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Abstract

Background: The high degree of heterogeneity observed in breast cancers makes it very difficult to classify the
cancer patients into distinct clinical subgroups and consequently limits the ability to devise effective therapeutic
strategies. Several classification strategies based on ER/PR/HER2 expression or the expression profiles of a panel of
genes have helped, but such methods often produce misleading results due to their dynamic nature. In contrast,
somatic DNA mutations are relatively stable and lead to initiation and progression of many sporadic cancers. Hence
in this study, we explore the use of gene mutation profiles to classify, characterize and predict the subgroups of
breast cancers.

Results: We analyzed the whole exome sequencing data from 358 ethnically similar breast cancer patients in The
Cancer Genome Atlas (TCGA) project. Somatic and non-synonymous single nucleotide variants identified from each
patient were assigned a quantitative score (C-score) that represents the extent of negative impact on the gene
function. Using these scores with non-negative matrix factorization method, we clustered the patients into three
subgroups. By comparing the clinical stage of patients, we identified an early-stage-enriched and a late-stage-
enriched subgroup. Comparison of the mutation scores of early and late-stage-enriched subgroups identified 358
genes that carry significantly higher mutations rates in the late stage subgroup. Functional characterization of these
genes revealed important functional gene families that carry a heavy mutational load in the late state rich
subgroup of patients. Finally, using the identified subgroups, we also developed a supervised classification model to
predict the stage of the patients.

Conclusions: This study demonstrates that gene mutation profiles can be effectively used with unsupervised
machine-learning methods to identify clinically distinguishable breast cancer subgroups. The classification model
developed in this method could provide a reasonable prediction of the cancer patients’ stage solely based on their
mutation profiles. This study represents the first use of only somatic mutation profile data to identify and predict
breast cancer subgroups and this generic methodology can also be applied to other cancer datasets.
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Background

Breast cancer (BC) is a genetically and clinically hetero-
geneous disease; hence, the effectiveness of a specific
treatment greatly varies among BC patients. There have
been several widely accepted methods to classify breast
cancers into distinct subtypes [1-7], such as histopatho-
logical classification based on the morphological fea-
tures, and analysis of the presence or absence of
immunohistochemical (IHC) markers like ER, PR and
HER2. In addition, application of unbiased hierarchical
clustering on gene expression assays has led to the iden-
tification of five distinct breast cancer mRNA subtypes:
luminal A, luminal B, HER2 overexpression, basal-like
and normal breast tissue-like [2]. The differences in gene
expression patterns in these subtypes reflect the basic al-
terations in the cell biology of the tumor and are associ-
ated with significant variation in clinical outcome such
as overall survival and disease free survival [8]. Particu-
larly, Luminal A subtype patients are found to have rela-
tively better prognosis while basal-like subtype patients
having the worst prognosis. Importantly, this molecular
classification has successfully discovered sub-classes of
ER-positive and/or PR-positive breast cancers as luminal
A and luminal B. This is a significant achievement be-
cause even though clinical assessment of IHC utilizes
ER, PR, and HER2 status, these markers could not let
the separation of these two distinct subtypes which have
very different clinical outcomes [3, 8].

Currently, the microarray-based BC classification has
been regarded as the gold standard [9]. However, the
main limitation of this method is its inability to assign
samples consistently to specific molecular subtypes [10-
12]. A main reason is that the dynamic nature of gene
expression within an individual may yield misleading re-
sults for classification. In contrast, gene mutations at
DNA level can be stably detected. As all cancers carry
somatic mutations in their genomes and mutational het-
erogeneity widely exists in cancers, classification of can-
cers based on the mutation profile could be useful for
cancer diagnosis and treatment. On the other hand, with
the advancement of new sequencing technologies, genome
sequencing has become affordable for routine diagnostic
purposes. Hence, exploration of cancer classification based
on gene mutation profiles and incorporation of the classi-
fication into the clinical decision support system could be
meaningful for personalized care of cancer patients.

Several studies that integrated multiple types of
molecular data for breast cancer clustering have been
proposed. Curtis et al. [13] suggested a novel molecular
stratification of breast cancer by combining genome and
transcriptome assessments of 2000 breast cancer pa-
tients. Based on the impact of somatic copy number
aberrations on the transcriptome, they revealed novel
subgroups of breast cancers. Likewise, Ali et al. [5]
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classified breast cancers into ten subtypes based on the
integration of genomic (copy number variation) and
transcriptomic (gene expression) data. And in another
study [6], the authors proposed a computational method
that combined gene expression and DNA methylation
data to implement machine learning aided classification
of breast cancer patients. In a more recent study [7], the
authors proposed a network-based stratification method
to classify cancers by combining somatic mutation pro-
files with gene interaction networks, and identified four
subtypes of breast cancers.

It is often difficult to predict the impact of single nu-
cleotide mutations in the genome at a molecular level
and consequently their effect on cancer initiation and
progression. In addition, somatic mutations are often
sparsely distributed in different cancer samples. There-
fore, previous studies used somatic mutation data as an
auxiliary information in combination with other data
types to classify cancer and/or used as a binary entity
(the presence or absence of a mutation) [7]. This strat-
egy is over simplified, given the fact that all mutations
are not identical and their impact on the clinical out-
come often broadly varies based on many factors such as
the genomic location of mutations (coding vs. non-
coding), perturbing the mRNA transcription (stop-gain
or stop-loss mutations, frame shifts, etc.) or altering the
amino acids (synonymous vs. non-synonymous) in the
encoded proteins. Hence, quantification of the deleteri-
ous impact of mutations on the gene function, and the
use of this information in the mutation-based clustering
scheme could yield meaningful results.

In this study, we developed a novel method to classify
breast cancers based on the quantification of somatic
mutation profiles. We analyzed the whole exome se-
quencing data from 358 ethnically similar BC patients in
The Cancer Genome Atlas (TCGA) project. We first
scored the functional impact of each variant using Com-
bined Annotation—Dependent Depletion (CADD) scores
[14], and then clustered the 358 BC patients into three
subgroups using the Non-negative Matrix Factorization
(NMF) method. Furthermore, we investigated the bio-
logical implications of the classes that we discovered in
this study. Finally, we developed a computational model
to predict the subgroup of the BC patients using super-
vised machine learning methods. The approach pre-
sented in this study exhibits a generic methodology that
might be applied for classification of other cancer types.

Results and discussion

Data representation and challenges

Our initial observation on the mutation score matrix
showed that, the C-scores range from 0 to 1417.14 and dis-
tribution of scores for top ten variant genes can be seen in
Fig. 1. Comparison against the COSMIC database shows
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Fig. 1 Distribution of total mutational scores for the top ten variant genes. The top 10 most heavily mutated genes include several proven cancer
associated genes including MUC4 and OBSCN

that nine out of these ten genes (with the exception of
FAMB38A gene) have evidence of abundant accumulation of
somatic mutations in large population screens [15].

Somatic mutation profiles of BC patients exhibit a very
sparse data form, unlike other data types such as gene
expression or methylation in which nearly all genes or
markers are assigned a quantitative value in all the patients.
Even clinically identical patients may share no more than a
single mutation [16-18]. Therefore, this problem intro-
duces too many zero valued entries to the main data struc-
ture (96 %). On the other hand, from machine learning
perspective, having a limited number of patients (a far less
number of patients than the number of effected genes in a
cohort) introduces a dimensionality challenge commonly
known as the “curse of dimensionality” in machine learn-
ing. In this study, we are faced with this challenge as we
observed the sample-to-feature ratio of 1:50 (358/18117) in
the main data structure.

In order to overcome the aforementioned challenges,
generally there are two popular approaches, namely; feature
extraction and feature selection. Feature extraction trans-
forms the current existing features into a lower dimensional
space and widely used example methods include principal
component analysis (PCA) and linear discriminant analysis
(LDA), while feature selection selects a subset of features
without applying any transformation. These methods in-
crease the sample-to-feature ratio and decrease the sparse-
ness hence making the clustering both feasible and more
effective. In this study, we used feature selection by ranking
the features (genes) in decreasing order of their variance
value and selected top n features for clustering (see
methods for more details). We optimized the size of n to
be 854 genes in our clustering method.

Classification of breast cancers based on somatic
mutations

Unsupervised clustering is the task of grouping a set of
samples that have no label information, which results in
grouping samples in such a way that samples in the
same group are more similar in a specified measure to
each other than to those in the other groups. There are
several methods trying to achieve this goal such as k-
means clustering, hierarchical clustering and expectation
maximization (EM) algorithms. However, these methods
perform poorly or cannot come to a solution when
applied to sparse data, as is the case in our study. There-
fore, we selected to use NMF because of its proven
superior performance when tested on biological data
based applications [19-21]. NMF was introduced in its
modern formulation by Lee and Seung [21] as a method
to decompose images.

As a factorization method, NMF algorithm takes our
mutation score matrix as the input and decomposes it to
two smaller matrices (basis matrix W and coefficient
matrix H). The output coefficient matrix (matrix H) is
used to make sample cluster assignments. Refer to
methods for more details.

Using the NMF clustering algorithm on our dataset, we
stably clustered the samples into three groups using the
top 854 genes, which have the highest variance values of
mutation scores across all the samples. The three groups
Cluster 1, 2, and 3 involve 169, 121 and 68 patients,
respectively. Refer to methods section for more details.

In Fig. 2, we show a representation of the input data in
the mutation score matrix, focusing only the top 50 vari-
ant genes for illustration purpose. As it can be seen, data
represents a very sparse form (most of the cells are
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identified that the main data structure is composed of 96 % zeros
.

Fig. 2 Input matrix with C-scores of the top 50 mutated genes. The heat map shows the most heavily mutated 50 genes. The columns represent
patients (358) and rows represent genes. One of the challenge of the dataset is being extremely sparse which can be seen in the heat map as
most of the cells are colored very close to blue, which indicates a 0 (C-score) mutation score, with the exception of the first few columns. We

colored blue meaning a zero score) which makes most
clustering approaches inapplicable. Additional file 1: Figure
S1 and Fig. 3 are the output matrices from decomposition
of the mutation score matrix, which we input to NMF algo-
rithm. Note that multiplication of the two output matrices
will approximately yield the input data. In Additional file 1:
Figure S1, we see the basis matrix (W), which is not used in
the scope of this study; however it could serve for clustering
purpose of the genes. Figure 3 displays the coefficient
matrix (H), where the rows represent the metagenes that
are a compact representation of all the genes, and columns
represent the patients. We use this matrix to make sample
to cluster associations by assigning the samples to the clus-
ters where we observe the highest metagene value, i.e., the
dark red color, (See methods section for details).

Figure 4 illustrates the stability of the clustering by
displaying the consensus matrix, which was generated
after 100 NMF runs using Brunet’s [22] approach (ex-
plained in methods section). We used the silhouette
score of consensus matrix to determine the optimum

number of genes and clusters. In an ideal clustering case,
we expect to observe values either close to 1 or 0, indi-
cating the probability of two samples being in the same
cluster or not, respectively, which displays solid colored
blocks. A value of one represents the highest probability
that two samples are in the same cluster (red blocks)
and the value of zero denotes the opposite (blue blocks).
In Fig. 4 it can be seen that the dataset is clearly clus-
tered into three distinct groups.

Characterization of discovered clusters

We investigate the clinical significance of discovered
clusters by comparing the BC stage of the patients in
each cluster. For this purpose, we analyze the distribu-
tion of patients according to their disease stage provided
in the TCGA data. We found that Cluster 1 was domi-
nated by early stage patients while Cluster 3 had much
higher proportion of late stage patients compared to
Cluster 1 (Fisher’s exact test p-value = 0.02048, Table 1).
As can be seen in Table 1, the number distribution of
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in methods section

Mixture coefficients

Fig. 3 Coefficient matrix (H). The coefficient matrix (H), 3 x 358 in size, is used for assigning samples to clusters. The columns of the matrix
represent patients and rows represent metagenes. We generated 3 metagenes that are used to cluster patients into 3 groups. The number of
metagenes (rank of clustering) is determined by running the algorithm iteratively over a range of biologically reasonable parameters as explained
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patients in each cluster with stage ratio (number of early
stage patients over late stage patients) for Clusterl is
more than two-fold higher than that of Cluster 3; hence
here we call Cluster 1 as the early-stage-enriched cluster,
Cluster 2 as the mixed cluster and Cluster 3 as the late-
stage-enriched cluster. This separation of patients by
their disease stage indicates that our clustering method
can successfully discriminate breast cancer patients by
their disease stage using only the somatic mutational
profiles of patients from their exome sequencing data.
Next, we compared the somatic mutation profiles of
patients between the early and late-stage-enriched clus-
ters (Cluster 1 vs. Cluster 3). We found that there were
358 genes, which have significantly higher mean muta-
tion scores in the late-stage-enriched cluster (Cluster 3)
than in the early-stage-enriched cluster (Cluster 1) (Wil-
cox rank-sum test, FDR<0.1), but none of the genes
have significantly higher mean mutation scores in Clus-
ter 1 than in Cluster 3. This interesting finding indicates
that these genes may have accumulated deleterious

mutations leading to the progression of breast cancer
into advanced disease states. We identified that tumor
suppressor genes, APC, BRCA2; and oncogene, MLL are
among the 358 genes used in this comparison. Table 2
shows the top 25 most significant genes that are found
to show significantly higher mutation rates in late-stage-
enriched cluster.

We stratified the 358 genes into different gene families
using the Gene Set Enrichment Analysis (GSEA) [23] tool
as shown in Table 3. We observe that a significant propor-
tion of the genes belong to transcription factor and protein
kinase gene families, which are well known to be related to
the progression of BC [24, 25]. Table 4 shows the assign-
ment of these genes to functionally distinct gene families.

Network analysis of differentially mutated genes

We carried out the network analysis of the top 25 highly
mutated genes (Table 2) in the late-stage-enriched cluster
compared to the early-stage-enriched cluster patients, to
understand the functional relationship among these genes.
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Cluster 2

Cluster 3

Fig. 4 Consensus matrix. The consensus matrix is 358 x 358 in size and illustrating the stability of the clustering. In ideal case, all the entries are
expected to be either 0 or 1, making solid colored blocks. The bar on top indicates the clinical stage of each patient. The Silhouette score of this
matrix is 0.958 which indicates a very stable clustering. (Silhouette (consensus) =0.958)

Cluster 1

Stage

M Late Stage
W Early Stage
W Other

The network in Fig. 5, generated using the Ingenuity
Pathway Analysis (IPA) program shows several interaction
hubs, where the genes highlighted in purple color are
highly mutated in the late stage cluster patients. Most of
the genes in our list interact with the central hub protein,
UBC, which is expected because most of the proteins
(especially the unneeded or damaged ones) are ubiquiti-
nated before proteosomal degradation. It has been known
that ubiquitin-proteasome system regulates the degrad-
ation of a number of cancer-associated genes [24]. APC

Table 1 Distribution of patients in the clusters discovered

(adenomatous polyposis coli) is another key tumor sup-
pressor seen in this network that acts as an antagonist of
the Wnt signaling pathway, with a number of roles in can-
cer development and progression such as cell migration,
adhesion, apoptosis, etc. The role of APC mutations in
breast cancers has been well documented in the literature
[25]. It is noteworthy to mention two transcriptional regu-
lator genes in our list, NOTCH2 and KMT2A (MLL).
NOTCH?2 is a key regulator of Akt, and its role is well
documented in several cancers including in apoptosis,

Cluster Number of patients® Number of early stage patients® Number of late stage patients® Ratio®
Cluster 1 166 131 35 374
Cluster 2 120 86 34 2.53
Cluster 3 67 41 26 1.58

“Five patients were not included due to their unknown stage information
PSum of stage | and Il patients in each cluster
“Sum of stage Ill and IV patients in each cluster

9Ratio of the number of early stage patients to the number of late stage patients
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Table 2 Most significant 25 genes that show higher mutation
rates in late-stage-enriched cluster (cluster 3)

Gene symbol p value FDR value
TIN 0 0
MACF1 0 0

FSIP2 0 0
DNAH9 0 0

DST 0 0
KIAA1731 0 0

DSP 0 0
VPS13D 444E-16 4.74E-14
UBR4 1.55E-15 147E-13
CT100RF18 1.89E-15 1.61E-13
SYNET1 2.55E-15 1.98E-13
HERC1 544E-15 3.87E-13
CSMD1 235E-14 1.55E-12
CHD9 2.93E-14 1.79E-12
KIAAT109 3.26E-14 1.86E-12
XIRP2 4.04E-14 2.16E-12
APC 8.06E-14 4.05E-12
GPR98 1.23E-13 5.86E-12
DOCK9 4.62E-13 207E-11
VCAN 5.78E-13 2A7E-11
SYNE2 790E-13 3.21E-11
RIF1 1.06E-12 4.10E-11
NOTCH2 1.40E-12 5.21E-11
WDFY4 1.70E-12 6.05E-11
MLL 2.28E-12 7.79E-11
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proliferation and epithelial-mesenchymal transition
(EMT) pathway [26]. Several somatic mutations in
NOTCH2 are also associated with different cancers in
COSMIC database [27]. MLL is a transcriptional regu-
lator and an oncogene with a variety of roles in cell
proliferation and apoptosis [28].

Class prediction of breast cancers based on somatic
mutations

Using the aforementioned BC clusters, we labeled each
sample with its assigned cluster, and developed a classifi-
cation model to see how accurate we can predict clusters
of unseen breast cancer patients based on their somatic
mutations. With this model, we can predict the cluster of
an unseen patient, using his/her mutation profile; hence
we get insight about the patient’s clinical outcome, like BC
stage. As an example; if the model predicts a new patient
to be in the Cluster3, than we can expect this patient to
be in late stage with certain genes be more likely to carry
higher mutation loads.

We labeled each patient with its assigned cluster and
tested five popular machine learning (ML) algorithms;
Random Forest (RF) [15], Support Vector Machine
(SVM) [29], C4.5 [30], Naive Bayes [31], and k-Nearest
Neighbor(KNN) [32] to find the most appropriate algo-
rithm for our dataset.

We used a 10-fold cross-validation for evaluation of
classifier performances. In each loop of the 10-fold cross
validation, after withdrawal of the test set, we did feature
selection using the information gain feature selection
method [33] and selected the top 500 genes, which
provide the highest information gain based on the training
set. Therefore, in total, we selected ten sets of 500 genes
in the 10-fold cross validation. Out of the aforementioned
ML algorithms, we selected to further use the RF method
in this study as it achieved the best 10-fold cross-

Table 3 GSEA classification of 358 genes that have significantly higher mean mutation scores in cluster 3 compared to cluster 1

GSEA gene families  Cytokines/ Transcription  Homeodomain — Cell Protein Translocated Oncogenes Tumor

growth factors  factors proteins differentiation kinases cancer genes SUppressors
markers

Tumor suppressors 0 1 0 0 0 1 0 4

Oncogenes 0 3 0 0 0 11 12

Translocated 0 4 0 0 0 12

cancer genes

Protein kinases 0 0 0 1 16

Cell differentiation 0 0 0 4

markers

Homeodomain 0 3 3

proteins

Transcription factors 0 25

Cytokines and
growth factors

3

Note that some of the genes in our gene list are not found in any GSEA (Gene Set Enrichment Analysis) gene family
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Table 4 Distribution of genes to functionally distinct gene families, by GSEA

Transcription Protein Translocated cancer  Oncogenes Cell differentiation Tumor Homeodomain Cytokines and growth
factors kinases genes markers SUppressors proteins factors
ARID1B ALPK3 AKAP9 AKAP9 CD44 APC CUX2 LTBP3
BPTF CDK20 CASC5 CASC5 ITGA2B BRCA2 ZFHX3 SEMASB
BRD1 T EP300 MLL L1CAM EP300 ZFHX4 TG
BRPF1 EPHA1 MLL MLLT4 MST1R FANCA

CASZ1 GUCY2D MLLT4 MYH9

CHD3 IRAK1 MYH9 NACA

CUX2 KALRN NACA NOTCH2

EP300 LRRK1 NUMA1 NUMA1

HIVEP1 MST1R NUP98 NUP98

LMO7 PRKDC RNF213 RNF213

MED12 RPS6KA4 TET1 TET1

MGA SPEG WHSC1 WHSC1

MLL STK36

MLLT4 TRRAP

NCOR2 TTN

PHF3 WNK1

RERE

SALL2

SF1

SPEN

SREBF2

UBR4

WHSC1

ZFHX3

ZFHX4

validation accuracy with 70.86 %. We believe that the differentiate the late stage patients against the

sparseness of the data along with the low sample to fea-
ture ratio and difficulty of multiclass prediction are the
reasons behind this moderate accuracy.

Also we observe that SVM algorithms achieved a very
close accuracy but with a loss in TPR, FPR and F meas-
ure. And KNN method yielded the worst accuracy of all
the methods we used. Table 5 shows the performance
measures of each ML algorithm.

Figure 6 shows the receiver operating characteristic
(ROC) curves for each class that illustrate the rela-
tionship between TPR (sensitivity) and FPR (1-specifi-
city) for each class. In the perfect case, an ROC
curve goes straight up on the Y-axis and then to the
right parallel to the X-axis; thus maximizing the area
under the curve (AUC). An AUC close to one indi-
cates that the classifier is predicting with maximum
TP and minimum FP. We calculated the AUC for
clusters 1, 2 and 3 (used interchangeably as class in
this section) as 0.88, 0.8 and 0.95, respectively, indi-
cating that the classification model can better

remaining patients.

We also used a permutation test, by running the same
class prediction procedure with RF on 10,000 randomly
labeled datasets and none of the 10-fold cross-
validations gave us a better accuracy, yielding a very sig-
nificant p-value (p-value < 107 (see methods for more
details). This supports the robustness of our model and
the predication accuracy.

Conclusions

Breast cancers are highly heterogeneous diseases;
therefore, accurate classification of BCs is an import-
ant step towards making accurate treatment decisions.
Next generation sequencing opens new venues to bet-
ter understand the genomic background of BC. In
this study, we developed a novel BC classification sys-
tem that solely uses somatic mutational profiles of
BC patients, generated by whole exome sequencing,
to identify clinically differentiable subgroups together
with a class prediction model.
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Fig. 5 Interaction network analysis of the top 25 genes. The image shows the interactions of the top 25 genes with highest mutation load in the
late-stage-enriched cluster compared to the early-stage-enriched cluster of patients

We used the TCGA breast cancer somatic mutation
dataset including 358 patients and applied necessary
filtration to the reported variations. Following, we
used NMF clustering method to discover subgroups
in the dataset, which yielded 3 clustered groups of
patients. We investigated the clinical significance of
discovered clusters by comparing the BC stage of the
patients in the clusters and found that there exists a
significant separation of patients according to their

Table 5 10-fold cross-validation performance results of five
classifiers

Classifier Accuracy TPR FPR TNR FNR F measure
7086 058 019 081 042 0.59

69.16 049 016 084 051 0.53

Random forest

Support vector machine
148 (C4.5) 60.11 047 026 074 053 047
5724 045 029 071 055 044

4917 025 016 084 075 0.31

Naive Bayes

k-Nearest Neighbors

disease stage; hence we named Cluster 1 as early-
stage-enriched and Cluster 3 as late stage rich. Then
we compared the mean mutation scores of early and
late-stage-enriched clusters and found that late-stage-
enriched cluster patients carry a significantly higher
rate of mutations in 358 genes. We also identified im-
portant networks, biological functions and pathways
regulated by these genes. Finally, we used RF classifi-
cation algorithms to develop a classification model, to
make cluster predictions for unknown BC patients
hence can provide insights about the disease stage
and significantly mutated genes.

In conclusion, this study demonstrates that clinically
distinguishable breast cancer subtypes can be identi-
fied solely based on somatic mutation profile data
from breast cancer patients. Further, our classification
model can be used to predict the unknown subtypes
of breast cancers, given the somatic mutation profile
of a patient. This generic methodology can also be
applied to classify and predict other cancer types.
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Methods

Datasets, representation and reference databases

We downloaded the sequence variation data in variant
call format (vcf) for the TCGA breast cancer whole ex-
ome sequencing data. To eliminate the population het-
erogeneity effect, we selected the breast cancer patients
(n=358) from white, not Hispanic or Latino group for
analysis. We obtained an average of 17,640 point varia-
tions per patient, generated by VarScan2 [34], a highly
sensitive tool to detection of somatic mutations in ex-
ome sequencing data from normal-tumor pairs.

In this study we used CADD, a method that inte-
grates functional annotations, conservation, and gene-
model information into a single score called C-score.
As mentioned in the original publication, [14] C-
scores correlate with allelic diversity, annotations of
functionality, pathogenicity, disease severity, experi-
mentally measured regulatory effects, and complex
trait associations. This score is originally defined to
range from negative infinity to positive infinity, where
higher score denotes more deleterious effects; how-
ever since our clustering (NMF) algorithm requires all
data entries to be positive, we transformed all the
scores by adding the minimum score to the original
scores.

In addition we used dbSNP data [35] to exclude
commonly-found population polymorphisms. Lastly, we
used Database of Human Non-synonymous SNVs and
Their Functional Predictions and Annotations (dbNSFP)
[36] to retrieve CADD scores of mutations.

Our method uses an extensive data structure (muta-
tion score matrix) to keep track of all the deleteriousness
scores (C-scores) of somatic mutations used for machine
learning. The mutation score matrix represents a table
that contains the genes in rows and the patients in col-
umns, yielding a matrix of size 18,117 rows by 358 col-
umns, with at least one mutation in each row. And each
cell contains the sum of all C-scores of mutations found
in a gene for a patient.

Exome data analysis and variant calling

We have obtained an average of 17,640 point variations
per patient generated by VarScan2 [34] and applied a set
of filters to select only those that are likely to exhibit an
impact on the function and/or the structure of the gene or
protein. Since the generation of next-generation sequen-
cing (NGS) data and variant calling involves several error
prone steps, filtration of the variant data constitutes a
major step in variant analysis. Firstly, we focus only on the
somatic (non-inherited) and nonsynonymous (causing a
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change in the translated amino acid) point mutations be-
cause of their perceived impact on disease initiation and
progression. Secondly, even though exome sequencing
targets only the coding regions of DNA, the exome cap-
ture kits often amplify off-target non-coding regions such
as intergenic, untranslated and intron regions. Hence, we
filter out all the variations outside of the coding region.
We analyze the remaining variations by their impact on
the function or structure of the resulting protein. Finally,
we check the population frequency of remaining varia-
tions in Single Nucleotide Polymorphism Database
(dbSNP) [35], which is a public achieve for genetic vari-
ation developed and hosted by National Center for Bio-
technology Information (NCBI). In this step, we filter out
the variations that are commonly found in population and
hence are not necessarily associated with a disease. Gener-
ally, variations with less than 0.05 minor allele frequency
(MAF) are considered as phenotype-causing variations
and hence are called as mutations.

Clustering

We implemented an m x n mutation score matrix to
keep track of the sum of the variant scores in all genes,
where m is the number of genes (18,117) and # is the
number of samples (358 patients). The value in entry (i,
j) indicates the mutation score of gene i in sample j,
which is the sum of all C-scores of mutations found in
the gene i for the sample j.

Due to the number of features (tens of thousands
genes) being much more than the number of samples
(hundreds of samples), we first used feature selection to
select only the informative features for clustering; thus
to reduce the feature size. We ranked the features in de-
creasing order of their variance values (Equation 1) and
selected top n features for clustering.

S2 = M (1)

- n-1

Equation 1: Variance formula

We used NMF method for clustering, which aims to
find a small number of metagenes, each defined as a
positive linear combination of all the genes so that the
method can approximate the mutation load of the sam-
ples as positive linear combinations of these metagenes.
Mathematically, this corresponds to factoring a given
non-negative matrix A of size m x n, into two smaller
matrices, We R and HeR"", with positive entries,
A=~ WH using a positive integer number k < min{m, n}.
Matrix W, called as a basis matrix and has size m x k,
with each of the k columns defining a metagene; and
entry w;; represents the coefficient of gene i in metagene
j. Matrix H is named as coefficient matrix and has size
kxn, with each of the m columns representing the
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metagene expression pattern of the corresponding sam-
ple; and entry /; represents the mutation load of meta-
gene i in sample j. There are multiple solutions to this
problem and in this study we adopt a method by Brunet
et al. [22] that was shown to perform better. The solu-
tion to form factors W and H can be obtained as ex-
plained in the following. The method starts by randomly
initializing the matrices W and H and iteratively updates
W and H to minimize a divergence function. W and H
are updated by using the coupled divergence equations
shown in Equation 2.

ZuHuuAiu/(WH)iu

D Har

Zi WiuAiu/(WH)iu

Zk Wia

Wia—Wia

s How—Hay

(2)

Equation 2: Coupled divergence equations to update
the W and H matrices

As a result of factorization, we use coefficient matrix
H to group our samples into given number (k) of clus-
ters. Algorithm assigns each sample according to the
highest scored metagene in patients designated column
in matrix H; meaning that sample j will be assigned to
the cluster i if /;; is the highest entry in column j.

To specify the optimal number of clusters (rank of
clustering) and features (genes) to use in clustering, we
used consensus matrix and average silhouette width of
consensus matrix.

Since the NMF algorithm starts with a random initial
class assignment of samples, repeated runs over the
same sample set with constant input parameters may
not result in the same sample assigned to the same class
between the runs; however, if we observe only a little
variation in these associations between runs, then we
can conclude with confidence that a strong clustering
was performed for this set of parameters (number of
clusters and features). This idea forms the basis for our
clustering performance evaluations.

Consensus matrix is a concept proposed by Brunet
et al. [22] providing visual insights about the per-
formance of clustering. The concept can be explained
as follows. In each run, sample to class assignments
can be represented by a connectivity matrix C of size
mxm by entering c;=1 if samples i and j are
assigned to the same cluster and c;=0 otherwise.
Then the consensus matrix, C, can be calculated by
averaging the connectivity matrix C for many cluster-
ing runs. (We selected to use 100) The value in Cj
ranges from 0 to 1 and reflects the probability of
samples i and j assigned to the same cluster. In the
case of a stable clustering then we expect to see most
of the values in C to be close to 0 or 1.

In addition to the consensus matrix, we used average sil-
houette width of consensus matrix (silhouette(consensus)),



The Author(s) BMC Systems Biology 2016, 10(Suppl 3):62

introduced by Rousseeuw [37], to quantitatively measure
the stability of the clustering runs with different parameters.
Silhouette concept is defined as follows: for each sample we
can define a (i) as the average dissimilarity/distance of sam-
ple i with all other data within its cluster, the value of a (i)
will then indicate how well the sample i fits into its assigned
cluster by having a smaller value showing better assign-
ment. Then we can define b(i) by the lowest average dis-
similarity of sample i to any other cluster, that i is not a
member. In other words b(i) indicates the average dissimi-
larity of sample i to its closest neighboring cluster or its
next best fit cluster. Then the silhouette score of a sample
can be calculated as in Equation 3 below. The value of s(i)
can range from -1 to 1, and being close to 1 means that
the sample is perfectly clustered. And average of s(i) over
all the samples, named as average silhouette width, shows
how well the data has been clustered.
(@)

1_%, if a(i) < b(i)

0, ifa(i) = b(i) also can be written as s(i) =

%_1, if a(i) > b(i)

b(i)-a(i)
max{a(i).b(i)}

(3)

Equation 3: Equation shows how the silhouette score
of sample can be computed

We used the consensus matrix’s silhouette score to de-
termine the optimal number of genes and clusters by it-
eratively running the algorithm over a range of
biologically reasonable parameters (from 10 to 1000 top
variant genes and from 2 to 10 clusters).

Lastly, among several implementations of NMF in
various programming languages, we selected to use
an R implementation of NMF, published by Gaujoux
and Seoighe [38], because of its efficient and flexible
parallel processing design and ease of applicability to
our study.

Characterization of clusters

To characterize the clusters we discovered, we correlated
the samples in the clusters with their clinical features.
We defined stage I and II as early stage and stage III and
IV as late stage. The Fisher’s exact test was used to as-
sess the stage tendency of clusters.

We compared the mutation score of genes between
clusters using the Wilcoxon rank-sum test, and adjusted
the multiple testing with the false discovery rate (FDR). The
FDR was estimated using the Benjamini-Hochberg proced-
ure [39]. We used the R language and environment [40] to
run all the statistical tests. In addition, we performed func-
tional analysis of the differentially mutated genes between
the clusters using the Ingenuity Pathway Analysis (IPA;
Ingenuity Systems Inc., Redwood, CA, USA) and the Gene
Set Enrichment Analysis (GSEA) tools [23].

Page 274 of 380

Development of classification model

For running feature selection, classification model gener-
ation using ML algorithms and performance measure-
ments, we used the Waikato Environment for Knowledge
Analysis (WEKA) [41] framework, which is an open-
source, Java-based framework.

For feature selection, we used the Information gain
attribute evaluator [33], and Ranker algorithms imple-
mented in Weka for evaluation and searching of the
features. We used five diverse and most popular ML
algorithms; namely RF [15], Naive Bayes [31], C4.5
(named as J48 in Weka) [30], SVM [29], and KNN
[32] to build classification models. For performance
measurements, we used 10-fold cross-validation. In
10-fold cross-validation, patients are randomly parti-
tioned into ten equal sized parts keeping the class ra-
tio constlant in each part; nine parts are used for
training the classifiers and remaining part is used for
testing. This procedure is repeated ten times, result-
ing each part is tested against the models built using
other nine parts. The average of performance mea-
surements of all ten iterations is considered as an un-
biased estimate of the whole classification model. We
report the performance of the classifiers using stand-
ard classification evaluation metrics, including: accur-
acy, sensitivity (true positive rate, TPR, also called
recall), specificity (true negative rate, TNR), false posi-
tive rate, false negative rate, precision (Positive Pre-
dictive Value, PPV) and F measure (also called F1
score). In the Additional file 1: Table S1, we show (a)
confusion matrix, also called contingency table, which
is used to calculate performance measures, (b) values
making true positives (TP), false positives (FP), true
negative (TN), and false negatives (FN), and (c) the
equations to calculate performance measures. In
addition, we generate ROC curves, which graphically
present the performance of classifiers for each class
and calculate the area under the curve (AUC) as a
numeric evaluation of ROC curves. Also, we would
like to note that even though most of these measures
initially defined for binary classification (having only
two classes); they are applicable to multiclass classifi-
cation by following one-verses-rest approach.

Finally, to validate the strength of the achieved pre-
diction accuracy, we run a permutation test. For this test
we generated 10,000 datasets by randomly shuffling
patient labels in our dataset, while keeping the number
of patients in each class constant. We run 10-fold cross-
validation with RF classification algorithm together with
feature selection step on these datasets, in the same way
used for the real data in the study. We calculated a p-
value by the number of times this validation produced a
better accuracy on randomly shuffled dataset divided by
10,000.
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Additional file

Additional file 1: Supplementary results. This file contains
supplementary tables and figures. Explanatory text is included in this file.
(DOCX 391 kb)
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