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Abstract

Background: Alzheimer’s disease (AD) is complex, with genetic, epigenetic, and environmental factors contributing
to disease susceptibility and progression. While significant progress has been made in understanding genetic,
molecular, behavioral, and neurological aspects of AD, relatively little is known about which environmental factors are
important in AD etiology and how they interact with genetic factors in the development of AD. Here, we propose a
data-driven, hypotheses-free computational approach to characterize which and how human gut microbial
metabolites, an important modifiable environmental factor, may contribute to various aspects of AD.

Materials andmethods: We integrated vast amounts of complex and heterogeneous biomedical data, including
disease genetics, chemical genetics, human microbial metabolites, protein-protein interactions, and genetic
pathways. We developed a novel network-based approach to model the genetic interactions between all human
microbial metabolites and genetic diseases. We identified metabolites that share significant genetic commonality
with AD in humans. We developed signal prioritization algorithms to identify the co-regulated genetic pathways
underlying the identified AD-metabolite (brain-gut) connections.

Results: We validated our algorithms using known microbial metabolite-AD associations, namely
AD-3,4-dihydroxybenzeneacetic acid, AD-mannitol, and AD-succinic acid. Our study provides supporting
evidence that human gut microbial metabolites may be an important mechanistic link between environmental
exposure and various aspects of AD. We identified metabolites that are significantly associated with various aspects
in AD, including AD susceptibility, cognitive decline, biomarkers, age of onset, and the onset of AD. We identified
common genetic pathways underlying AD biomarkers and its top one ranked metabolite trimethylamine N-oxide
(TMAO), a gut microbial metabolite of dietary meat and fat. These coregulated pathways between TMAO-AD may
provide insights into the mechanisms of how dietary meat and fat contribute to AD.

Conclusions: Employing an integrated computational approach, we provide intriguing and supporting evidence for
a role of microbial metabolites, an important modifiable environmental factor, in AD etiology. Our study provides the
foundations for subsequent hypothesis-driven biological and clinical studies of brain-gut-environment interactions
in AD.
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Background
Human gut microbiota (> 1014 microbial cells comprising
about 1000 different species) are important modifiable
environmental factors that we are exposed to continu-
ously [1]. These microbiota exist in a symbiotic rela-
tionship with a human host by metabolizing compounds
that humans are unable to utilize and by controlling the
immune balance of the human body [2]. Accumulating
clinical and biomedical evidence indicates that gut micro-
biota and their metabolites influence brain function and
behavior in a range of central nervous system (CNS) disor-
ders, including depression, cognitive decline, autism, and
multiple sclerosis [3].
Human gut microbiota contribute to brain function,

not only via neural, humoral, immune pathways, but
also via the cumulative effects of microbial metabolites
[3]. Human metabolism encompasses a combination of
microbial and human enzyme activities [4]. Undigested
dietary components are fermented by microbiota to pro-
duce a wide array of metabolites such as bile acids, choline
and short-chain fatty acids (SCFAs) that are essential for
health [1]. It has become increasingly clear that metabolite
activities of gut microbiota provide a mechanistic connec-
tion between environmental factors and brain function
and behavior [3, 5].
Although the link between microbial metabolism and

brain has been recognized, the complex relationships
between microbial metabolites and AD remain unchar-
acterized; the mechanisms underlying how microbial
metabolites interact with AD genetics in promoting
or protecting against AD remain unknown. Computa-
tional approaches have been widely used in biomedi-
cal fields, including drug discovery [6–10] and disease
genetics prediction [11–13]. In one of our recent stud-
ies, we developed a hypothesis-driven genome-wide sys-
tems approach to reveal the strong mechanistic links
between colorectal cancer and trimethylamine N-oxide
(TMAO), a gut microbial metabolite of dietary meat
and fat [14]. To date, however, computational approaches
to systematically characterizing and understanding the
complex host genome-microbiome metabolism inter-
actions in AD have not been undertaken. Here, we
propose a comprehensive, data-driven, hypotheses-freeb
computational approach to characterize which and how
gut microbial metabolites interact with AD genetics
in humans.

Data sets
We used the publicly available databases of human
metabolome, disease genetics, chemical genetics and pro-
tein functional interactions, and signaling pathways for
our task of characterizing and understanding human gut
microbial metabolites that are genetically related to AD
(Fig. 1).

The HumanMetabolome Database (HMDB)
We used the HMDB to obtain a list of metabolites
produced by human gut microbiota. The HMDB contains
detailed information about small molecule metabolites
found in the human body [15]. The database contains
41,806 metabolites, among which 171 metabolites origi-
nated in human microbial metabolism.

Chemical genetics data
We used STITCH (Search Tool for Interactions of Chem-
icals) database [16] to obtain metabolite-gene associa-
tions for the 171 microbial metabolites from the HMDB.
STITCH is a database of known and predicted interac-
tions of chemicals and proteins supported by evidence
derived from experiments, curated databases, and pub-
lished literature [16]. STITCH contains data on the inter-
actions between 300,000 small molecules and 2.6 million
proteins from 1133 organisms, each interaction being
associated with a score measuring the evidence of the
association. In this study, we used chemical-gene associa-
tions in humans.

Disease genetics data
We used two complementary disease genetics databases
to obtain disease-gene associations. The first data
resource is the Catalog of Published Genome-Wide Asso-
ciation Studies (GWAS catalog) from the US National
Human Genome Research Institute (NHGRI) [17]. The
GWAS catalog is an exhaustive source containing
descriptions of disease/trait-associated single nucleotide
polymorphisms (SNPs) from published GWAS data. Cur-
rently, the GWAS catalog contains 22,470 disease/trait-
gene pairs, representing 8,689 genes and 881 common
complex diseases/traits, including multiple aspects of AD
(“cognitive decline,” “biomarkers,” “age of onset,” and “late
onset”).
The second resource of disease genetics is the Online

Mendelian Inheritance in Man database (OMIM), cur-
rently the most comprehensive source of disease genet-
ics for Mendelian disorders [18]. OMIM contains both
rare Mendelian genetic disorders and mutations that
can cause susceptibility to multifactorial disorders. Cur-
rently, OMIM includes 15,462 disease-gene pairs for
8,831 genes and 5,983 diseases, including “susceptibility
to AD.”

Protein-protein interaction data
We used the functional protein-protein interaction (PPI)
data from the STRING (Search Tool for the Retrieval of
Interacting Genes/Proteins) database tomodel the genetic
interactions between metabolites and diseases. STRING
is a comprehensive functional PPI database and contains
4,137,054 PPI pairs in human, representing 17,756 pro-
teins/genes [19].
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Fig. 1 Datasets used in this study

Genetic pathway data
We used the rich pathway information from the Molec-
ular Signatures Database (MSigDB) [20] to identify the
interplaying pathways underlying identified microbial
metabolites and AD. Currently, MSigDB contains 10,295
annotated pathways and gene sets collected from vari-
ous sources such as online pathway databases, literature,
knowledge of domain experts, expression signatures of
genetic and chemical perturbations, and cell states and
perturbations within the immune system.

Methods
Findmicrobial metabolites that are significantly associated
with AD
Construct genetic disease networks (GDNs)
We constructed two genetic disease networks using
22,470 disease/trait-gene pairs from the GWAS cata-
log and 15,462 disease-gene pairs from OMIM, respec-
tively. On each network, two diseases are connected if
they share genes. The edge weights on the networks
were determined by cosine similarities [21] of disease-
associated genes. Since some diseases do not share genes
directly but their associated genes interact or participate
in the same pathways, we also investigated an alterna-
tive approach to connect diseases on the networks: two
diseases were connected if their associated genes (pro-
teins) interact or participate in the same pathways. We
used functional protein-protein interaction data from
the STRING database to model the genetic interactions
between metabolites and diseases (Fig. 2a).

Model genetic interactions betweenmicrobial metabolites
and diseases
For each of the 171 metabolites, we modeled genetic
interactions between the metabolite and all diseases by
inserting a node representing the metabolite into GDNs
(Fig. 2b). On the transformed metabolite-disease genetic
network (mGDN), a metabolite node is connected to

a disease node if the metabolite-associated genes over-
lap with disease-associated genes. Similar to the original
GDN construction, the edge weights between the inserted
metabolite and disease nodes were determined by the
cosine similarity between the metabolite- and the disease-
associated genes. We generated 1000 random mGDNs by
randomly shuffling the edges of the real mGDN. Ran-
dom mGDNs were used to assess the significance of the
associations between metabolites and AD.

Find AD-associatedmetabolites
We applied the network-based ranking algorithms that
we recently developed [8–10, 12–14] to prioritize diseases
that are genetically related to each of the 171 metabolites.
The output of this network-based ranking algorithm is a
list of ranked diseases (AD and other diseases) for each of
the 171 microbial metabolites (Fig. 2b).

Establish statistical significance ofmetabolite-AD
associations
For each metabolite (e.g. TMAO, butyrate, acetate), we
obtained a ranked list of diseases from the real mGDN
and 1000 ranked lists of diseases from the 1000 random
mGDNs. We compared the ranking of AD among dis-
eases derived from the real mGDN (i.e. that AD ranked
among the top 1.25 % for TMAO) to those from random
mGDNs (that AD ranked among the top 44 % on aver-
age for TMAO) and performed a t-test to assess statistical
significance.

Algorithm validation
In this study, we performed the following evalua-
tions: (1) we tested our algorithm using known AD-
associated microbial metabolites from HMDB: 3,4-
dihydroxybenzeneacetic acid, mannitol, and succinic acid;
(2) we evaluated top 20 associations by performing lit-
erature search; (3) we tested if the same observations
were seen when two complementary disease genetics data
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Fig. 2Model the genetic interactions between microbial metabolites and diseases by constructing a metabolite-disease genetic interaction
network (mGDN) (a) and prioritizing diseases, including AD, for each metabolite (b)

resources were used: the GWAS catalog and the OMIM
database; (4) we tested if the same observations were
seen across multiple traits of AD, such as “susceptibil-
ity,” “cognitive decline,” “biomarkers,” “age of onset,” and
“late onset;” and (5) we tested if the metabolites are also
involved in AD-associated genetic pathways (described
later).

Identify signaling pathways that may be co-regulated by
AD andmetabolites
To better understand the molecular mechanisms under-
lying identified AD-metabolite connections, we inves-
tigated genetic pathways that may be co-regulated by
both the metabolites and AD. We selected one specific
metabolite, namely trimethylamine n-oxide (TMAO), for
our analysis. In our study, TMAO is most significantly
associated with AD biomarkers. We retrieved a total
of 54 TMAO-associated human genes from STITCH.
We obtained a total of 26 genes associated with AD
biomarkers from the GWAS catalog. For each TMAO-
or AD-associated gene, we retrieved its corresponding
genetic pathways from MSigDB. We then obtained a set
of genetic pathways for TMAO and a set of AD-
associated genetic pathways. We intersected TMAO- and
AD-associated pathways to identify the shared pathways.
These shared pathways were then prioritized on the basis
of their relevance to both TMAO and AD. The rank-
ing score for a given common pathway is defined as:

Rcommon_pathway =
n∑

i=1
Gi

m∑

j=1
Gj , where Gi is a TMAO-

associated gene in the pathway and Gj is a AD-associated
gene in the same pathway. The intuition is that a path-
way that contains both many TMAO-associated genes
and many AD-associated genes will rank higher than a
pathway that contains fewer such genes (Fig. 3).

Results
Known AD-associated metabolites ranked highly
We evaluated our algorithm using three known metabo-
lites: mannitol, succinate, and 3,4-dihydroxypheny-
lacetaldehyde (DOPAL). Mannitol is a sugar alcohol.
Studies indicate that mannitol is associated with AD
[22] and other diseases including AIDS, cytochrome C
oxidase deficiency, lung cancer, and ribose-5-phosphate
isomerase deficiency. Succinic acid is a dicarboxylic acid
and a component of the citric acid cycle electron transfer
chain in the mitochondria. Studies show that succinic
acid is associated with AD [23] and other human mito-
chondrial disease such as Hungtinton disease. DOPAC is
a phenolic acid and a neuronal metabolite of dopamine
(DA). Studies have demonstrated that DA-derived alde-
hyde is a reactive electrophile and toxic to dopaminergic
cells. DOPAC is associated with AD [24] and other
neurological disorders including Parkinson’s disease,
Encephalitis [25].
Our study demonstrate that mannitol is significantly

associated with multiple traits of AD including “cognitive
decline,” “biomarkers,” “late onset,” and “susceptibility”
(Table 1). Succinic acid is significantly associated with
both ‘cognitive decline’ and ‘susceptibility’ in AD. DOPAC
is significantly associated with ‘biomarkers’, ‘age of onset’
and ‘susceptibility’ in AD (Table 1). In summary, pre-
vious biomedical studies demonstrated altered levels of
these three metabolites in AD patients [22–24]. Our study
provides additional evidence that these microbial metabo-
lites may be mechanically linked to AD genetics through
shared genes or genetic pathways.

Microbialmetabolites that are significantly associated with AD
We identified 56 metabolites significantly associated with
“cognitive decline” in AD, 62 with “biomarkers,” 59 with
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Fig. 3 Find shared genetic pathways between AD and its associated metabolites

“age of onset” in AD, 55 with “late onset” of AD, and 45
with AD susceptibility. As shown in Fig. 4, the metabo-
lites associated with one trait/aspect of AD are quite
different from ones associated with the other aspects
of AD. For example, the Jaccard similarity, defined as
the size of the intersection divided by the size of the
union of two sets [21], between cognitive decline in AD
(56 metabolites) and AD biomarkers (62 metabolites)
is 0.22, which is much higher than random exception
((56/171)*(62/171)=11.8 %). The two highest profile simi-
larities are betweenAD biomarkers and age of onset in AD
(similarity = 0.42), and between AD biomarkers and late
onset of AD (similarity = 0.47). Given that metabolite sim-
ilarities between different aspects of AD are significantly
higher than random expectation, our results provide an
intriguing hypothesis that gut microbial metabolites may
be one of mechanistic links between different aspects
of AD.
For the trait “cognitive decline” in AD, we manually

evaluated its top 20 metabolites by searching literature
for supporting evidence. Table 2 shows top 20 metabo-
lites along with their enrichments over random, p value
as well as literature evidence supporting their roles in
AD. The three known AD-associated metabolites (man-
nitol, succinic acid, and DOPAC) were among top 20
metabolites.

D-proline ranked at top one. Studies show that a bis(d-
proline) compound, (R)-1-[6-[(R)-2-carboxy-pyrrolidin-
1-yl]-6-oxo-hexanoyl]pyrrolidine-2-carboxylic acid, dep-
leted circulating serum amyloid P component from
cerebrospinal fluid in AD [26]. Our results indicate that
targeting bacteria producing d-proline may provide an
attractive alternative therapeutic approach in removing
amyloids from brain, therefore reversing or inhibiting
cognitive decline in AD.
Several secondary bile acids ranked highly, including

chenodeoxycholic acid glycine conjugate (top 4), tau-
rochenodesoxycholic acid (top 24), and taurodeoxycholic
acid (top 26). Secondary bile acids are potent inhibitors
of apoptosis in different cell types. The potential role of
apoptosis in Alzheimer’s disease (AD) has been an area of
intense research in recent years. Studies provide evidence
for the anti-apoptotic role of bile acids in experimental
AD [27].
Both cadaverine and putrescine ranked highly. Cadav-

erine and putrescine are polyamine, which are known
to be closely related with cell growth, cell proliferation,
and synthesis of proteins and nucleic acids. The neuro-
toxic amyloid ?-peptide in AD is known to up-regulate
polyamine metabolism by increasing ornithine decar-
boxylase activity and polyamine uptake by initiating free
radical damage. Polyamines play an important role in

Table 1 Three known AD-associated metabolites ranked highly

Metabolite AD types Enrichment P value

Mannitol AD cognitive decline 353.4 % 2.91E-28

AD biomarkers 201.5 % 1.16E-19

AD (late onset) 54.8 % 6.23E-13

AD, susceptibility to 8957.1 % 2.34E-32

Succinic acid AD cognitive decline 459.5 % 2.37E-31

AD, susceptibility to 1662.5 % 1.25E-30

3,4-dihydroxybenzeneacetic acid (DOPAC) AD biomarkers 262.7 % 9.40E-26

AD (age of onset) 47.2 % 1.75E-8

AD, susceptibility to 1602.5 % 1.49E-30
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Fig. 4 Jaccard similarities of metabolites that are significantly associated with two different traits of AD (cognitive decline, biomarkers, age of onset, late
onset, susceptibility)

response to neurodegenerative conditions. Altered lev-
els of polyamines have been found in tissue, hair and
body fluids of patients with neuromuscular diseases and
neurodegenerative conditions [28].
Trans-ferulic acid ranked at top 14. Trans-ferulic acid is

one of the most abundant phenolic acids in fruit and veg-
etables and a potent antioxidant. Free-radicals derived
from mitochondrial dysfunction and from the cyclooxy-
genase enzyme activity play a role in oxidative damage of
brain. Food rich in ferulic acid and other the antioxidant
is considered a nutritional approach to reduce oxidative
damage and amyloid pathology in AD [29–31].
Pyrrolidine ranked at top 12. Pyrrolidine dithiocarba-

mate (PDTC) is a nuclear factor-κB (NF-κB) inhibitor,
antioxidant and antiinflammatory agent. PDTC activates
Akt and improves spatial learning in mouse model of
AD [32].
Recent epidemiological, clinical, and experimental data

suggest that cholesterol may play a role in AD pathogen-
esis and plaque formation. Cholesterolemia is involved in
the development of amyloid in AD. Recent work demon-
strated that diet-induced hypercholesterolemia resulted
in dramatic acceleration of the neuropathological and
biochemical changes in the transgenic mice [33, 34].

D-glutamic acid ranked at top 17. Glutamate is
the major fast excitatory neurotransmitter and is
involved in almost all CNS functions. Severe dis-
turbances in glutamate neurotransmission has been
linked with the pathophysiological processes underlying
AD [35].

Genetic pathways that may be co-regulated by TMAO and
AD
TMAO ranked at top one for AD biomarkers. Recent
studies have shown a mechanistic link between TMAO,
a gut microbial metabolite of dietary meat and fat, and
risk of CVDs, and established an obligatory role of gut
microbiota in the generation of proatherosclerotic TMAO
from dietary L-carnitine and phosphatidylcholine, abun-
dantly present in red meat and dietary fat, respectively
[36–39]. Our results showing that TMAO is highly associ-
ated with AD is consistent with epidemiological evidence
that western diet rich in high fat is associated with AD
[40–43]. Multiple cohort studies and large randomized
trials have suggested that Mediterranean diet, which is
low in red meat and high in fruits, vegetables, whole
grains, beans, nuts, and seeds improves cardiovascular
outcomes, including stroke, and these effects may directly
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Table 2 Top 20 metabolites that are significantly associated with
cognitive decline in AD

Metabolite Enrichment P value Literature
fold

d-proline 28.7 1.50E-39 [26]

1,2,3-propanetricarboxylic acid 19.1 8.45E-39

5-aminopentanoic acid 12.1 1.80E-37

chenodeoxycholic acid 8.5 6.29E-36 [27]
glycine conjugate

cadaverine 7.66 2.42E-35 [28]

benzoyl-coa 7.66 2.42E-35

diaminopimelic acid 5.9 1.45E-33

putrescine 4.9 5.85E-32 [28]

trehalose 4.7 1.49E-31

succinic acid 4.6 2.37E-31 [23]

5-methylthioribulose 1-phosphate 4.4 6.05E-31

pyrrolidine 4.2 2.49E-30 [32]

citramalic acid 4.0 6.42E-30

trans-ferulic acid 3.8 4.30E-29 [29–31]

mannitol 3.5 2.91E-28 [22]

4-hydroxybenzoic acid (DOPAC) 3.6 2.91E-28 [24]

d-glutamic acid 3.4 7.60E-28 [35]

melibiose 3.3 1.99E-27

5alpha-cholestanol 3.3 3.24E-27 [33, 34]

1-butanol 3.0 9.63E-26

The three known metabolites (mannitol, succinic acid, and DOPAC) are highlighted

or indirectly promote lower dementia risk [44, 45]. Our
study demonstrate that TMAO is genetically associated
with AD and this finding is consistent with observed
correlations between AD and CVD dietary risk factors
and the mechanistic links between TMAO and CVD
pathogenesis.

We investigated the potential genetic pathways
underlying the strong association between TMAO and
AD. We identified a total of 27 genetic pathways associ-
ated with AD biomarkers, and a total of 171 pathways
associated with TMAO-related genes. Among these path-
ways, 9 pathways are involved in both AD and TMAO,
including pathways related to “Alzheimer’s disease,”
“Axon guidance,” “immune systems,” “neuron signaling,”
and “lipid and protein metabolism”. Table 3 shows top
9 pathways for AD, TMAO, and both. These pathways
may provide insights into the diet-gut-microbiome-brain
interactions. The fact that AD is highly associated with
TMAO provides intriguing supporting evidence for a role
of diet and microbial metabolites in AD etiology.

Discussion and conclusions
Alzheimer’s disease is complex, with genetic, epige-
netic, and environmental factors contributing to disease
susceptibility and progression. Accumulating clinical and
biomedical evidence indicates that gut microbiota and
their metabolites influence brain function and behav-
ior in a range of central nervous system (CNS) disor-
ders. Employing an integrated computational approach,
we provide intriguing and supporting evidence for a role
of microbial7metabolites in AD etiology. Our algorithm is
highly dynamic and flexible and additional disease genetic
data can be easily incorporated. Our study could serve as
a starting point for others to conduct hypothesis-driven
functional studies of gut-brain-environment interactions
in AD and other diseases. In summary, the identifica-
tion of microbial metabolites and the understanding of
their role as key mediators through which these bacteria
promote/protect against AD may provide insight into
the basic mechanisms of AD etiology, facilitate our
understanding of the complex host genome-microbiome
interactions in AD pathogenesis, and enable/activate new
possibilities for AD diagnosis, prevention, and treatment.

Table 3 Top nine ranked genetic pathways associated with AD (biomarkers), TMAO and both

AD TMAO AD∩TMAO
(27 pathways) (171 pathways) (9 pathways)

Lipoprotein metabolism Cysteine and methionine metabolism Metabolism of proteins

Metabolism of lipids and lipoproteins Pyruvate metabolism Immune system

Axon guidance Glycolysis / Gluconeogenesis Adaptive immune system

Alzheimer’s disease Propanate metabolism Alzheimer’s disease

Amyotrophic lateral sclerosis (ALS) Transcription Axon guidance

Mitochondrial Protein Import Amyloids Amyotrophic lateral sclerosis (ALS)

Cell junction organization The citric acid (TCA) cycle and respiratory
electron transport

EPHA forward signaling

HDL-mediated lipid transport RNA Polymerase I, RNA Polymerase III, and
Mitochondrial Transcription

EPHB forward signaling

Lipid digestion, mobilization, and transport Splicesome Metabolism of lipids and lipoproteins
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