Low variability START 1
17 Pdsir 119.01 37 Low variability EXIT 3
18 Clb27 11821 33 Low variability S/G2/M 2
19 PPX 117.53 29 Low variability EXIT 3
20 Cdc20A-APCP 115.58 25 Low variability S/G2/M 2
21 V (Mass) 11418 21 Low variability - -
22 CKlp 111.99 17 Low variability S/G2/M 2
23 Cdc15 109.39 13 Low variability EXIT 3
24 Netldep 109.19 10 Low variability EXIT 3
25 CDC20r 109.03 6 Low variability S/G2/M 2
26 Swis7 107.48 1 Low variability S/G2/M 2

nature of size control [53] and we hypothesize that this
factor plays into the high values of model prediction vari-
ability associated with the relative abundances of proteins
that regulate size control and the G1/S transition. Aligned
with this trend, Di Talia et al. [56], observed that cell size
at birth is significantly variable with CV values around
0.2 for both daughters and mothers. Hence, our identifi-
cation of “cell size” and “regulation of G1/S transition” as
the biological processes associated with the highest val-
ues of predictive variability is consistent with previous
experimental literature.

Based on Table 7, the biological processes associated
with the smallest predictive variability values (1%-12%
percentile range) were identified as the positive regulation
of transcription involved in exit from mitosis (and also its
simpler form “regulation of exit from mitosis”), mitotic
spindle assembly checkpoint, and negative regulation of
cyclin-dependent protein kinase by cyclin degradation.

These processes are associated with Swi5 (the transcrip-
tion factor for CKI), Netl (stoichiometric inhibitor of
Cdc14), Cdcl5 (responsible for Netl phosphorylation),
and Cdc20 (required for Clb5, Clb2, and Pdsl degrada-
tion) that all play critical roles for mitotic exit which is the
cell cycle network module with least predictive variability
as we previously stated.

The findings that we summarize in this section, when
taken together, suggest that the statistics generated from
the model predictions are influenced by the topology of
the cell cycle network and that these statistics may also be
generating distinct patterns that are specific to individual
network modules. In order to test this hypothesis, we next
implemented the “random forest” classification method
and developed statistical models to predict the network
modules in which individual cell cycle regulators operate
(i.e., biological functions of these regulators) using model
prediction statistics.
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Table 7 Biological processes ordered in terms of predictive variability which decreases from top to bottom

Rank Biological process Variability Percentile
score
1 Regulation of cell size 164.38+42.18 100
2 Negative regulation of transcription involved in 160.6310.00 95
G1/S transition of mitotic cell cycle
3 Regulation of transcription involved in 157.89+71.29 91
G1/S transition of mitotic cell cycle
4 Positive regulation of transcription involved in 156.260.00 85
G1/S transition of mitotic cell cycle
5 Positive regulation of transcription from RNA polymerase Il promoter 156.2640.00 85
6 Regulation of cyclin-dependent protein kinase activity 154.8143841 81
7 Mitotic spindle orientation checkpoint 147.0240.00 71
8 Exit from mitosis 147.0240.00 71
9 Establishment of mitotic spindle localization 147.0240.00 71
10 Regulation of mitotic spindle assembly 139.934+0.00 64
1 Positive regulation of DNA replication 139.9340.00 64
12 G1/S transition of mitotic cell cycle 130.11+13.89 60
13 Positive regulation of spindle pole body separation 129.074£15.36 54
14 G2/M transition of mitotic cell cycle 129.07+15.36 54
15 Positive regulation of protein ubiquitination 124.2040.00 47
16 Negative regulation of spindle pole body separation 124.2040.00 47
17 Regulation of cell cycle 120.2840.00 40
18 Positive regulation of gene expression 120.2840.00 40
19 Mitotic sister chromatid segregation 119.0140.00 36
20 Regulation of mitotic spindle elongation 118.2140.00 30
21 Negative regulation of protein dephosphorylation 118.2140.00 30
22 Positive regulation of mitotic metaphase/anaphase transition 116.62410.73 23
23 Activation of APC-Cdc20 complex activity 116.62+10.73 23
24 Protein phosphorylation 109.3940.00 16
25 Mitotic cytokinesis 109.39£0.00 16
26 Regulation of exit from mitosis 109.294+0.14 12
27 Negative regulation of cyclin-dependent protein kinase by cyclin degradation 109.034+0.00 6
28 Mitotic spindle assembly checkpoint 109.0340.00 6
29 Positive regulation of transcription involved in exit from mitosis 107.48+0.00 1

Predicting biological functions (or network modules) of

cell cycle regulators using relative abundance statistics

In order to predict the biological functions (or network
modules) of cell cycle regulators using relative abundance
statistics, we implemented the random forest classifica-
tion method using the Statistics and Machine Learning
Toolbox™ of Matlab™ [57]. For each relative abundance
(a total of 47850 relative abundances with finite CV val-
ues), four features were used for predicting the network
modules of individual cell cycle proteins, namely the
mean, standard deviation, and CV values of the particular

relative abundance and the ID-number of the viable novel
mutant (of the 129 strains in the Predictive Set plus
the wild type strain) that is simulated to generate the
relative abundance prediction. The true class of each rel-
ative abundance was identified as the network module
to which the protein in the numerator belonged. (We
later tested if the predictive accuracy significantly changed
when the denominator was taken as the reference point
for identifying the true class labels and found out that
our predictive ability was not dependent on this choice.)
Predictive accuracy is computed by generating receiver
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operating characteristic (ROC) curves (true positive rate
vs. the false positive rate obtained using several classifier
output thresholds) and quantifying the areas under these
curves (AUC) for each network module as the positive
class vs. the negative class generated by combining the
remaining two modules (i.e., START module vs. S/G2/M
and EXIT modules, S/G2/M module vs. START and EXIT
modules, and EXIT module vs. START and S/G2/M mod-
ules). We performed 100 runs (per set of features or
model inputs) and reported the average AUC and its p-
value based on a Z-test with respect to a random model
with two classes (i.e., AUC=0.5) [58], an approach com-
monly taken for computing the statistical significance of
AUC in ROC based predictive modeling studies. When
the p-value computed from the AUC is less than 0.05,
the predictive performance measured by the AUC value
is deemed statistically significant. We also generated ran-
domized models by permuting the class labels (or net-
work modules) attached to each relative abundance in 100
independent realizations. The p-values associated with
the predictive performances of these randomized models
were expected to be higher than 0.05 in order to verify the
statistical significance achieved by the non-randomized
models trained and tested by the true network modules
associated with all the relative abundances.

Per decision tree, approximately 64% of the samples
are retained to be used for model training, whereas the
remaining samples are used for model testing. These
test samples are referred to as “out-of-bag” (OOB) sam-
ples, whereas the training samples are expanded by boot-
strapping [59] (or sampling with replacement) up to the
sample size of the original data [60] prior to model
training. Classification of the test samples are based on
the complete ensemble of trees (a total of 100 trees)
with a voting scheme. For example, a test sample (ie.,
the protein in the numerator of a relative abundance)
is predicted to be in the “START” module if the num-
ber of trees that predict this outcome is higher than
the ones that predict the protein’s network module as
“S/G2/M” or “EXIT”.

As shown in Table 8, random forest models developed
using model prediction statistics were highly predictive of
network modules (START, S/G2/M and EXIT) in which
the cell cycle regulators operate with an average AUC of
0.83-0.87 (with less than 0.01% variability and p-values
of zero). Furthermore, the randomized models generated
by permuting the network modules attached to relative
abundances had no predictive value indicated by AUC
values around 0.5 (and p-values around 0.5), typical of a
coin-flipping process with two possible system states (e.g.,
START module vs. S/G2/M or EXIT). Hence, the predic-
tive performances of models trained with the correct (or
non-random) network module-relative abundance match-
ing were statistically significant.
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Recent studies have indicated that abundances of pro-
teins are regulated in a biological function-dependent
manner [61-63]. For example, in general, production and
degradation rates of regulatory proteins are trained by
evolution to quickly respond to certain stimuli, whereas
proteins produced by housekeeping genes and structural
proteins that are critical for the integrity of an organism
are relatively more stable [61]. Furthermore, it is now also
clear that protein abundance signatures are shaped not
only by transcriptional and post-transcriptional regula-
tion [64] but also by translation and post-translational reg-
ulation, which play prominent roles in determining both
dynamic and steady-state behaviours of protein abun-
dances [61, 62, 65]. The cell cycle model used in our study
takes into account all of these individual modes of regu-
lation and successfully predicts the network modules of
individual cell cycle regulators (related to their biological
functions) from model prediction statistics. This outcome
demonstrates the critical importance of developing com-
prehensive and accurate models of important biological
processes (such as cell cycle control) for correctly predict-
ing various dynamic and steady-state behaviours shaped
by a complex interplay between several modes of regu-
lation. Generating correct predictions despite such com-
plexity holds the key to elucidating critical components
and their interactions in complex biological networks in a
context-dependent manner.

Conclusions

Previously [22], we demonstrated a practical approach for
fitting a complex dynamical model of the budding yeast
cell cycle [40, 41] to a large set of qualitative experimen-
tal observations (viability/inviability of mutant strains of
yeast). Taking a further step in this work, we characterize
the feasible region of this model in order to test whether
the statistical features of relative protein abundance pre-
dictions are influenced by the topology of the cell cycle
regulatory network.

Using differential evolution (DE), we generate an
ensemble of feasible parameter vectors that reproduce the
phenotypes (viable or inviable) of wild-type yeast cells and
110 mutant strains (we call these 111 strains the Training
Set). We use this ensemble to predict the phenotypes of
129 mutants (the Prediction Set) for which experimental
data is not available. We identify 86 novel mutants that are
predicted to be viable and then rank the cell cycle proteins
in terms of their contributions to cumulative variability of
relative protein abundance predictions. Of the three mod-
ules in the cell cycle control system (START, S/G2/M, and
EXIT), the EXIT module (the most fragile module iden-
tified in [22]) has the least predictive variability, whereas
the START module has the highest predictive variability.
When we compile all of the gene ontology based bio-
logical processes associated with the cell cycle proteins



Oguz et al. BMC Systems Biology (2017) 11:30

Page 22 of 24

Table 8 Predictive performances of the random forest models developed using relative abundance statistics along with the p-values
corresponding to mean AUC values in 100 independent realizations (STD corresponds to standard deviation)

Positive class

AUC (Mean=£STD) p-value AUC (Mean=£STD) p-value
with randomized modules with randomized modules
START 0.8667+£0.0004 <1.0E-15 0.4996£0.0046 0.55
S/G2/M 0.8326£0.0005 <1.0E-15 0.5003£0.0038 046
EXIT 0.8366+0.0005 <1.0e-15 0.5008+0.0038 040

Here, for each relative abundance, the network module of the cell cycle regulator in the "numerator” is used as the true class label of the relative abundance for model
training and testing. The results were practically identical (less than 0.01 change in AUC values) when the regulator in the “denominator” was used as the true class label

in the model, we identify that the proteins involved in
“regulation of cell size” and “regulation of G1/S transi-
tion” contribute most to predictive variability, whereas
proteins involved in “positive regulation of transcription
involved in exit from mitosis”, “mitotic spindle assembly
checkpoint’, and “negative regulation of cyclin-dependent
protein kinase by cyclin degradation” contribute the least.
These results suggest that the statistics of these predic-
tions may be generating patterns specific to individual
network modules (START, S/G2/M, and EXIT). To test
this hypothesis, we develop random forest models for pre-
dicting the network modules of cell cycle regulators using
relative abundance statistics as model inputs. Predictive
performance is assessed by the areas under receiver oper-
ating characteristics curves (AUC). Our models generate
an AUC range of 0.83-0.87 as opposed to randomized
models with AUC values around 0.50. By using differen-
tial evolution and random forest modeling, we show that
the model prediction statistics generate distinct network
module-specific patterns within the cell cycle network.
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