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Abstract

Background: Cancer is increasingly recognized as a cellular system phenomenon that is attributed to the
accumulation of genetic or epigenetic alterations leading to the perturbation of the molecular network architecture.
Elucidation of network properties that can characterize tumor initiation and progression, or pinpoint the molecular
targets related to the drug sensitivity or resistance, is therefore of critical importance for providing systems-level
insights into tumorigenesis and clinical outcome in the molecularly targeted cancer therapy.

Results: In this study, we developed a network-based framework to quantitatively examine cellular network
heterogeneity and modularity in cancer. Specifically, we constructed gene co-expressed protein interaction
networks derived from large-scale RNA-Seq data across 8 cancer types generated in The Cancer Genome Atlas
(TCGA) project. We performed gene network entropy and balanced versus unbalanced motif analysis to investigate
cellular network heterogeneity and modularity in tumor versus normal tissues, different stages of progression, and
drug resistant versus sensitive cancer cell lines. We found that tumorigenesis could be characterized by a significant
increase of gene network entropy in all of the 8 cancer types. The ratio of the balanced motifs in normal tissues is
higher than that of tumors, while the ratio of unbalanced motifs in tumors is higher than that of normal tissues in
all of the 8 cancer types. Furthermore, we showed that network entropy could be used to characterize tumor
progression and anticancer drug responses. For example, we found that kinase inhibitor resistant cancer cell lines
had higher entropy compared to that of sensitive cell lines using the integrative analysis of microarray gene
expression and drug pharmacological data collected from the Genomics of Drug Sensitivity in Cancer database. In
addition, we provided potential network-level evidence that smoking might increase cancer cellular network
heterogeneity and further contribute to tyrosine kinase inhibitor (e.g., gefitinib) resistance.
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Conclusion: In summary, we demonstrated that network properties such as network entropy and unbalanced
motifs associated with tumor initiation, progression, and anticancer drug responses, suggesting new potential
network-based prognostic and predictive measure in cancer.

Keywords: Cancer, Heterogeneity, Network modularity, Network entropy, Unbalanced motifs

Abbreviations: CePIN, Co-expressed Protein Interaction Network; ICGC, International Cancer Genome Consortium;
OG, Oncogene; PCC, Pearson Correlation Coefficient; PIN, Protein Interaction Network; PPI, Protein-Protein
Interaction; TCGA, The Cancer Genome Atlas; TSG, Tumor Suppressor Gene

Background

Cancer is a major public health problem in the world
and approximately 25 % of deaths in the United States is
due to cancer [1]. Analyses of massive amounts of can-
cer genomics data generated from The Cancer Genome
Atlas (TCGA) and the International Cancer Genome
Consortium (ICGC) has suggested that cancer is a
systems-level, network phenomenon attributed to the
accumulation of genetic or epigenetic alterations under
molecular network architecture [2—4]. However, our un-
derstanding of cancer biology at the systems-level has
still been nascent, such as genome stability or instability
[5, 6]. There is an urgent need to develop network-based
methods or approaches to explore systems-level, net-
work features associated with tumor initiation, progres-
sion, and resistance of specific targeted agents so that
such findings will provide new potential prognostic and
therapeutic biomarkers in cancer.

Several network terms, such as “cancer network attrac-
tors” [7], “network plasticity” [8], and “network entropy”
[9-12], had been proposed in cancer systems biology
study. West et al. found that cancer cells often have
higher network entropy by integrating microarray gene
expression data into a protein interaction network (PIN)
[9]. Banerji et al. suggested that signaling entropy pro-
vided a potential measure in cancer by investigating
microarray gene expression data in 3668 breast cancer
samples and 1692 lung adenocarcinoma samples [10].
Therefore, network entropy can be a useful quantitative
measure to characterize different disease status, like
tumor versus normal tissue as well as various stages of
progression.

In molecularly targeted cancer therapeutics, the most
common approach is to find molecules that can directly
lead to the death of cancer cells, such as kinase inhibi-
tors. However, targeted agents (e.g., kinase inhibitors)
often develop high risk of drug resistance due to the
feedback or crosstalk signaling mechanisms within cellu-
lar networks [13]. One possible reason is that currently
targeted therapy often introduces stress and further lead
to increase the degree of heterogeneity of a cancer cell
population in the long therapeutic period despite short-
term induction of cancer cell death [14]. The end result

will be to speedup the process of drug resistance
through cancer evolution. Furthermore, normal cells will
be at a survival disadvantage as they are much less dy-
namic than cancer cells. However, our understanding of
the systems-level network features that characterize anti-
cancer drug responses has been largely behind the clin-
ical practice in cancer fields.

In this study, we proposed an integrated network-
based framework to examine whether network proper-
ties (e.g. network entropy or unbalanced motifs) are as-
sociated with tumor initiation and progression, and
anticancer drug responses (Fig. 1). Specifically, we built
each co-expressed PIN (CePIN) to describe specific cel-
lular network statuses characterizing tumorigenesis, pro-
gression (four stages), and anticancer drug responses by
integrating the large-scale RNA-Seq data across 8 cancer
types from TCGA and the microarray gene expression
data from the Genomics of Drug Sensitivity in Cancer
(GDSC) database [15, 16]. We then employed network
entropy and balanced versus unbalanced motif ap-
proaches to quantitatively characterize tumor initiation,
progression, and anticancer drug responses. Using net-
work entropy as measure, we found that cells could be
characterized by an increase in both network entropy
and unbalanced motifs during tumorigenesis. Moreover,
we could use the network entropy to quantify various
stages of progression and anticancer drug responses. In
summary, this study would provide new potential
network-based prognostic and predictive biomarkers in
cancer.

Results

Overview of a network entropy and unbalanced motif
approach

In this study, we proposed a network-based entropy and
unbalanced motif approach based on the notion of Wad-
dington’s landscape [10, 17] as shown in Fig. 1. First, we
built each gene CePIN by incorporating RNA-Seq V2
data covering tumor and normal tissue samples across 8
cancer types from TCGA into a high-quality PIN
(Fig. 1a). These 8 cancer types consist of breast invasive
carcinoma (BRCA), colon adenocarcinoma (COAD),
head and neck squamous cell carcinoma (HNSC), kidney
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Fig. 1 Diagram of the network entropy and unbalanced motif approach to quantify cancer cellular network heterogeneity and modularity. a
Workflow for gene co-expressed protein interaction network construction using large-scale RNA-Seq data from The Cancer Genome Atlas. Network
entropy (b), and ¢ balanced versus unbalanced motif analysis. d Quantifying cancer cellular network heterogeneity and modularity characterized by
network entropy, and balanced versus unbalanced motifs in tumor versus matched normal samples, different stages of tumor progression, and
anticancer drug sensitive versus resistant cancer cell lines. Based on the notion of Waddington’s landscape [17], network entropy and ratio of
unbalanced versus balanced motifs were represented as the energy potential in Waddington’s landscape. High cellular network heterogeneity during
tumorigenesis is characterized by elevated network entropy and high ratio of unbalanced versus balanced motifs

i }//"}

Negative PPI Positive PPI
Co-expressed PPI

4500
4000 -
3500
3000 -
2500 -
2000
1500 |
1000 |
500
o

“Qe o
ox\ﬁ 0&6 s Al S
5&0 \as\oeaﬁ\ ﬁceéﬂ\
oo 2)

%% Drug sensitivity
¥ Drug resistance

renal clear cell carcinoma (KIRC), lung adenocarcinoma
(LUAD), lung squamous cell carcinoma (LUSC), thyroid
carcinoma (THCA), and uterine corpus endometrial car-
cinoma (UCEC). We next built each CePIN to
characterize anticancer drug sensitive versus resistant can-
cer cell lines using microarray gene expression and drug
pharmacological data from GDSC database [15, 16]. We
then performed network analysis, such as network entropy
and balanced versus unbalanced motifs in each CePIN
(Fig. 1b and c). Finally, we systematically examined cellular

network heterogeneity and modularity through aforemen-
tioned network measures in tumors versus normal tissue
samples, various stages of tumor progression, and antican-
cer drug resistant versus sensitive cancer cell lines, re-
spectively (Fig. 1d). Based on the notion of Waddington’s
landscape (Fig. 1d), we used network entropy and a ratio
of unbalanced versus balanced motifs as the energy poten-
tial in Waddington’s landscape [10, 17]. Thus, we specu-
lated that network entropy and the ratio of unbalanced
versus balanced motifs can be used to quantitatively
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characterize cellular network heterogeneity and modular-
ity in cancer. For instance, highly cellular network hetero-
geneity during tumorigenesis is marked by high network
entropy and high ratio of unbalanced versus balanced
motifs.

Increased cellular network entropy during tumorigenesis

We collected and processed the RNA-Seq V2 data
(Additional file 1: Table S1) for tumor and normal tis-
sue samples in 8 cancer types from TCGA, since only
these 8 cancer types had at least 10 tumor samples and 10
normal samples. A good number of samples in gene ex-
pression data are required to build the reliable CePIN and
to perform the follow up analyses. We calculated Pearson
Correlation Coefficient (PCC) using RNA-Seq V2 data for
each cancer type and available normal tissue samples, and
then mapped PCC to large-scale PIN to build CePIN
(Fig. 1la). Each CePIN contains ~100,000 edges and
~10,000 genes. We then calculated network entropy for
each gene node in CePIN based on a previous study [9]
(see Materials and Methods). We first examined genome-
wide (~10,000 genes) local network entropy between
tumor and normal tissues. As shown in Fig. 2, we found
that tumors had higher genome-wide local network en-
tropy compared to that of normal tissues in all of the 8
cancer types (p<2.2x107*% Wilcoxon rank-sum test).
There was minor variation of network entropy for each

Page 304 of 380

gene as shown in Fig. 2, consistent with several previous
studies [9-11].

We next examined genome-wide local network en-
tropy distribution for 8 normal tissue types and 8 cancer
types, respectively. Among the 8 normal tissues, colon
had the lowest average genome-wide local network en-
tropy (0.9670 + 0.0003), while lung squamous had the
highest average genome-wide local network entropy
(0.9822 + 0.0002), as shown in Fig. 2. The observation of
different local network entropy in different normal tis-
sues might be due to tissue differentiation during devel-
opment [10, 18]. However, Fig. 2 showed that different
cancer types had heterogeneous genome-wide local net-
work entropy distribution compared to that of 8 normal
tissues. Among the 8 cancer types, four: LUSC (0.9957 +
0.0001), LUAD (0.9950 +0.0001), BRCA (0.9947 +
0.0001), and HNSC (0.9945 + 0.0001), showed the high-
est average local network entropy distribution. The ob-
servation of high local network entropy in breast cancer
might be explained by its high tumor heterogeneity [19].
For LUAD, LUSC, and HNSC, some environmental fac-
tors, such as smoking, may promote tumor heterogen-
eity and accordingly, cause higher network entropy. A
previous study revealed that an average somatic muta-
tion frequency in smokers was more than 10-fold higher
in never-smokers in non-small cell lung cancer [20]. To
test this hypothesis, we further separated TCGA patients
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Fig. 2 Boxplots showing the distribution of genome-wide (~10,000 genes) local network entropy between tumor samples and normal tissue samples
for 8 cancer types. Breast invasive carcinoma (BRCA), colon adenocarcinoma (COAD), head and neck squamous cell carcinoma (HNSC), kidney renal
clear cell carcinoma (KIRC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), thyroid carcinoma (THCA), and uterine corpus
endometrial carcinoma (UCEQ). The p-value was calculated by Wilcoxon rank-sum test
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Fig. 3 Boxplots showing the distribution of genome-wide local network entropy between smokers and non-smokers in 3 cancer types. Lung
adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), and head and neck squamous cell carcinoma (HNSC). The p-value was calculated
by Wilcoxon rank-sum test

into smokers and never-smokers in LUAD, LUSC, and
HNSC, and rechecked the genome-wide local network en-
tropy distribution. Figure 3 shows that smokers are char-
acterized by a higher network entropy compared to that of
non-smokers in all of the 3 smoking-related cancer types:
LUAD (p<1.0x107'%), LUSC (p<1.0x107'%), and
HNSC (p=1.1x10").

An increase of cellular network unbalanced motifs during
tumorigenesis

We next studied the network structural balance theory
using our data. Specifically, we examined the ratio of un-
balanced versus balanced motifs to quantify the stability
of a network structure in a given condition (e.g., tumors
versus normal tissues) [21, 22]. As shown in Table 1,
similar to social networks, normal tissues had more bal-
anced motifs than that of tumors. Importantly, tumors
had more unbalanced motifs than that of normal tissues
in all of the 8 cancer types we examined. Unbalanced

Table 1 Distribution of balanced versus unbalanced motifs in
tumor samples and normal tissues in 8 cancer types

motifs are particularly interesting because they are
highly dynamic and unstable [23]. For example, type II
unbalanced motifs (Fig. 1c), consisting of two positive
and one negative gene-gene interactions, should poten-
tially be recognized as negative feedback loops or inco-
herent feed-forward loops. These two kinds of loops are
both associated with adaptation responses and may be
crucial for tumor cellular network system controllability.

Characterizing tumor progression by network entropy

We next investigated whether network entropy is as-
sociated with different stages of tumor progression.
We collected the available RNA-Seq V2 data across 4
stages (I to IV) in 6 cancer types from TCGA, since only
6 cancer types had sufficient number (>10 samples) of sam-
ples in each stage for building gene CePIN (Additional file
1: Table S2). Figure 4 revealed that different tumor
stages showed heterogeneous distribution of the cellu-
lar network entropy. For BRCA, COAD, and LUAD,
stage IV had a lower genome-wide local network en-
tropy compared to that of stages I (p <0.01, Wilcoxon
rank-sum test), II (p<0.01) and III (p <0.01). In con-
trast, stage IV in HNSC had a higher genome-wide

Cancer  Fraction of balanced motifs  Fraction of unbalanced motifs
type Normal Tumor Normal Tumor
BRCA 0913 0.835 0.087 0.165
COAD 1.00 0.919 0.000 0.081
HNSC 0.994 0.909 0.006 0.091
KIRC 0.948 0.819 0.052 0.181
LUAD 0.979 0.879 0.021 0.121
LUSC 0.979 0.877 0.021 0.123
THCA 0.984 0.845 0016 0.155
UCEC 1.00 0.980 0.000 0.020

local network entropy compared to that in its stages I
(p<22x107'°), II (p<0.01) and III (p<0.01). THCA
and KIRC only showed a minor genome-wide local net-
work entropy changes across 4 different stages. Low net-
work entropy observed in stage IV (metastasis) compared
to that of low stages (stages I to III) might be explained by
tumor clonal evolution [24]. For example, during tumor
subclonal evolution (e.g., a clonal sweep), a new clone that
took over the entire population and replaced the ancestral
clones would result in a homogeneous cell population
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Fig. 4 Boxplots showing the distribution of genome-wide local network entropy across 4 stages (I-IV) of tumor progression in 6 cancer types. Ab-

with low network entropy during tumor metastasis
(e.g., breast cancer) [24, 25].

We next compiled a list of high-quality, significantly
mutated genes (SMGs) in cancer from 4 pan-cancer gen-
omic analysis projects, as described in our previous study
[6]. A total of 614 SMGs were collected. Similar to the
genome-wide network entropy analysis, BRCA and LUAD
indicated the lowest network entropy for SMGs in stage
IV (p <0.01) compared to that in stages I-III (Additional
file 1: Figure S1). HNSC had the highest network entropy
for SMGs in stage IV compared to that in stages I-1II (p <
0.01). We next examined Cancer Gene Census (CGC)
genes, which are well curated and have been widely used
as a reference cancer gene set in various cancer-related
studies [26, 27]. Similar trends were observed for CGC
genes compared to that in SMGs and genome-wide ana-
lysis (Additional file 1: Figure S2). We further collected
477 oncogenes (OGs) and 1040 tumor suppressor genes
(TSGs) from our previous study [6, 28], and then exam-
ined the network entropy value for OGs and TSGs. We
found a similar network entropy distribution for OGs and
TSGs compared to that for genome-wide genes, SMGs,
and CGC genes across 4 stages in the 6 cancer types
(Additional file 1: Figures S3 and S4). Taken together, our
results suggested that different stages of tumor progres-
sion might be characterized by heterogeneous network
entropy distribution for both genome-wide and cancer-
related genes: SMGs, CGC genes, OGs, and TSGs.

Characterizing anticancer drug responses by network
entropy

We next investigated whether a subset of cancer cell
lines showing different anticancer drug responses
(e.g. sensitivity or resistance) could be characterized by
dynamic network entropy. We compiled normalized micro-
array gene expression data and drug pharmacological data
on cancer cell lines from the GDSC database [15, 16]. We
separated the cancer cell lines into two subsets (resistant
and sensitive) based on drug maximal screening concentra-
tion described in two previous studies [15, 16]. In order to
reliably estimate covariance of two genes across a set of
cancer cell lines, we selected cancer types that had at least
10 cell lines with drug responses and microarray gene ex-
pression data simultaneously. Based on this criterion, we
compiled four molecularly targeted drugs (Gefitinib, Dasati-
nib, Nilotinib, and Temsirolimus) in 4 cancer types of cell
lines (lung, breast, blood, and skin) from the GDSC
database.

Figure 5 showed that 3 tyrosine kinase inhibitors
(Gefitinib, Dasatinib, and Nilotinib) resistant cell lines
had a higher genome-wide local network entropy compared
to that of their sensitive cell lines in blood and lung cancer
(p < 2.2 x 107", Wilcoxon rank-sum test). However, serine/
threonine protein kinase inhibitor (Temsirolimus) resistant
cell lines had a lower genome-wide local network entropy
compared to that of the sensitive cell lines in all of the 4
cancer types: lung, breast, blood, and skin cancer, as shown
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Fig. 5 Boxplots showing the distribution of genome-wide local network entropy between drug resistant and sensitive cancer cell lines for 4 targeted
anticancer drugs in 4 types of cancer: blood, lung, breast, and skin. Local network entropy distribution between drug resistant and sensitive cancer cell
lines for 458 drug-sensitivity genes was provided in Additional file 1: Figure S5. The p-value was calculated by Wilcoxon rank-sum test

in Fig. 5. We further compiled 458 genes that were in-
volved in sensitivity or resistance of 130 anticancer drugs
from a previous study [16]. As shown in Additional file 1:
Figure S5, similar network entropy distribution was ob-
served for 458 drug-sensitivity genes compared to that in
genome-wide local network entropy analysis (Fig. 5).

Discussion

Smoking is associated with cancer cellular network
heterogeneity and drug responses

Previous studies revealed that some environmental fac-
tors like smoking were likely to increase heterogeneity
within a tumor [29, 30]. We examined the network en-
tropy distribution in a set of tumor samples that included
both smoking and non-smoking histories. Figure 3 re-
vealed that smokers had higher genome-wide network en-
tropy compared to that of non-smokers in all of the 3
smoking-related cancer types: LUAD, LUSC, and HNSC.
In our recent studies, we also found that smokers had
unique mutation signatures [31] and higher mutational
heterogeneity using a mathematical model [6]. Collect-
ively, environmental factors, such as smoking, may play
crucial roles during tumorigenesis and often speedup
cancer cellular network heterogeneity. Furthermore, the

increased cancer cellular network heterogeneity caused by
smoking may be associated with drug responses. For ex-
ample, Fig. 5 showed that Gefitinib resistant lung cancer
cell lines were often characterized by elevated network en-
tropy. Filosto et al. suggested that cigarette smoke medi-
ates lung cancer development and resistance to tyrosine
kinase inhibitors (e.g. Gefitinib) [32]. Kim et al. found that
lung cancer patients with more than 30 pack-years smok-
ing dosage have significantly poorer survival outcome on
tyrosine kinase inhibitor therapy [33]. Collectively, this
study suggested potential network-level evidence that
smoking may increase cancer cellular network heterogen-
eity and further contribute to tyrosine kinase inhibitor re-
sistance. Hence, our network analysis yielded a potential
network-based predictor for quantitatively characterizing
the clinical outcome of molecularly targeted treatment
(e.g. tyrosine kinase inhibitor) in lung cancer.

Limitations and future directions

There are several potential limitations in current study.
For example, we used large-scale RNA-Seq data across
four stages of tumor progression in 6 cancer types from
TCGA to study tumor progression quantified by net-
work entropy. However, we did not observe a consistent
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pattern of network entropy distribution in four different
stages of progression across 6 cancer types. One possible
reason is that most of the current TCGA projects only
generated RNA-Seq data for primary tumors. Although
different tumor stage information was annotated for
TCGA samples, most tumor samples sequenced in
TCGA were collected from primary tumors, not meta-
static tumors, limiting the accuracy of our network en-
tropy analysis as shown in Fig. 4. Thus, further
investigations are warranted for systematically examining
the network entropy based on data sequenced in both
primary and metastatic tumors, which we hope will be
prompted by the findings herein. For example, a recent
TCGA study sequenced 266 metastases and 67 primary
cutaneous melanomas [34]. This will provide more use-
ful datasets to examine melanoma cellular network het-
erogeneity in the future.

In addition, although we used a large-scale PIN for
network entropy and unbalanced motif analysis, current
network analyses also have some limitations, such as
network incompleteness and possible data noise. For ex-
ample, current PPI networks identified by high-
throughput technologies may only cover less than 20 %
of all potential pairwise PPIs in the human cells [35, 36].
PPIs are tissue or cell type specificity. However, we as-
sembled all PPIs from different tissues or cell types as a
global background in this study, which may cause poten-
tial data bias. In addition, the unbalanced number in tu-
mors, normal tissues, and different tumor stages
(Additional file 1: Table S1) may also influence the results.
For example, the number of stage IV BRCA samples was
15, much less than the numbers of BRCA samples in
stages I, IT and III (Additional file 1: Table S2). While the
number of stage IV LUAD sample (22) was smaller that
that normal lung tissue samples (58), the network entropy
in stage IV LUAD was higher than that of normal lung tis-
sues (p <0.01). This result suggested that the unbalanced
number of tumor samples during tumor progression
might not influence the overall conclusion in this study.
Finally, ultra-mutated tumor samples in some cancer
types such as colon cancer may also influence the analysis
result. For instance, a small set of tumor samples can con-
tribute to a large proportion (e.g., up to 40 %) of total
somatic mutations observed in the whole cancer cohort
[37]. Figure 4 revealed that stage IV had the lowest
genome-wide network entropy distribution compared to
that of stages I-III in COAD. However, we did not observe
a similar trend of network entropy distribution for four
cancer-related gene sets: SMGs, CGC genes, OGs, and
TSGs, in COAD.

Conclusion
In this study, we proposed a network entropy and unbal-
anced motif approach to systematically investigate network
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features during tumor initiation, progression, and antican-
cer drug responses quantified by cellular network hetero-
geneity and modularity under the notion of Waddington’s
landscape. We found that tumorigenesis was characterized
by increased network entropy and unbalanced motifs com-
pared to that of normal tissues using TCGA data. Further-
more, the increased network entropy may be associated
with anticancer drug resistance. In a case study, we found
that smoking is characterized by the increased cellular
network heterogeneity, suggesting potential network level
evidence associated with tyrosine kinase inhibitor
(e.g. Gefitinib) resistance induced by smoking in lung
cancer. In addition, different stages of tumor progression
are characterized by highly heterogeneous network en-
tropy, which may contribute to high risk of drug re-
sistance in the molecularly targeted cancer therapy. In
summary, this study could provide new potential network-
based predictively prognostic and therapeutic biomarkers
for cancer systems biology study and the molecularly tar-
geted cancer therapeutics.

Methods

Construction of protein interaction network

We constructed a high-quality PIN covering 113,473
unique interactions connecting 13,579 protein-coding
genes based on our previous studies [6, 13, 28, 38]. We
implemented three data cleaning steps to select a high-
quality PPI pair. First, we only compiled a high-quality
PPI pair if it was experimentally validated in human
models through a well-defined experimental protocol.
Second, we re-annotated all protein-coding genes using
gene Entrez ID and the gene official symbols from the
National Center for Biotechnology Information (NCBI)
database [39]. Finally, self-loop interactions or dupli-
cated PPI pairs were excluded. The detailed data collec-
tion and preparation are provided in our previous
studies [6, 13, 28].

Preparation of RNA-Seq data and gene co-expression
analysis

We downloaded RNA-Seq V2 data from 3557 tumor
samples across 8 cancer types and 418 matched normal
tissues from TCGA (October 02, 2013) [40]. These 8
cancer types consisted of BRCA, COAD, HNSC, KIRC,
LUAD, LUSC, THCA, and UCEC (Additional file 1:
Table S1). In this study, we implemented two steps to
define the genes that were expressed: (i) in a sample, we
filtered out a gene whose mRNA expression was below
the 20 % of all mMRNAs ordered by their expression level;
and (ii) we further filtered out a gene that expressed in
less than 20 % of samples in the whole expression
matrix. We also extracted RNA-Seq V2 data for smokers
and never-smokers in LUAD, LUSC, and HNSC from
TCGA (January 05, 2015) using the R package
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implemented in TCGA-Assembler [41]. In addition, we
collected normalized microarray gene expression data
for drug sensitive versus resistant cancer cell lines from
the GDSC database (July 01, 2014) [15, 16]. Finally, we
calculated PCC value for each gene-gene pair and
mapped PCC value of each gene-gene pair onto afore-
mentioned PIN to construct CePINs for cancer types
(including different stages of tumor progression), normal
tissues, smokers versus non-smokers, and drug sensitive
versus resistant cancer cell lines, respectively (Fig. 1a).

Network entropy analysis

In this study, we denoted PCC;; as PCC value of a gene co-

expression pair between gene i and j in PIN. Since -1 <

PCCj;<1, the edge weights of CePIN can be redefined as

Wy =3 (1 + PCC i/) based on two previous studies [9, 12].
For each gene i, we calculate the local Shannon-Jayne

entropy as follows:

Si = log Zpl, log(p,)

Where k; is the number of gene i’s neighbors,
N(i) is the set of gene i’s neighbors in CePIN
and p; = —4__ is the proportion of gene i’s
Z,‘eN(z’)W"f
total weights that links to gene j.

We quantified cancer cellular network heterogeneity
as a function of the network entropy under on the no-
tion of Waddington’s landscape [10, 17], which can be
represented as the distribution of local entropies across
the whole network.

Balanced versus unbalanced motif analysis

Relations between genes on CePIN often reflect a mix-
ture of positive and negative PCC value (negative versus
positive PPI in the right panel of Fig. 1a). The interplay
between positive and negative relationships significantly
affects the network structure. In this study, the signed
triangle motifs on three genes are extracted from CePIN,
where the edge ij in the triangle motif is signed as posi-
tive when PCCj; >0, and negative when PCC;; < 0. There
are four types of signed triangle motifs (See Fig. 1c). Fol-
lowing the classical structural balance theory [42], the
motifs with odd number (1 or 3) of positive edges are
more plausible, which are considered as the balanced
motifs (balanced motif Type I and Type II in Fig. 1c),
while the motifs with even number (0 or 2) of posi-
tive edges are considered as the unbalanced motifs
(unbalanced motifs Type I and Type II in Fig. 1lc).
And the balanced motifs should be more prevalent in
stable systems.
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Here, the proportion of the unbalanced motifs (p,,,)
could be used to represent the disorder level of the net-
work structure:

Num

pum = Ntm

where, N, is the number of the unbalanced motifs in
the network, and N, is the total number of the triangle
motifs in the network. The large p,,, value shows the
more heterogeneous network structure, and we can de-
tect the evolution of the various states for different can-
cer types by comparing the p,,, value. To perform
reliably balanced versus unbalanced motif analysis, we
only kept the significantly co-expressed pairs having p-
value < 0.05 (F-statistics) in each CePIN for unbalanced
versus balanced motif analysis.

Cancer gene sets

We collected four cancer-related gene sets: 614 cancer
SMGs, 487 CGC genes, 477 oncogenes, and 1040 TSGs,
as briefly described in our previous study [28]. The ab-
breviations of these gene sets were described in the Re-
sults section. We further compiled 458 genes that were
involved in sensitivity or resistance of 130 anticancer
drugs from two previous studies [13, 16]. In that study,
the authors comprehensively identified drug-sensitivity
genes on 639 human tumor cell lines using the inte-
grated genomics analysis [16].

Statistical analysis
All statistical tests were performed using the R package
(v3.0.1) [43].

Additional file

Additional file 1: Table S1. The statistics of RNA-Seq data for tumors and
normal tissues in 8 cancer types collected from TCGA. Table S2. The
statistics of RNA-Seq data for four stages of tumor progression in 6
cancer types collected from TCGA. Figure S1. Local network entropy
distribution for cancer significantly mutated genes among four stages (I-IV) of
tumor progression in 6 cancer types. Figure S2. Local network entropy distri-
bution for Cancer Gene Census (CGC) genes among four stages (I-V) of tumor
progression in 6 cancer types. Figure S3. Local network entropy distribution
for oncogenes (OGs) among four stages (V) of tumor progression in 6 cancer
types. Figure S4. Local network entropy distribution for tumor suppressor
genes (TSGs) among four stages (HV) of tumor progression in 6 cancer types.
Figure S5. Local network entropy distribution for 458 drug-sensitivity genes in
drug sensitive versus resistant cancer cell lines. (DOCX 994 kb)
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