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Background: Expression of cell phenotypes highly depends on metabolism that supplies matter and energy. To
achieve proper utilisation of the different metabolic pathways, metabolism is tightly requlated by a complex
regulatory network composed of diverse biological entities (genes, transcripts, proteins, signalling molecules...). The
integrated analysis of both regulatory and metabolic networks appears very insightful but is not straightforward
because of the distinct characteristics of both networks. The classical method used for metabolic flux analysis is Flux
Balance Analysis (FBA), which is constraint-based and relies on the assumption of steady-state metabolite
concentrations throughout the network. Regarding regulatory networks, a broad spectrum of methods are dedicated
to their analysis although logical modelling remains the major method to take charge of large-scale networks.

Results: We present FlexFlux, an application implementing a new way to combine the analysis of both metabolic and
regulatory networks, based on simulations that do not require kinetic parameters and can be applied to genome-scale
networks. FlexFlux is based on seeking regulatory network steady-states by performing synchronous updates of
multi-state qualitative initial values. FlexFlux is then able to use the calculated steady-state values as constraints for
metabolic flux analyses using FBA. As input, FlexFlux uses the standards Systems Biology Markup Language (SBML) and
SBML Qualitative Models Package (“qual”) extension (SBML-qual) file formats and provides a set of FBA based functions.

Conclusions: FlexFlux is an open-source java software with executables and full documentation available online at
http://lipm-bioinfo.toulouse.inra fr/flexflux/. It can be defined as a research tool that enables a better understanding of
both regulatory and metabolic networks based on steady-state simulations. FlexFlux integrates well in the flux analysis
ecosystem thanks to the support of standard file formats and can thus be used as a complementary tool to existing

software featuring other types of analyses.
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Background

Analysis of metabolic networks is extensively used as
a direct reflect of the phenotype of living cells. More-
over, the increasing amount of available omics data has
encouraged the reconstruction of a significant number
of genome-scale metabolic networks [1]. A very popu-
lar approach to study metabolic networks is the use of
a constraint-based method called Flux Balance Analysis
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(FBA) [2]. FBA is based on the steady-state assump-
tion which results in mass balance through the metabolic
network. Given a biological objective (like growth or
metabolite production), the space of optimal solutions for
the reaction fluxes can be very quickly solved by linear-
programming computation even for large networks. This
calculation only relies on knowing reaction stoichiometry
and user-defined input flux values. Different FBA-based
analyses are implemented in a number of available soft-
ware including COBRA Toolbox [3], COBRApy [4], Cell-
NetAnalyser [5], SurreyFBA [6], OptFlux [7], FASIMU (8]
and SBRT [9]. For a review of differences and specificities
of some of these tools, see [10].
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However, metabolic network analysis alone cannot
explain the differences observed between two differenti-
ated cells of an organism, or the behaviour of a versatile
micro-organism given a particular environmental condi-
tion. Indeed, cells have evolved regulatory networks to
integrate environmental signals or acquired differentiated
states that result in modulation of gene expression. There-
fore this specific gene expression triggers specific phe-
notypes depending on the environmental constraints or
cell differentiation. Thus, computing embedded metabolic
and regulatory networks is a paramount objective in order
to study complex cell phenotypes. For instance, Buescher
et al, by integrating metabolic and regulatory network
analyses, simulated different regulation strategies for con-
trolling nutritional shifts and compared their evolutionary
benefit. They thus succeeded to identify the key regula-
tory events involved in the metabolic adaptative response
to nutritional transitions in Bacillus subtilis [11].

Many methods are available in the literature for the
analysis of regulatory networks, going from the most elab-
orated (based on differential equations) to the simplest
(Boolean models). Some of these methods are reviewed
here [12-14]. For large networks, qualitative multi-state
models seem to be a good compromise between the
number of required parameters and the quality of sim-
ulations [15]. In these types of models, the components
display a finite number of possible states, and their val-
ues are updated via logical rules composed of the states
of other components. This makes the search for steady-
states easier than with continuous models. They have
the advantage of not requiring any kinetic parameter for
simulations, like FBA, and they provide more modelling
precision than Boolean models. A growing number of
qualitative networks is available to the community [16]
through platforms like The Cell Collective [17]. This shar-
ing of qualitative models is facilitated by the development
of SBML-qual [18], a standard XML (Extended Markup
Language) based format designed to represent multi-state
qualitative models based on the SBML format [19]. Some
software tools have integrated this format and can per-
form qualitative network analyses : The Cell Collective
[17], CellNetAnalyser [5], GINsim [20], CelINOpt [21] and
BoolNet [22].

Different methods have been developed to connect
metabolic network and regulatory network analyses. Most
of these methods are dynamic: regulatory FBA (rFBA)
[23], Probabilistic Regulation Of Metabolism (PROM)
[24], iFBA [25]. This allows to take into account a feed-
back of FBA on the regulatory network by considering
metabolite concentrations. However it requires many FBA
optimisations and differential equations to update con-
centrations. In rFBA, regulatory rules can constrain a
reaction only by setting its flux value to 0. PROM [24]
is based on regulatory network reconstruction through
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inference from microarray data and is able to constrain a
reaction to a certain percentage of its maximal flux value.
This percentage corresponds to the estimated probability
of activation of the gene associated to the reaction. This
method requires data from many microarray experiments
(several hundreds). In the iFBA method [25], the authors
integrated a set of ordinary differential equations (ODEs)
to rFBA. This allows to accurately predict phenotype of
diauxic growth of Escherichia coli but requires kinetic
parameters for the ODEs. Another method called steady-
state rFBA (SR-FBA) [26] is not based on a dynamic simu-
lation but on steady-state. It includes the Boolean rules in
the optimisation process of the FBA using mixed integer
linear programming (MILP), and thus finds a steady-state
for both metabolic and regulatory networks. However,
this method does not allow to model feedback loops.

In all of these methods, regulatory rules can only con-
strain reactions to one single flux value.

In this context, we have developed FlexFlux, a tool that
allows the analysis of both qualitative regulatory networks
and genome-scale metabolic networks. FlexFlux is the
first metabolic flux analysis tool that natively integrates
regulatory networks in all of its functions. Regulatory
and metabolic networks can be analysed either separately
or together. When analysed together, regulatory network
states are used to constrain the FBA. The regulatory net-
work is considered as known in FlexFlux and must be
provided by the user.

The key features of FlexFlux are the following:

e FlexFlux supports qualitative multi-state regulatory
networks, including the simplest variant: Boolean
networks. The regulatory networks can be composed
of various types of biological components. The
multi-state nature of the network allows for instance
to simulate different levels of gene expression, which
is not possible with a Boolean model.

e FlexFlux allows a translation of the discrete
qualitative states of the regulatory networks into
user-defined continuous intervals. This permits to
constrain a reaction flux with different intervals
according to a qualitative state and not to a unique
value like in the methods presented above. This
translation is also used for the input (initial values) of
the regulatory network to obtain qualitative states
from metabolite external concentrations.

e To constrain metabolic fluxes with a regulatory
network, FlexFlux performs a regulatory steady-state
analysis (RSA). See below for a description of the
algorithm implemented in FlexFlux to perform the
RSA.

e [t supports the SBML-qual file format for the
description of the regulatory network. FlexFlux is the
first flux analysis software to support this file format.
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These features are explained in more details in the next
sections.

Implementation

FlexFlux is an open source java software distributed for
Windows and Linux. It can be used in command line or
with a graphical interface.

General architecture
Depending on the function, FlexFlux can take as input
three files (Fig. 1):

e A SBML file which describes the metabolic network.

e A SBML-qual file which describes a qualitative
regulatory network : components, initial values and
update rules.

e A constraint file, which contains the objective
function for the FBA and may contain additional
constraints defined by the user. Note that initial
values of the regulatory network components can be
specified in this file. If so, they overwrite the ones
present in the SBML-qual file.
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FlexFlux is able to perform both regulatory steady-state
analysis (RSA) and metabolic network analyses using FBA.
It can connect both analyses by constraining FBA with
steady-states obtained with the RSA (Fig. 1).

Regulatory network analysis

To analyse regulatory networks in FlexFlux, we designed
and implemented an algorithm called Regulatory Steady-
state Analysis (RSA). Its goal is to obtain a single “steady-
state” constraint for each component of the network from
initial values. A constraint is defined by a lower and
an upper bound defining a range of possible values of
the component. To facilitate connection with quantita-
tive methods like FBA, FlexFlux supports quantitative
inputs and outputs by translating them into qualitative
states.

The SBML-qual file provided to FlexFlux must respect
the specifications described in [18]: it must contain a list
of QualitativeSpecies with a specified initial level, and a
list of Transitions corresponding to the logical rules for
the update of a species (Fig. 2). The QualitativeSpecies will
correspond to the components of the regulatory network.
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Fig. 1 General architecture of FlexFlux. FlexFlux takes as an input two SBML files and a constraint file : one SBML file for the description of the
metabolic network, and the Qualitative extension for the regulatory network. The constraint file specifies the objective function and can contain
constraints. From the metabolic network definition, FlexFlux creates mass balance constraints that will be used for the flux balance analysis (FBA).
The regulatory network is analysed by a regulatory steady-state analysis (RSA). The starting point of the RSA comes from both SBML-qual and
constraint files. Then the qualitative states are translated into constraints for the FBA. FBA and RSA can also be run independently
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Fig. 2 Regulatory network steady-state analysis of FlexFlux. 1) The initial state is constructed from qualitative values present in the SBML-qual file (for
R1) and quantitative values in the constraint file that are translated into qualitative values by the equivalences written in the SBML-qual network (for
M1). 2) From this initial state, the network is iteratively updated using a synchronous update of all components. Integer values represent qualitative
states of the components of the network. The update of the network state stops when a state which was already calculated is found (the states
shown in red here). The attractor is composed of this state plus the states between the two identical states. 3) The link between qualitative states
and continuous intervals must be specified in the SBML-qual file describing the regulatory network in the notes of the QualitativeSpecies tag. For
each component where they are provided, all the states of the attractor are translated into intervals. The example is shown for R1 here. 4) When the
attractor contains more than one state (cyclic attractor), the average of the upper bounds and lower bounds of all the intervals is used to form a

In order to use FlexFlux’s translation, the equivalences
between qualitative states and continuous intervals must
be specified as notes in the QualitativeSpecies tag (Fig. 2).
This information will be used during the regulatory
steady-state analysis algorithm. Note that specifying this
equivalence is not mandatory if the species does not use
quantitative inputs or outputs. The file is read with the
JSBML library [27].
The algorithm consists in four successive steps (Fig. 2):

e Construction of the initial regulatory network
state. The SBML-qual file must contain initial
qualitative values for each component of the
regulatory network. However, they can be overwritten
by the constraint file. If the constraint file contains an
initial value for a component, it is translated into a
qualitative state, and used as initial value for the
regulatory network (Fig. 2). This allows simulating
different external metabolite concentrations.

e Search for an attractor. An attractor can be defined
as a set of network states toward which the network
evolves. To find an attractor, the network state is
updated from the initial values via a synchronous
update of all the components according to their

corresponding Transition (Fig. 2). The update being
synchronous, a state is defined by the previous one,
so that once a state already found is encountered, no
new state can be reached and an attractor has thus
been found. An attractor of size one is called a point
attractor, whereas an attractor of size higher than one
is called a cyclic attractor. In the latter case, it
corresponds to all the states between the two
identical states plus one of the two identical states
(Fig. 2). A cyclic attractor can be seen as a loop that
the network states will infinitely go through.
Translation of qualitative states into intervals. In
order to define the quantitative output of the
regulatory steady-state analysis for the components
harbouring the equivalences described before, the
values of the states contained in the attractor are
translated into corresponding continuous intervals
(Fig. 2). If these equivalences (qualitative to
continuous intervals) are not specified for a
component, the output for this component remains
qualitative.

Averaging the states in the case of a cyclic
attractor. This step is performed for cyclic attractors
(attractors that have more than one state). From a
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cyclic attractor, a single steady-state constraint is
defined for each species. If quantitative equivalences
have been specified, the final bounds of the constraint
are determined by calculating the arithmetic mean of
the bounds corresponding to each state found in the
attractor. In the case of species without quantitative
equivalences, the constraint corresponds to a single
value equal to the arithmetic mean of the component
states found in the attractor.

Constraining FBA with regulatory steady-state constraints
Three types of biological components of the regulatory
network can have an effect on the FBA: reactions, genes
and external metabolites.

The steady-state constraints obtained for reactions from
RSA are directly added to the FBA model constraints.

The link between a gene value obtained from RSA and
FBA is made through gene-protein-reaction (GPR) asso-
ciations that can be specified in the SBML file describing
the metabolic network [28]. In the case of a GPR associa-
tion, if the regulatory steady-state constraint sets the gene
to 0, the associated reaction flux is set to 0. If the value of
the gene is different from 0, no constraint is added on the
reaction flux.

In the metabolic model, external metabolites are
imported in the model by exchange reactions. Constraints
on these exchange reactions mimic different environmen-
tal conditions. In FlexFlux, if a null value is attached
to an external metabolite, the uptake flux value for the
corresponding exchange reaction will be constrained to 0.

Metabolic network analysis

The metabolic network must be described in a SBML file.
FlexFlux constructs the mass balance constraints required
for the FBA, and reads the objective function and addi-
tional constraints from the constraint file. If any, the
constraints obtained from the regulatory network steady-
state analysis are added to the model.

The optimisation process is done by a linear program-
ming solver. At present, FlexFlux is compatible with two
solvers: ILOG CPLEX [29] and the GNU Linear Program-
ming Kit (GLPK) [30].

FlexFlux functions

At the moment, FlexFlux contains 13 functions. Because
some functions require many successive FBA, FlexFlux
implementation was also focused on computation speed.
This is done by using parallelism and solver warm-starts
capabilities [31].

Regulatory steady-state analysis (RSA) is integrated in
every FlexFlux function, but can also be launched by itself.
One function (Time-Dependent analysis) is not based on
steady-state analysis of the regulatory network but on a
dynamic analysis with iterative updates of the network.
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This allows to take into account a change in metabolite
concentration resulting from FBA.

The detail of all functions inputs and outputs as well
as more details, example files, command lines and graph-
ical results are available on FlexFlux’s web site. Some of
FlexFlux graphical outputs are shown in Fig. 3.

Some of these functions are briefly described below.

RSA and multi RSA

These two functions implement the algorithm of regula-
tory network analysis described above. Multi RSA allows
performing a high number of RSA with multiple initial
conditions on the same regulatory network. These mul-
tiple conditions can be randomly generated by another
FlexFlux function called RandomConditions.

Flux balance analysis (FBA)

The basic function of FlexFlux. It finds the steady-states of
the regulatory network if provided and uses it to add con-
straints for the FBA as previously described. The objective
function used in the FBA is defined in the constraint file.
A graphical result of a FBA is shown in Fig. 3 panel a.

Flux variability analysis (FVA)

The goal of this function is to compute the maximal
and minimal values of all reaction fluxes, or a set of
fluxes, when the objective function is optimized. To do
that, FlexFlux performs a regulatory steady-state analy-
sis, a FBA with the provided objective function. Then,
the optimal value of the objective function is set as
a constraint, and all reactions are consecutively min-
imised and maximised as objective functions of new
FBA.

FlexFlux’s implementation of FVA uses the fastFVA
approach [31]. When applied to a metabolic network of
around 2000 reactions, it can be performed in less than
15 s on a computer with one processor (Intel® Core™ i5-
4590). A comparison with the computation time of FVA
in other FBA software is detailed in Additional file 1
(Table S1).

Knockout analysis (KO)

Here the goal is to infer the effect of individual vari-
ables knockouts on the objective function. Thus, for each
tested variable, a new constraint setting its value to 0 is
added to the model. Then a RSA and a FBA are per-
formed. Note that FlexFlux allows to perform a knockout
in any component of the metabolic or the regulatory net-
work (reactions, metabolites, genes, transcription factors,
etc...).

Phenotypic phase analysis

This analysis permits to find specific metabolic network
behaviours (phenotypic phases) [32] by varying one or two
reaction fluxes, generating a 2D or a 3D graph respectively
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Fig. 3 Screenshots of some of FlexFlux graphical results. a Result of a Flux Balance Analysis performed on a Escherichia coli metabolic network with a
maximisation of the biomass. The value of the objective function is shown in the upper part. The value of each network component can be found in
the table. b Result of a 3D phenotype phase analysis performed on E. coli metabolic network. The effect of the variation of both glucose and oxygen
uptake fluxes on the biomass shows four distinct phenotype phases (shown here in four different colours). € Result of a time-dependent analysis
performed on E. coli metabolic network with glucose and lactose available in the medium. It shows the evolution of the external concentration of
glucose (M_glc_D_b), lactose (M_Icts_b) and the evolution of the cell density (X)

(Fig. 3 panel B). For increasing values of the provided
reactions fluxes, FlexFlux optimises the objective function
and calculates a shadow-price value for each point. In our
case, the shadow-price value corresponds to how much

phase.

the objective function value varies when a little change
in reactions fluxes is made. Points that share the same
shadow-price value are grouped in the same phenotypic
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Pareto analysis

This function allows to test trade-offs made by the cell
between different objectives by comparing experimen-
tal values to FBA simulations. A list of potential cellular
objectives (growth rate, minimising the sum of fluxes in
the network, maximising ATP production ...) and exper-
imental flux measures are provided in an additional input
file. The outputs are the cellular objectives for which the
calculated Pareto surface is the closest to experimental
values, meaning that they seem to participate to the cell’s
trade-off.

This function is a generic implementation of the method
proposed in [33] and represents, to our knowledge, the
first implementation of this analysis in a flux analysis
software.

Time-dependent FBA

This function is equivalent to the rFBA method described
by Covert et al. [23]. The goal is to simulate the evolution
of the system and environment (concentration of external
metabolites) over time given an initial state, and monitor-
ing both regulatory and metabolic networks states.

This method is not based on a steady-state analysis
of the regulatory network, but on its dynamics. Here, a
FBA is performed between each update of the qualitative
network.

The algorithm takes as an input a metabolic network,
a qualitative regulatory network, external metabolite con-
centrations (mmol/l), an initial cell density (g/l) and the
identifier of the biomass reaction of the metabolic model.
At each step, the values of the regulatory network are
updated, translated into constraints for FBA. Then the
cell density and external metabolite concentrations are
updated by solving standard differential equations as
detailed in [34].

This analysis allows simulating the production of
metabolites over time, or the consumption of different
nutrients by the cell (Fig. 3 panel c).

Results

Use case 1: steady-state analysis in different
environmental conditions

Metabolic regulation via tuning of gene expression is
paramount to understand cell behavior. This mechanism
was first demonstrated in 1961 by Jacob and Monod on
the lac operon which triggers a diauxic shift correspond-
ing to a sequential consumption of two substrates when
both are available [35]. Computation of FBA without con-
sidering the catabolite repression events fails in predicting
this behaviour [36].

In order to illustrate FlexFlux’s capabilities in combin-
ing gene regulation and FBA, we performed simulation
of the biomass production by Escherichia coli in environ-
ments composed of lactose and/or D-glucose using the
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reconstructed genome-scale metabolic model of E. coli
[37] and a qualitative model of the lac operon [38, 39]
that we translated into SBML-qual format (see Additional
file 2). Initial substrate concentrations were extracted
from [36] (Additional file 3) and we performed a RSA and
a FBA with maximization of the biomass (Fig. 4).

In the three conditions, the initial values of the carbon
sources available will generate different series of updates
of the regulatory network and the calculation of three
different attractors. All these attractors contain only one
network state (Fig. 4). They correspond to two distinct cell
phenotypes: utilisation of glucose and utilisation of lactose
by the cell as a substrate. We compared these results with
a FBA performed without using the regulatory network.
In the latter case, the calculated objective function value
does not correspond to the experimental data when both
substrates are available.

The simulation results using RSA are consistent with the
experimental data shown in [36] as well as the simulation
performed using time-dependent FBA (rFBA) simulations
[36]. However RSA does not require time-dependent sim-
ulations. It is able to quickly pinpoint the regulatory
network and consequently the metabolic network steady-
states by just changing input metabolite concentrations.
In the case of time-dependent FBA, choosing the time step
intervals for the simulation implies a trade-off between
the risk of propagating an error due to the numerical solu-
tion in case of a long time step and the high computation
time in case of a short time step.

This analysis shows that FlexFlux can easily find dif-
ferent metabolic behaviours according to environmental
conditions. This is made possible by the steady-state anal-
ysis of the regulatory network provided alongside the
metabolic network, and by the translation of qualitative
values into continuous intervals allowing flux analyses.

In order to better evaluate the accuracy of RSA, we
assessed whether RSA can obtain the same results than
rFBA in most cases with a significantly lower number of
calculations. Indeed, dynamic methods to regulate FBA
can take into account a feedback of FBA results on regu-
latory rules but require many optimisations and updates
of cell density and metabolite concentrations at each iter-
ation. We used the data shown in [40] where authors
compared rFBA results to experimental data for growth
phenotypes of E. coli in 125 conditions and for 110 gene
knock-outs. We found that in 93 % of the conditions tested
(12797/13750), RSA was able to obtain the same growth
phenotypes as rFBA and reaches an accuracy of 0.737 in
predicting the experimental data (Additional file 4). The
accuracy of rFBA to predict experimental data is 0.787.

Analysis of the discrepancy between false prediction
of the RSA compared to rFBA indicates that RSA failed
to predict the phenotype when a change in the extra-
cellular metabolite concentration is required to activate
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Fig. 4 Simulations of Escherichia coli growing with different combinations of lactose and D-glucose. Simulations were performed using the
genome-scale metabolic model of £. coli K-12 MG1655 [37] and the reconstructed regulatory network of the lac operon. Are shown here the initial
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assimilation pathway. This is expected considering that it
is a steady-state method and not a dynamic one. In most
of the cases with discrepancy, first acetate accumulation
in the medium is required before activation of the gly-
oxylate cycle enzymes which are required to assimilate
the main substrate. Adding the presence of this accumu-
lated metabolites in the constraint file before running the
RSA leads to obtain an identical prediction to rFBA. In
this case, the prediction accuracy of RSA reaches the same
level as rFBA.

This shows that RSA can be used as a replacement of
rFBA in the majority of the conditions. RSA requires only
one linear programming optimisation whereas rFBA may
require hundreds. However, in few case, when the effect of
metabolite concentrations is necessary for the simulation,
a dynamic method is more adapted. This is what we imple-
mented in FlexFlux in the Time-Dependent FBA function.
Both methods (RSA and Time-Dependent FBA) support

multi-state components and can constrain each reaction
to multiple flux values depending on these states.

Use case 2: multi-state logical modelling

To show an example where the multi-state capability of
FlexFlux can be useful, we performed another analysis
using the Jacob and Monod’s model showing the effect
of glucose concentration on the catabolite repression of
maltose and lactose in E. coli.

The catabolite repression is a well known regulation
of substrate usage by microorganisms when “preferred”
substrate is present in the medium. However, there is ris-
ing evidence that the catabolite repression is not fully
operating at low substrate concentration, below the mil-
imolare range. This could be relevant in many ecological
niches. In addition, the strength of the repression, i.e the
concentration of the preferred substrate in the medium
under which the repression is fully operating, can greatly
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differ depending of the regulatory circuit of the second
substrate usages. To illustrate the interest of multi-state
modelling, we inferred the capacity of E. coli to use lactose
and maltose for various concentrations of glucose. The
regulatory network of the lac operon used in the paper
was completed with the reconstruction of the regulation
of the maltose operon [41], and then was converted in
the SBML-qual format for computation (Additional file 2).
The threshold of D-glucose concentration, 0.6 mM, under
which the induction of the maltose operon starts was col-
lected from [42] (Additional file 5). Then, we compared
the capacity of the substrate usages simulated with the
experimental data collected in [43], from cells grown on
batch culture with high amount of D-glucose (22 mM)
and cells grown on D-glucose limited (Additional file 6:
Figure S1). Using multi-state modelling allows to simulate
the capacity of the cells to use maltose but not lactose at
low D-glucose concentration, i.e. below 0.6 mM but above
0 mM. This behaviour would not have been possible to
simulate using Boolean modelling where D-glucose would
harbour only two states.

Use case 3: analysis of a large regulatory network

The challenge in genome scale analyses is that exploring
the entire space of solution of a large scale network (over
100 degrees of liberty) remains infeasible. Hence if FBA
and linear programming assure exploring boundaries of
solution space of a genome scale metabolic network using
an optimisation principle, an optimisation function can’t
be applied in regulatory networks composed of feed-back
loops. Indeed, none optimal state can’t be reached if a loop
is involved within it. Thus, FlexFlux is designed to per-
form a random sampling of a significant proportion of the
initial condition space to deal with large-scale regulatory
networks.

To test a large and publicly available regulatory network,
we extracted a network from The Cell Collective [17] in
the SBML-qual file format (see Additional file 7). This
network corresponds to a generic fibroblast cell and was
published in [44]. It contains 139 species and 260 Func-
tionTerms (which correspond to variables update rules).
We performed this analysis by using a pipeline of two
FlexFlux functions. We first generated 100.000 different
random initial conditions for the regulatory network and
then used them to run a multi RSA (Fig. 5). The output
of the multi RSA is 100.000 regulatory network attractors.
We then grouped the identical attractors together to count
the proportion of each one (Fig. 5).

This analysis shows that FlexFlux can easily find steady-
states that are dominant. Indeed, from the 100.000 initial
conditions, FlexFlux found 935 different attractors, but
the 12 most frequent of them represent more than 80 % of
the total, with one of them representing more than 41 %.
Sensitivity to the number of simulations was assessed
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by simulating various number of initial conditions. We
obtained a logarithmic curve suggesting a correct sam-
pling for 100.000 initial conditions (Fig. 5). This shows
that, in the presence of a network for which it is not
possible to test every possible initial condition (2!3° ini-
tial conditions are possible for this network), FlexFlux is
able to pinpoint the dominant states that the network
can reach. These dominant states may then be used to
constrain a metabolic network and perform flux balance
analyses. We checked the accuracy of the RSA method on
this Boolean network using BoolNet, and found identical
results.

Also this result shows that FlexFlux can run a very high
number of RSA in a limited time. We compared the com-
putation time of steady-state analyses in different software
in Additional file 1 (Table S2).

Discussion

In order to realistically analyse metabolic networks, it is
essential to consider them in interaction with regulatory
networks. Also, one of the challenges in systems biology
is taking charge of large-scale networks. FBA and logical
modelling are classical methods used to perform simula-
tions on large-scale metabolic and regulatory networks,
respectively.

In this paper, we describe FlexFlux, a Java framework
for integrating the analysis of these two networks. When
provided, FlexFlux first calculates the steady-state of the
regulatory network. This is used to define additional con-
straints that are applied to the metabolic model. FlexFlux
is also able to translate qualitative variables from the reg-
ulatory network into quantitative variables used in FBA,
thanks to a match list provided by the user. This pos-
sibility, for the first time implemented in a flux analysis
software, can highly refine the modelling of the system.
The multi-state qualitative models supported by FlexFlux
allow subtle analyses with variables containing more than
two possible states, in particular reaction fluxes. Finally, to
our knowledge, FlexFlux is the only available tool that uses
standard exchange file formats for both networks (SBML
and SBML-qual), allowing full compatibility with other
FBA or regulatory network analysis tools.

In order to determine the regulatory network steady-
state, FlexFlux uses a synchronous update of the network
state. As explained before, in the synchronous update
case, a state completely determines the next one. This
means that from a given initial network state, the same
attractor will always be found. Moreover, the number
of possible states for each component being finite, the
number of possible network states is also finite and an
attractor will always eventually be found. As described
in [45] and [14], in the asynchronous update case, genes
can be updated following different rules (time delay for
each gene, random update. . .). This type of update is more
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suitable for studying the dynamics of a system. How-
ever, asynchronous update requires additional parame-
ters and, in most cases, does not give better results
than synchronous update in the search for attractors
[45]. Also, synchronous update allows to perform simu-
lations knowing the regulatory network structure alone.
For this reason, we believe that synchronous update is
a reasonable choice for identifying regulatory network
steady-states in FlexFlux. However, one could be inter-
ested to use FlexFlux to study the dynamics of the system.
Thus we implemented the possibility to use an asyn-
chronous update based on time delays. This method is
used in the time-dependent method of FlexFlux described
above. This is a deterministic method, meaning that from
the same inputs, the result will always be the same.
FlexFlux does not contain methods based on random

asynchronous updates that would be non-deterministic.
Adding this functionality will be considered for a future
improvement.

As detailed previously, new FBA constraints are set con-
sidering the attractor found in the regulatory network
steady-state analysis. In the case of a cyclic attractor, each
constraint is defined by the mean of the bound values
corresponding to each component state in the attractor.
We have chosen to use the mean of the states because
we consider that it is more suitable to a broad range of
studies when multiple cells are not synchronised. Indeed,
when considering a whole population with multiple cells
at different states, different states of the attractor will be
encountered. Since the method is not able to evaluate the
importance of the different states, they will all be consid-
ered as equally important for the steady-state of the cell.
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In consequence, the mean of the translated values simu-
lates an average of the attractor states in the population. A
different strategy could be to perform a FBA for each state
of the attractor. This can still be done in FlexFlux by set-
ting each state of the attractor as a constraint in separate
FBA analyses.

Lastly, the fact that FlexFlux does not analyse both types
of networks in the same optimisation process allows a
higher flexibility in the possible regulatory logical rules.
For example, negative auto-regulation, which is very com-
mon in biological systems [46], as well as feedback loops in
general, cannot be included in a linear optimisation prob-
lem where all equations must be true at the same time.
With the FlexFlux steady-state algorithm, feedback loops
can be included in the regulatory network. Indeed, in the
case of a negative auto-regulation, FlexFlux will reach a
cyclic attractor of the regulatory network.

FlexFlux already offers 13 functions. All of them support
a Regulatory Steady-state Analysis (RSA). FlexFlux code
is open-source and thus can be used by other developers
to create new functions that use the capabilities described
in this paper. In addition, as we show in Additional file 1
(Tables S1 and S2), FlexFlux implementations of succes-
sive FBAs and steady-states analysis are among the fastest
compared to other software. Indeed, 11 s are required
for a FVA of the 2214 reactions within the E. coli model,
iAF1260, and 12 s for 10,000 RSA with the Tcell model.

To facilitate the reader’s understanding of FlexFlux fea-
tures compared to other applications and methods, we
have compiled two comparison Tables.

Table 1 compares different FBA applications in their
ability to integrate regulatory networks into FBA. It
mainly shows that FlexFlux contains methods to regulate
FBA both in a dynamic manner (time-dependent analysis,
Fig. 3) and with a regulatory steady-state analysis (RSA)
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which is the part that is stressed in this article. CellNet-
Analyser [5] supports different types of analyses for both
regulatory networks and metabolic networks but fails in
the integration of the two. Indeed, CellNetAnalyser can
only load each network type and compute them separately
into distinct dedicated modes. In FlexFlux, both network
types are encoded separately as well but are integrated on
the fly during simulation.

Table 2 compares different methods dedicated to regu-
late FBA. They are mainly separated in two types: dynamic
methods and steady-state methods. Most of them do
not have an associated software which makes them less
convenient to use.

Conclusions
FlexFlux is a free, open source Java software that joins
two types of steady-state based analyses that are usu-
ally performed separately: FBA and qualitative multi-state
simulations. FlexFlux is the first tool to support both
SBML and SBML-qual standards file formats to describe
metabolic and regulatory networks respectively. This sup-
port ensures compatibility with other FBA software and
qualitative network analysis software. Regulatory network
simulations are based on synchronous updates of the net-
work state and the result can be translated into continuous
intervals used as constraints in the FBA. This allows to
easily constrain a flux analysis depending on regulatory
network reprogramming. FlexFlux also contains differ-
ent methods to analyse in detail regulatory and metabolic
networks in interaction. The methods implemented in
FlexFlux are efficient to deal with genome-scale networks.
FlexFlux is designed for researchers looking for an
accessible tool capable of performing sophisticated anal-
ysis of the relations between metabolic and regulatory
networks.

Table 1 FBA software comparison. Features comparison of applications discussed in this article focusing on their ability to integrate

regulatory networks analyses into FBA

SBML support Regulated FBA
Software Free Metabolic Regulatory Graphical ~ Command line for Dynamic Steady state  ODEs  EFM
dependencies  networks networks interface batch processing

FlexFlux Yes Yes Yes Yes Yes Yes (Time Yes No No
dependent FBA)  (RSA+FBA)

Cell net analyser No Yes Only for export Yes Yes No No Yes Yes

COBRA No Yes No No Yes Yes No No No
(Dynami-cRFBA)

COBRApy Yes Yes No No Yes No No No No

OptFlux Yes Yes No Yes No No No No Yes

SurreyFBA Yes Yes No Yes Yes No No No Yes

FASIMU Yes Yes No No Yes No No No No

SBRT Yes Yes No Yes Yes No No No Yes

ODEs Ordinary Differential Equations, EFM Elementary Flux Modes
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Table 2 Comparison of methods to regulate FBA
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Method Associated software Requires Dynamic Steady-state Multistate Regulatory Network
external data analysis analysis support loops support inference
RSA+FBA Yes (FlexFlux) No No Yes Yes Yes No
RFBA Yes (COBRA and FlexFlux) No Yes No COBRA: No FlexFlux: Yes Yes No
SRFBA No No No Yes No No No
iFBA No No Yes No No Yes No
PROM No Yes Yes No No Yes Yes

Availability and requirements
Project name: FlexFlux.

Project home page: http://lipm-bioinfo.toulouse.inra.fr/

flexflux/index.html

Operating system(s): Linux, Windows.
Programming language: Java.

Other requirements: Java 1.7 or higher, CPLEX or
GLPK.

License: GNU LGPL.

Any restriction to use by non-academics: none.
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Additional file 5: Constraint file used to run FlexFlux simulations of
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Additional file 6: Results of the analysis of the lactose and maltose
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Additional file 7: Fibroblast regulatory network [44] in the SBML
format. (TXT 505 kb)

Abbreviations

ATP: Adenosine triphosphate; FBA: Flux balance analysis; FVA: Flux variability

analysis; GLPK: GNU linear programming kit; GPR: Gene-protein-reaction
associations; KO: Knockout; MILP: Mixed integer linear programming; ODEs:

Ordinary differential equations; PROM: Probabilistic regulation of metabolism;

rFBA: Regulatory FBA; RSA: Regulatory steady-state analysis; SBML: Systems
biology markup language; SBML-qual: SBML qualitative models package

("qual”) extension; SR-FBA: Steady-state rFBA; XML: Extended markup language

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
LM, RP and LC were involved in the conception of the program. LM and LC

were involved in the implementation and the documentation of the program.

LM, RP and LC were involved in testing the application and performing the
use case simulations. LM, RP and LC wrote the manuscript. All authors read
and approved the final manuscript.

Acknowledgements

We acknowledge funding from the Institut National de la Recherche
Agronomique (grant 31000363) and the Région Midi-Pyrénées (grant
13050322) as well as by the French Laboratory of Excellence project “TULIP"
(ANR-10-LABX-41; ANR-11-IDEX-0002-02). RP was supported by EMBO
(Long-Term Fellowship ALTF 1627-2011) and Marie Curie Actions
(EMBOCOFUND2010, GA-2010-267146). We thank Stéphane Genin and
Thomas Schiex for support and fruitful discussions in apprehending regulatory
network features. We would also like to thank Fabien Jourdan and Susana
Rivas for reading the manuscript and providing helpful comments.

Received: 18 May 2015 Accepted: 27 November 2015
Published online: 15 December 2015

References

1.

2.

10.

11

Monk J, Nogales J, Palsson BO. Optimizing genome-scale network
reconstructions. Nature Biotechnol. 2014;32(5):447-52.

Orth JD, Thiele |, Palsson BO. What is flux balance analysis? Nature
Biotechnol. 2010;28(3):245-8.

Schellenberger J, Que R, Fleming RMT, Thiele I, Orth JD, Feist AM, et al.
Quantitative prediction of cellular metabolism with constraint-based
models: the COBRA Toolbox v2.0. Nature protocols. 2011;6(9):1290-307.
Ebrahim A, Lerman JA, Palsson BO, Hyduke DR. COBRApy:
COnstraints-Based Reconstruction and Analysis for Python. BMC systems
biology. 2013;7:74.

Klamt S, Saez-Rodriguez J, Gilles ED. Structural and functional analysis of
cellular networks with CellNetAnalyzer. BMC syst biol. 2007;1(1):2.
Gevorgyan A, Bushell ME, Avignone-Rossa C, Kierzek AM. SurreyFBA: a
command line tool and graphics user interface for constraint-based
modeling of genome-scale metabolic reaction networks. Bioinformatics
(Oxford, England). 2011;27(3):433-4.

Rochal, Maia P, Evangelista P, Vilaga P, Soares Sa, et al. OptFlux: an
open-source software platform for in silico metabolic engineering. BMC
Syst Biol. 2010;4:45.

Hoppe A, Hoffmann S, Gerasch A, Gille C, Holzhitter H-G. FASIMU:
flexible software for flux-balance computation series in large metabolic
networks. BMC Bioinforma. 2011;12:28.

Wright J, Wagner A. The Systems Biology Research Tool: evolvable
open-source software. BMC Syst Biol. 2008;2:55.

Lakshmanan M, Koh G, Chung BKS, Lee D-Y. Software applications for
flux balance analysis. Brief Bioinform. 2014;15(1):108-22.

Buescher JM, Liebermeister W, Jules M, Uhr M, Muntel J, Botella E, et al.
Global network reorganization during dynamic adaptations of Bacillus
subtilis metabolism. Science (New York, N.Y.) 2012;335(6072):1099-103.
de Jong H. Modeling and simulation of genetic regulatory systems: a
literature review. J Comput Biol: J comput Mol Cell Biol. 2002;9(1):67-103.
Karlebach G, Shamir R. Modelling and analysis of gene regulatory
networks. Nat Rev Mol Cell Biol. 2008;9(10):770-80.

Le Novere N. Quantitative and logic modelling of molecular and gene
networks. Nat Rev Genet. 2015;16(3):146-58.

Morris MK, Saez-Rodriguez J, Sorger PK, Lauffenburger DA. Logic-based
models for the analysis of cell signaling networks. Biochemistry.
2010;49(15):3216-24.

Naldi A, Monteiro PT, Mussel C, Kestler HA, Thieffry D, Xenarios |, et al.
Cooperative development of logical modelling standards and tools with
ColLoMoTo. Bioinformatics (Oxford, England). 2015;31:1154-1159.


http://lipm-bioinfo.toulouse.inra.fr/flexflux/index.html
http://lipm-bioinfo.toulouse.inra.fr/flexflux/index.html
http://dx.doi.org/10.1186/s12918-015-0238-z
http://dx.doi.org/10.1186/s12918-015-0238-z
http://dx.doi.org/10.1186/s12918-015-0238-z
http://dx.doi.org/10.1186/s12918-015-0238-z
http://dx.doi.org/10.1186/s12918-015-0238-z
http://dx.doi.org/10.1186/s12918-015-0238-z
http://dx.doi.org/10.1186/s12918-015-0238-z

Marmiesse et al. BMC Systems Biology (2015) 9:93

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

32.

33.

34

35.

36.

37.

38.

39.

40.

Helikar T, Kowal B, McClenathan S, Bruckner M, Rowley T, Madrahimov
A, et al. The Cell Collective: toward an open and collaborative approach
to systems biology. BMC syst biol. 2012;6:96.

Chaouiya C, Bérenguier D, Keating SM, Naldi A, van lersel MP,
Rodriguez N, et al. SBML qualitative models: a model representation
format and infrastructure to foster interactions between qualitative
modelling formalisms and tools. BMC Syst Biol. 2013;7:135.

Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, et al. The
systems biology markup language (SBML): a medium for representation
and exchange of biochemical network models. Bioinformatics (Oxford,
England). 2003;19(4):524-31.

Naldi A, Berenguier D, Fauré A, Lopez F, Thieffry D, Chaouiya C. Logical
modelling of regulatory networks with GINsim 2.3. Biosystems. 2009;97(2):
134-9.

Terfve C, Cokelaer T, Henriques D, MacNamara A, Goncalves E, Morris
MK, et al. CellNOptR: a flexible toolkit to train protein signaling networks
to data using multiple logic formalisms. BMC Sys Biol. 2012;6:133.

Mussel C, Hopfensitz M, Kestler HA. BoolNet-an R package for
generation, reconstruction and analysis of Boolean networks.
Bioinformatics (Oxford, England). 2010;26(10):1378-80.

Covert MW, Schilling CH, Palsson B. Regulation of gene expression in flux
balance models of metabolism. J Theor Biol. 2001;213(1):73-88.
Chandrasekaran S, Price ND. Probabilistic integrative modeling of
genome-scale metabolic and regulatory networks in Escherichia coli and
Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2010;107(41):
17845-50.

Covert MW, Xiao N, Chen TJ, Karr JR. Integrating metabolic,
transcriptional regulatory and signal transduction models in Escherichia
coli. Bioinformatics (Oxford, England). 2008;24(18):2044-50.

Shlomi T, Eisenberg Y, Sharan R, Ruppin E. A genome-scale
computational study of the interplay between transcriptional regulation
and metabolism. Mol Syst Biol. 2007;3:101.

Dréager A, Rodriguez N, Dumousseau M, Dorr A, Wrzodek C, Le Novere
N, et al. JSBML: a flexible Java library for working with SBML.
Bioinformatics (Oxford, England). 2011;27(15):2167-8.

Thiele |, Palsson BO. A protocol for generating a high-quality
genome-scale metabolic reconstruction. Nat Protoc. 2010;5(1):93-121.
IBM ILOG CPLEX. http://www.ibm.com/software/integration/
optimization/cplex-optimizer. Accessed 8th Dec 2015.

GNU Linear Programming Kit (GLPK). http://www.gnu.org/software/glpk.
Accessed 8th Dec 2015.

Gudmundsson S, Thiele I. Computationally efficient flux variability
analysis. BMC Bioinformatics. 2010;11:489.

Edwards JS, Ramakrishna R, Palsson BO. Characterizing the metabolic
phenotype: a phenotype phase plane analysis. Biotechnol Bioeng.
2002;77(1):27-36.

Schuetz R, Zamboni N, Zampieri M, Heinemann M, Sauer U.
Multidimensional optimality of microbial metabolism. Science (New York,
N.Y) 2012;336(6081):601-4.

Varma A, Palsson BO. Stoichiometric flux balance models quantitatively
predict growth and metabolic by-product secretion in wild-type
Escherichia coli W3110. Appl Environ Microbiol. 1994;60(10):3724-1.
Jacob F, Monod J. Genetic regulatory mechanisms in the synthesis of
proteins. J mol biol. 1961;3:318-56.

Covert MW, Palsson BO. Transcriptional regulation in constraints-based
metabolic models of Escherichia coli. J biol chem. 2002;277(31):28058-64.
Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, et al.
A genome-scale metabolic reconstruction for Escherichia coli K-12
MG1655 that accounts for 1260 ORFs and thermodynamic information.
Mol Sys Biol. 2007;3:121.

Busby S, Ebright RH. Transcription activation by catabolite activator
protein (CAP). J Mol Biol. 1999;293(2):199-213.

Gorke B, Stulke J. Carbon catabolite repression in bacteria: many ways to
make the most out of nutrients. Nat Rev Microbiol. 2008;6(8):613-24.
Covert MW, Knight EM, Reed JL, Herrgard MJ, Palsson BO. Integrating
high-throughput and computational data elucidates bacterial networks.
Nature. 2004;429(6987):92-6.

Boos W, Shuman H. Maltose/maltodextrin system of Escherichia coli:
transport, metabolism, and regulation. Microbiol Mol Biol Rev. 1998;62(1):
204-29.

42.

43.

44,

45.

46.

Page 13 0f 13

Notley-McRobb L, Death A, Ferenci T. The relationship between external
glucose concentration and cAMP levels inside Escherichia coli:
implications for models of phosphotransferase-mediated regulation of
adenylate cyclase. Microbiology (Reading, Engl.) 1997;143 (Pt 6):
1909-1918.

lhssen J, Egli T. Global physiological analysis of carbon- and
energy-limited growing Escherichia coli confirms a high degree of
catabolic flexibility and preparedness for mixed substrate utilization.
Environ Microbiol. 2005;7(10):1568-81.

Helikar T, Konvalina J, Heidel J, Rogers JA. Emergent decision-making in
biological signal transduction networks. Proc Natl Acad Sci U S A.
2008;105(6):1913-8.

Middleton AM, Farcot E, Owen MR, Vernoux T. Modeling regulatory
networks to understand plant development: small is beautiful. Plant Cell.
2012;24(10):3876-91.

Rosenfeld N, Elowitz MB, Alon U. Negative autoregulation speeds the
response times of transcription networks. J mol biol. 2002;323(5):785-93.

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal
¢ We provide round the clock customer support

¢ Convenient online submission

® Thorough peer review

¢ Inclusion in PubMed and all major indexing services

* Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BiolMed Central



http://www.ibm.com/software/integration/optimization/cplex-optimizer
http://www.ibm.com/software/integration/optimization/cplex-optimizer
http://www.gnu.org/software/glpk

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Implementation
	General architecture
	Regulatory network analysis
	Constraining FBA with regulatory steady-state constraints
	Metabolic network analysis
	FlexFlux functions
	RSA and multi RSA
	Flux balance analysis (FBA)
	Flux variability analysis (FVA)
	Knockout analysis (KO)
	Phenotypic phase analysis
	Pareto analysis
	Time-dependent FBA


	Results
	Use case 1: steady-state analysis in different environmental conditions
	Use case 2: multi-state logical modelling
	Use case 3: analysis of a large regulatory network

	Discussion
	Conclusions
	Availability and requirements
	Additional files
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4
	Additional file 5
	Additional file 6
	Additional file 7

	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	References



