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Abstract

Background: The cAMP-dependent protein kinase regulatory network (PKA-RN) regulates metabolism, memory,
learning, development, and response to stress. Previous models of this network considered the catalytic subunits (CS)
as a single entity, overlooking their functional individualities. Furthermore, PKA-RN dynamics are often measured
through cAMP levels in nutrient-depleted cells shortly after being fed with glucose, dismissing downstream physiological
processes.

Results: Here we show that temperature stress, along with deletion of PKA-RN genes, significantly affected
HSE-dependent gene expression and the dynamics of the PKA-RN in cells growing in exponential phase.
Our genetic analysis revealed complex regulatory interactions between the CS that influenced the inhibition
of Hsf1/Skn7 transcription factors. Accordingly, we found new roles in growth control and stress response
for Hsf1/Skn7 when PKA activity was low (cdc254 cells). Experimental results were used to propose an interaction scheme
for the PKA-RN and to build an extension of a classic synchronous discrete modeling framework. Our computational
model reproduced the experimental data and predicted complex interactions between the CS and the
existence of a repressor of Hsf1/Skn7 that is activated by the CS. Additional genetic analysis identified Ssal
and Ssa2 chaperones as such repressors. Further modeling of the new data foresaw a third repressor of
Hsf1/Skn7, active only in theabsence of Tpk2. By averaging the network state over all its attractors, a good
quantitative agreement between computational and experimental results was obtained, as the averages
reflected more accurately the population measurements.

Conclusions: The assumption of PKA being one molecular entity has hindered the study of a wide range
of behaviors. Additionally, the dynamics of HSE-dependent gene expression cannot be simulated accurately
by considering the activity of single PKA-RN components (i.e., cAMP, individual CS, Bcy1, etc). We show
that the differential roles of the CS are essential to understand the dynamics of the PKA-RN and its targets.
Our systems level approach, which combined experimental results with theoretical modeling, unveils the relevance of
the interaction scheme for the CS and offers quantitative predictions for several scenarios (WT vs. mutants in PKA-RN
genes and growth at optimal temperature vs. heat shock).
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Background

The cyclic AMP (cAMP)-dependent protein kinase (PKA)
regulatory network (PKA-RN) is found in protozoa, ani-
mals, algae, and fungi. It plays a central role in the control
of different inter- and intra- cellular processes such as me-
tabolism, cell proliferation, stress response, and develop-
ment [57, 84]. In yeast, the PKA-RN is also involved in the
control of growth in response to nutrient conditions, which
in turn are known to influence the stress response [84].

In S. cerevisiae, the PKA holoenzyme forms an inactive
tetramer composed of two regulatory subunits (2 x Bcyl)
[85] and two out of three CS (Tpkl, Tpk2, or Tpk3) [86].
When intracellular concentrations of cAMP increase, Bcyl
binds cAMP, promoting the activation by release of the CS.
Two proteins, Gpa2 and Ras2, regulate adenylate cyclase,
which catalyzes the synthesis of cCAMP [14, 43, 84]. Forma-
tion of a Ras2-GTP complex [22], the active state of Ras2,
requires the GDP-GTP exchange activity of Cdc25 [6].
Moreover, the intracellular concentrations of cAMP are
also controlled by the phosphodiesterases Pdel and Pde2
[84]. The low affinity phosphodiesterase Pdel reduces
cAMP levels in nutrient depleted cells soon after glucose
addition [55], whereas the high affinity phosphodiesterase
Pde2 lowers cAMP levels during the exponential and sta-
tionary phases of growth [62]. It is thought that the activity
of the pathway increases at high levels of glucose (or other
rapidly fermentable sugars) and declines when the cells de-
plete the sugars, or when entering stationary phase [84].
Therefore, the PKA activity is influenced by the amount of
fermentable sugars and by the growth phase of the culture.

The growth phase of yeast liquid cultures impacts
their level of thermotolerance. For instance, during the
exponential phase cells are stress sensitive, whereas dur-
ing the stationary phase they develop stress resistance
[67, 91]. This behavior has been studied using genetic
analysis. Stress resistance is explained through a reduced
activity of the Ras-cAMP branch of the pathway (such
as in cdc25A, cyrl or rasl ras2” strains). These mutants
grow slowly and show elevated basal thermotolerance
during exponential phase [23, 25, 42, 64, 83]. In contrast,
mutants with high PKA activity, such as ira2, pde2, bcyl
or RAS2"°, are very sensitive to temperature stress
[19, 55, 62, 84, 87]. In exponential phase, basal thermo-
tolerance is negatively regulated by the Riml5 protein
kinase [67]. However, acclimation to high temperatures
during the exponential phase requires the concerted
action of Hsfl and Msn2/Msn4 transcription factors,
and chromatin remodeling complexes such as SWI/SNF
[3, 18]. These factors allow the rapid transcription of
genes encoding stress proteins involved in prevention
and repair of damages caused by stress 3, 19, 33].

Hsfl transcription factor is encoded by a single gene
[76] and shows high affinity for the heat shock elements
(HSE), found in the promoters of the heat shock genes
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[21]. The essentiality of Hsfl indicates that — besides
being important for the response to carbon starvation as
well as heat, osmotic, and oxidative stress — it also plays
important functions in normal growth [3, 4, 76, 81]. The
widespread functions regulated by Hsfl explain its bind-
ing to a large number of promoters (about 3 % of the
genes in the yeast genome). Among the functions of its
targets are: protein folding, degradation, trafficking, cell
integrity maintenance, transport, signaling, and tran-
scription [33]. Hsfl contains DNA binding and trimeri-
zation domains and is hyper-phosphorylated in serine
and threonine residues in response to heat and oxidative
stress [39, 76], modifications that activate its transcrip-
tional activity [39, 76]. The PKA constitutively represses
the activity of Hsfl, thereby inhibiting the expression of
small heat shock protein genes [20]. It is documented
that, in this regulation, the CS of PKA do not interact
directly with Hsfl [20]. Moreover, when the activity of
the PKA is low, such as during glucose starvation, Hsf1
is phosphorylated and activated by Yakl and Rim15 ki-
nases [50, 51]. However, the factors that mediate the regu-
lation of Hsfl by the PKA in glucose-rich media, and in
response to heat shock, are still unknown. In addition to
Hsfl, Skn7 also recognizes HSE elements [66] and is part
of a two-component system required for the signaling of
the hypo-osmotic stress and the oxidative stress pathways
[49, 82]. Previous reports have shown that the activity of
Skn7 during the oxidative stress response is negatively-
regulated by the PKA-RN [10].

Recently, it has become evident that results based only
in experimental approaches, and the static models de-
rived from them, are not sufficient to fully understand
the complex dynamics of a cellular system. Rather, the
integration of experimental data with dynamical model-
ing has expanded our current knowledge of the cell by
enabling the prediction of hidden cellular behaviors.
Thus, computational modeling is becoming an indis-
pensable tool to comprehend the organization of bio-
logical systems [48, 80] and the analysis of the dynamics
of the PKA-RN is no exception. Some studies of the
PKA-RN considered only its core components and fo-
cused on the feed-back regulation of cAMP levels that
nutrient-depleted cells display during the short-term re-
sponse (i.e., seconds) to a pulse of glucose [8, 63, 93].
More recently, PKA-RN models simulate long-term
growth (i.e., hours) in glucose [28] and evaluate targets
downstream of the PKA [24, 29]. However, in all these
models the activity of the three CS (Tpkl, Tpk2, and
Tpk3) is considered as a single entity, assumption that
might be correct in certain scenarios. Nonetheless, in
most situations, this assumption could be misleading, as
it is known that each CS has unique target specificities
[65]. Furthermore, the CS regulate certain physiological
processes in an antagonistic fashion [61, 68, 69],
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complicating even more the prediction of the dynamics
of the PKA-RN.

In this work, we performed a genetic analysis of the
Cdc25-Ras2 branch and some downstream components
of the PKA-RN (Fig. 1). We then incorporated these re-
sults into a dynamic computational model, to further
understand the mechanistic nature of the network. HSE-
dependent gene expression was chosen as the end prod-
uct of the PKA-RN and the performance of cells grow-
ing exponentially in glucose-rich media, both at optimal
temperature and in response to heat shock, was evalu-
ated. We tested how the different PKA subunits (regula-
tory and each CS) interacted with each other. Novel
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interactions, in addition to those already known, are de-
scribed. Computational modeling of the PKA-RN was
performed by extending the well-established “discrete
dynamics modeling framework” [1, 38, 71, 90] in order
to take into account the fact that gene expression
measurements of batch cultures average out individual
expression patterns. We named this extension, the Win-
dowed Discrete Model (WDM) because it averages over
a given time window the discrete values of the network
elements in a given attractor, and weighs this average by
the size of the corresponding basin of attraction. This
process incorporates the whole set of steady states of
the network and captures the inherent averages in

/X

l

HSE-lacZ

Fig. 1 Scheme for the development of a dynamic computational model for the simulation of the regulation of HSE-dependent gene expression by

the PKA-RN. A PKA-RN composed of 15 elements was simulated in a dynamic computational model (see Additional file 3: Supplementary Information).
In this scheme Cdc25, Ras2, Cyr1, Tpk1, Tpk3, Hsf1, and Skn7 act as positive regulators. Bcy1, an unidentified repressor of Hsf1/Skn7 (Repressor X), CAMP,
and heat shock act as repressors. Interestingly, in this scheme Ssat, Ssa2, and Tpk?2 interactions are complex acting both as activators and as repressors.
The experimental evidence that accounts for the activities and interactions of the components is described in the Background and Results and
discussion sections
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population measurements. Although discrete dynamic
models are intended to describe expression patterns at
the single-cell level, our approach allowed us to make
quantitative predictions of gene expression patterns
taken at the population level for both WT and mutant
strains. Furthermore, we showed that when the popula-
tion average inherent to batch cultures was implemented
in the WDM, the results were similar regardless of the
use of synchronous or asynchronous updating of the
network elements.

Our genetic analysis showed that the PKA-RN con-
trols HSE-dependent gene expression via Hsfl/Skn7
transcription factors. Modeling the control of Hsfl-Skn7
by the PKA-RN predicted the existence of a repressor
connecting the CS with Hsfl-Skn7 and encouraged new
genetic analyses that proved that Ssal and Ssa2 chaper-
ones repress Hsfl/Skn7 when activated by the CS of
PKA. Additionally, novel functions of Skn7 and of the
C-terminal domain of Hsfl, such as growth control,
thermotolerance, and resistance to H,O,, were revealed
whenever the activity of PKA was low. Our model also
predicted the existence of a still unidentified third re-
pressor of Hsf1/Skn7, active only in the absence of Tpk2.
The WDM explained and predicted HSE-dependent gene
expression in WT and mutant strains with and without
high temperature stress. We believe that our WDM of
the PKA-RN can be useful to simulate other biological
processes where the CS of PKA show similar antagonistic
interactions, such as in the control of pseudohyphal
growth or iron uptake [61, 68, 69].

Without further adaptations, the WDM is, to our
knowledge, the first suitable tool based on discrete dy-
namics that can be used to simulate data obtained from
population level measurements (batch cultures), despite
of their known heterogeneity at the physiological and
gene expression levels [23, 40, 53].

Results and discussion

Analysis of gene expression and dynamical modeling of
the PKA-RN was performed during exponential growth.
Measurements were taken under optimal temperature
and after a heat shock at 39 °C (see Methods). The regu-
lation of stress gene expression depends on complex
transcriptional mechanisms. For example, in S. cerevisiae
Msn2, Msn4, Hsfl, Yapl, and eight additional transcrip-
tion factors contribute to the transcription of heat shock
genes [95]. The PKA-RN also controls stress gene ex-
pression by inhibiting the activity of Msn2, Msn4, Hsfl,
Yapl, and Skn7 [10, 20, 37, 75]. Because of this complex-
ity, we decided to focus on the transcription factors Hsfl
and Skn7 in WT and PKA-RN deletion mutants by
measuring the activity of an HSE-CYClI-lacZ reporter
gene construct to test their im vivo activity (see
Methods), as reported before [4, 47, 50, 58]. In our
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hands, this reporter showed no activity in the absence of
the HSE and its activity did not correlate with the plas-
mid copy number in the different strains analyzed (see
Methods). Because the effect on HSE-dependent expres-
sion by deletions in PKA-RN genes is dependent on the
genetic background ([17, 56], and our unpublished data),
all mutants used in this work were derivatives of the
same laboratory strain (W303). Previous studies have
shown that in W303, the expression of several stress
genes such as HSP104, TPS1, CTT1, GPDI1, HSP12, and
HSP26 are inhibited by PKA [20, 23] and, in the case of
HSPI12 and HSP26, their inhibition by PKA is mediated
through Hsfl [20].

Cdc25 positively regulates HSE-dependent gene
expression

CDC25 deletion caused strong alterations in two well-
known PKA-regulated processes: growth rate (decreased)
and basal thermotolerance (increased) (Additional file 1:
Table S1). HSE-driven p-galactosidase activity at 25 °C
was 3.7-fold higher in cdc25A cells than in the WT
strain (Fig. 2b). After heat shock, the WT strain in-
creased the reporter activity 2.3-fold relative to the
25 °C condition. In cdc25A cells, B-galactosidase activ-
ity remained unchanged at both temperatures; note-
worthy these levels were significantly higher than in
the WT at 39 °C. These results indicate that CDC25
down-regulates HSE-dependent gene expression in WT
cells and they are consistent with previous findings
showing that PKA inhibits Hsfl activity [20].

Hsf1 and Skn7 mediate the high basal thermotolerance
and constitutive HSE-dependent gene expression in
cdc254 cells

Both Hsfl and Skn7 transcription factors recognize HSEs
[66, 76]. Therefore, we separately evaluated their contri-
butions to the constitutively-elevated HSE-dependent
expression in cdc25A cells. An Hsfl lacking 250 residues
at the C-terminal domain (4sfI-ACTA) was used instead
of a full deletion of the ORF, because the function of
HSF1 is essential [60, 76]. At 25 °C the [B-galactosidase
activity in the hsfI-ACTA strain equated that of the
WT but, unlike the WT, after a heat shock at 39 °C
its p-galactosidase activity did not increase (Fig. 2a).
This confirms that the C-terminal activation domain is
required to elevate Hsfl transcriptional activity in re-
sponse to heat shock [60]. Furthermore, -galactosidase
levels in the double mutant hsfI-ACTA cdc25A de-
creased significantly compared to the single cdc25A
mutant, both at 25 °C and after heat shock, supporting
the idea that Cdc25 regulates Hsfl (Fig. 2a). Accord-
ingly, the basal thermotolerance (15 %) of hsfI-ACTA
cdc25A cells decreased relative to the cdc25A single
mutant (70 %) (Additional file 1: Table S2). Although
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Fig. 2 De-repression of HSE-dependent gene expression in cdc254
cells is dependent on both Hsfl and Skn7 activities. Strains
transformed with reporter plasmid pRY016 (2 ) were grown in SD
medium at 25 °C until mid-exponential phase and treated at
different temperatures as described in Methods section. Values are
reported as (3-galactosidase specific activity (nmol of hydrolyzed
ONPG min~" mg™" protein) and are the average and standard
deviation of at least three independent experiments. Bars that do
not share at least a common letter differ significantly (P < 0.05).
Strains assayed were: a WT (W303-6B), hsf1-ACTA (LM020), cdc254
(SL5001), and hsf1-ACTA cdc254 (SL6001). b WT (W303-6B), skn’/4
(SE1000), cdc254 (SL5001), and cdc254 skn74 (SL4001)

basal thermotolerance of hsfI-ACTA mutant was simi-
lar to the WT strain, its duplication time at 25 °C in-
creased slightly (Additional file 1: Table S2). We also
found that deletion of the C-terminal domain of Hsfl
suppressed the lack of growth of cdc25A cells in acet-
ate or galactose at 25 °C. We suggest that the C-terminal
domain of Hsfl plays a negative role in the control of
growth in non-fermentable media under conditions of low
PKA activity. In yeast, humans and in Arabidopsis, Hsp70
interacts with the C-terminal activation domain of Hsfl
inhibiting its transcriptional activity [4, 45, 73]. We predict
that the transcriptional activity and the growth-promoting
potential of the full-length Hsfl, when the cell is under
under low PKA conditions, could be re-established by
deletion of genes encoding Hsp70.

In WT cells, HSE-dependent expression increased at the
beginning of the post-diauxic phase (Fig. 3). This observa-
tion agrees with the decline of PKKA activity at this stage
[84]. A similar pattern was observed in cdc25A cells, al-
though their initial activity was already very high. Interest-
ingly, the [-galactosidase activity in the double mutant
hsfl-ACTA cdc25A was smaller than the activity in cdc25A
cells, remaining constant during the exponential and post-
diauxic phases. This indicates that the CTA domain of Hsfl
is required for maximal activity in low PKA cells. Unex-
pectedly, p-galactosidase levels in the hsfI-ACTA strain de-
clined steadily as the culture advanced from exponential to
the post-diauxic phase (Fig. 3). These observations reinforce
the idea that Hsfl activity is essential to enter the post-
diauxic phase at optimal temperatures. Thus, the C-
terminal domain of Hsfl plays four novel functional roles
at 25 °C when PKA activity is low: i) increases basal ther-
motolerance (Additional file 1: Table S3), ii) increases HSE-
dependent gene expression (Figs. 2a and 3), iii) causes
growth arrest in acetate, iv) causes growth arrest in galact-
ose. These functions of the C-terminal domain of Hsfl
were not previously described [60, 76].

To analyze the contribution of Skn7, the double mu-
tant skn7A cdc25A was also transformed with reporter
plasmid pRYO016. The P-galactosidase activity in skn7A
cdc25A cells at 25 °C or after heat shock was lower than
that of c¢dc25A cells (Fig. 2b). In contrast to cdc25A hsfl-



Pérez-Landero et al. BMIC Systems Biology (2015) 9:42

Page 6 of 17

4500 1
4000 1
3500 1
3000 1
2500 1
2000 1
1500 4
1000 1

B-galactosidase specific activity

H ®©
H ®D

0o4

e
efg
0

bOos HO16 H2 ME3

i |

cdc254 (SL6001), and cdc254 (SL5001)

hsf1 -ACTA

Fig. 3 Increase of HSE-dependent gene expression, during the post-diauxic phase of liquid cultures at 25 °C, requires Hsf1 activity. Strains
containing plasmid pRY016 were grown in SD medium at 25 °C and aliquots were taken at the indicated culture densities (ODgg0). Data shown
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ACTA cells, B-galactosidase activity increased upon heat
shock at 39 °C. However, this increase was not statisti-
cally significant (Fig. 2b). This indicates that, in the
cdc25A strain, HSE-dependent expression is reliant on
Skn7 for optimal temperature growth to a greater extent
than after a heat shock. Furthermore, the basal thermo-
tolerance and the duplication time of cdc25A skn7A cells
decreased relative to cdc25A cells (Additional file 1:
Table S2), while the inhibition of growth at 36 °C and in
acetate or galactose as sole carbon sources at 25 °C were
suppressed by SKN7 deletion. In agreement with the in-
volvement of Skn7 in the oxidative stress response [49],
we observed that resistance of cdc25A cells to HyO, de-
creased by deletion of SKN7 (data not shown). The activity
of the reporter gene in the single skn7A mutant was similar
to the WT at 25 °C and after a heat shock at 39 °C (Fig. 2b).
Together, these results indicate that, in cells growing at op-
timal temperature or when their PKA activity is low, Skn7
is required to achieve maximal basal thermotolerance and
HSE-dependent gene expression. The contribution of Skn7
to the elevated HSE-dependent gene expression in response
to heat shock was only marginal (Fig. 2b). Thus, heat induc-
tion of HSE-dependent gene expression in cells with low or
high PKA activity depends mostly on Hsfl. However, we
found that Skn7 plays new roles in other cellular processes
at low PKA activity: i) inhibits growth at 25 °C, ii) It is
required for H,O, resistance, iii) causes growth arrest in
glucose at 36 °C, iv) causes growth arrest in acetate at
25 °C, v) causes growth arrest in galactose at 25 °C.

Ras2 also regulates HSE-dependent gene expression
Ras2 is a positive regulator of the PKA-RN acting down-
stream of Cdc25. In a RAS2 deletion mutant, basal

thermotolerance was 120-fold higher than in the WT
strain [P =0.002] (Additional file 1: Table S1). This dif-
ference was consistent with a constitutively elevated
HSE-dependent gene expression at 25 °C (Fig. 4). Growth
rate of the RAS2 mutant was similar to the WT strain
(Additional file 1: Table S1). The increased thermotolerance
of CDC25 and RAS?2 single mutants (Additional file 1:
Table S1) confirmed that their PKA activity decreased.
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Fig. 4 Effect of RAS2, and BCY1 deletions on HSE-dependent gene
expression. Strains were transformed with plasmid pRY016 (2 )
containing an HSE-CYCI-lacZ reporter gene. Growth and temperature
treatments were performed as described in Methods section. Data
shown represent the average and standard deviation of at least
three independent experiments. 3-galactosidase specific activities
are reported as in Fig. 2. Bars that do not share at least a common
letter differ significantly (P < 0.05). Strains assayed were: WT (W303-1a),

ras24 (Wras24) and bcy14 (CM0095)
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However, the growth rate diminished only in the CDC25,
but not in the RAS2 mutant. This finding indicates
that the control of basal thermotolerance is more sen-
sitive to a low PKA cellular activity than duplication
time is.

Deletion of BCY1 represses the HSE-dependent gene
expression

To evaluate whether cells with high PKA activity altered
HSE-dependent gene expression in the opposite way to
mutants with low PKA activity, such as cdc254 and
ras2/, a deletion mutant of BCYI was studied. Indeed,
HSE-dependent expression was repressed in bcyIA cells
relative to the WT strain at 25 °C and after heat shock
at 39 °C (Fig. 4). Consistent with these results, dupli-
cation time decreased in the bcylA mutant, while basal
thermotolerance remained the same as in the WT
strain (Additional file 1: Table S1). Induced thermotol-
erance decreased dramatically in bcylA cells (0.22 £
0.4 % in the mutant vs. 72+12 % in the WT with a
P =< 0.001). Moreover, cell viability in bcylA cells was
very poor, in agreement with previous results [85].

Tpk1 and Tpk3 inhibit HSE-dependent gene expression in
the absence of Tpk2

To explore the possible differences between the CS of
PKA, we first analyzed HSE-dependent expression in
single TPK gene deletion mutants. In tpkIA cells HSE-
dependent expression was slightly reduced at 39 °C but
not at 25 °C when compared to the WT (Fig. 5). In
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tpk3A cells HSE-dependent expression was not affected.
Interestingly, HSE-dependent expression in the tpk2A
mutant was highly repressed both at 25 °C and 39 °C.
The basal thermotolerance of the three single mutants
was similar to the WT strain (Additional file 1: Table
S3). Duplication times of tpk2A or tpk3A mutants were
similar to the WT strain. However, the tpkiA mutant
showed a slower growth rate (Additional file 1: Table
S3). Induced thermotolerance was reduced relative to
WT in tpklA and tpk2A mutants, but not in tpk3A.
These results suggested that each CS plays a different
role in the control of HSE-dependent gene expression,
growth, and in basal- and induced-thermotolerance. In
order to analyze the role of individual Tpk’s, double TPK
deletion mutants were studied. The p-galactosidase ac-
tivities of tpkIA tpk3A cells growing at 25 °C or after
heat shock at 39 °C were similar to their isogenic
WT strain (Fig. 5). However, its basal thermotolerance
and duplication time increased relative to the WT
strain (Additional file 1: Table S3). In contrast, the p-
galactosidase activities at 25 and 39 °C in cells con-
taining only Tpkl (tpk24 tpk3A) or Tpk3 (tpklA tpk2A)
were very low (Fig. 5), whereas their basal thermotoler-
ance and duplication time were similar to the WT. How-
ever, the level of induced thermotolerance of tpkiA
tpk2A was lower [P =0.05] than in WT cells (Additional
file 1: Table S3). In tpk2A tpk3A and tpkIA tpk3A cells,
the induced thermotolerance levels were similar to the
WT cells, supporting the idea that Tpk3 and Tpkl
hyper-repress the HSE-dependent gene expression when
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acting as the sole PKA CS, and that Tpk3 represses the
induced thermotolerance if acting as sole PKA CS. These
results confirm the hypothesis that the activities of the
CS are not redundant for the control of HSE-dependent
gene expression, growth, basal or induced thermotoler-
ance. Also, these findings imply that Tpk2 activity antag-
onizes Tpkl and Tpk3 action, as has been suggested by
other studies on the control of iron uptake and pseudo-
hyphal growth [61, 68, 69].

Heat shock gene transcript levels are reduced when Tpk3

is the only CS

To learn more about the strong repressing activity of
Tpk3 upon Hsfl, when Tpkl and Tpk2 are absent, we
studied the levels of several stress genes within the con-
text of their natural promoters. As shown in Additional
file 2: Figure S1, expression of the heat shock genes
HSP104, HSP82, SSA3, HSP26, and HSPI12 at 25 °C was
reduced in the tpkIA tpk2A mutant relative to the WT
strain. This result is consistent with the low level of in-
duced thermotolerance displayed by the tpkIA tpk2A
mutant (Additional file 1: Table S3). Transformation of
tpklA tpk2A cells with TPK2 in a CEN plasmid did not
complement fully the HSE-dependent gene expression at
WT levels (data not shown), most likely because TPK2
gene copy number per cell was not 1, but 2.8 copies/cell.
Transformation of the tpkIA tpk2A cells with TPK2 in a
2 p plasmid was toxic to the cell, explaining the surpris-
ingly low copy number in the surviving cells (1.7 copies/
cell).

Tpk2 antagonizes the activity of Tpk1

To further test the hypothesis that the loss of TPK2 in
the tpk2A tpk3A double mutant causes repression of
HSE-dependent gene expression, the TPK2 gene was
returned to the tpk2A tpk3A double mutant using the
delitto perfetto technique (see Methods) [30, 79], res-
toring the native copy number of the gene. This modifi-
cation (tpk2A:TPK2 tpk3A) returned HSE-dependent
expression to WT levels (Fig. 5), supporting the idea
that Tpk2 antagonizes the activity of Tpkl on HSE-
dependent expression.

Catalytic activity of PKA in extracts from TPK mutants

We hypothesized that antagonism between Tpk2 and
the other CS (Tpkl and Tpk3) was due to drastic
changes in the total PKA activity of the cell. Accord-
ingly, we could expect that the total PKA activity in
TPK2 mutants (tpk24, tpkIA tpk2A, and tpk2A tpk3A)
would be high, whereas in the WT, tpkiA, tpk34, and
tpklA tpk3A mutants the PKA activity would be low.
After addition of cAMP, PKA activity in extracts from
mutants tpkIA, tpk3A, and tpklIA tpk3A was similar to
the WT (Additional file 2: Figure S2). On the contrary,
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cAMP-dependent PKA activity decreased in tpk24,
tpk1A tpk2A, and tpk3A mutants. These results indicate
that HSE-dependent expression is not a simple reflection
of the overall PKA activity within the cell. Alternatively,
one could also propose that deletion of a given TPK
gene reduced the PKA activity in the cell in a propor-
tional manner to its abundance in the WT. It is estab-
lished that during exponential growth in liquid cultures
yeasts contain a large proportion of Tpkl, followed by
Tpk2, and Tpk3 being the one with the lowest abun-
dance [88]. Thus, elimination of TPKI and/or TPK2
should diminish dramatically the PKA activity in the cell.
This was the case for TPK2 deletions but not for TPKI
deletions (Additional file 2: Figure S2), indicating again
that deletion of a given TPK gene does not influence
arithmetically the overall PKA activity in the cell. There-
fore, dynamic mechanisms seem to define the final PKA
activity in the WT and in a given TPK mutant (interac-
tions between CS, compartmentalization, stability, etc.).

Ssal and Ssa2 mediate the inhibition of HSE-dependent
gene expression

Our initial computational model assumed that the regu-
lation of Hsfl/Skn7 by the CS was direct. However,
under this design, predicted and experimental HSE-
activities for several PKA-RN mutants gave contrasting
results. Complete agreement between experimental and
computational data was not achieved until a negative
regulator was placed as an intermediary between the CS
and Hsf1/Skn7 (see Fig. 1 and the following subsection).
This idea was in accordance with previous findings dem-
onstrating that the CS's do not interact directly with
Hsfl [20]. Therefore, we considered Hsp70 chaperones
as putative intermediate inhibitors, because they are
well-known negative regulators of Hsfl. Yeast mutants
with decreased Hsp70 levels increase the expression of
Hsps, enhance thermotolerance, and grow slowly. Add-
itionally, these phenotypes are suppressed by a mutation in
HSF1 that decreases its DNA binding affinity [13, 34, 92].
These observations and others from both mammals
and yeast reinforce a model that includes an auto-
regulatory loop in which Hsp70 represses Hsfl activity
[4, 12, 94]. Moreover, Ssal positively controls the PKA-
RN by stabilizing Cdc25 at optimal temperatures [26]
and, under stress, the Cdc25-Hsp70 complex dissociates
leading to a loss of Cdc25 levels and a decrease in the ac-
tivity of the PKA pathway [26]. Our experiments revealed
that deletion of SSA2 increased HSE-dependent gene ex-
pression (Fig. 6). Deletion of SSA1 did not affect HSE-
dependent gene expression significantly, indicating that
SSA2 suffices for maintaining WT activity. Deletion of
both SSAI and SSA2 largely increased the reporter acti-
vity, uncovering the contribution of both Hsp70 genes
as repressors of HSE-dependent gene expression in WT
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Fig. 6 A role for SSAT and SSA2 in the repression of HSE-dependent
gene expression. Strains transformed with reporter plasmid pRY016
were grown in SD medium at 25 °C until mid-exponential phase
and treated at different temperatures as described in Methods
section. Data shown represent the average and standard deviation
of at least three independent experiments. 3-galactosidase specific
activities are reported as in Fig. 2. Bars that do not share at least a
common letter differ significantly (P < 0.05). Strains assayed were:
WT (W303-1a), tpk24 (KG604), ssala (S001), ssald tpk24 (S002),
ssa2A (SL622), ssa24 tpk2A (SL623), ssald ssa2A (SL625), ssald ssa2A
tpk24 (SL708)

cells. Interestingly, deletion of SSAI or SSA2 in a tpk2A
background did not suppress the strong repression of
HSE-dependent gene expression characteristic of the
tpk2A single mutant (Fig. 6). However, the phenotype of
the tpk2A mutant was suppressed in the triple mutant
ssalA ssa2A tpk2A, as its HSE-dependent expression was
higher than in tpk2A cells (at 25 °C and 39 °C), similar to
that of the ssalA and the WT at 25 °C, and lower com-
pared to ssalA and the WT at 39 °C. These results impli-
cated Ssal and Ssa2 not only as mediators of the strong
repression of HSE-dependent gene expression, but also
suggest the existence of an additional repressor of Hsfl/
Skn7, active in the absence of Tpk2.

The dynamical model of the PKA-RN revealed an
additional negative regulator of Hsf1

To thoroughly understand the implications of our obser-
vations we constructed a discrete dynamical model of
the PKA-RN based both on our results and in the litera-
ture [4, 10, 19, 20, 23, 26, 60, 61, 66, 68, 69, 76, 78, 84,
89, 94]. As described in the Methods section, we have
used an extension of a synchronous discrete modeling
framework, as this type of modeling is known to accur-
ately predict the behavior of several biological networks.
One of the advantages of the discrete framework is that
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it only requires knowledge about the regulatory nature
of the interactions involved, contrary to reaction-kinetic
differential equations that require the precise values
for all the kinetic parameters and cooperativity expo-
nents of the network elements. For a detailed review
of the advantages and disadvantages of discrete and
Boolean models compared to other frameworks consult
[1, 38, 71, 90].

Briefly, our model consists on N elements {0, 05...,
ony whose dynamical states take integer values ranging
from O to m; where m; is the maximum level of activity
(or level of expression) for element ;. Usually only two
levels of activity are implemented: either the node is ac-
tive (o;=1) or it is inactive (o; =0). However, often the
functionality of a given node depends on whether it has
a low, mild or high level of activity [9] and the binary
description is not enough. This is the case here, as our
experiments indicate that some nodes of the TPK-RN
require distinction of up to six levels of activity (see
Additional file 3: Sections 3 and 4 in the Supplementary
Information). Additionally, as currently there is no infor-
mation about the time scales implicated in the dynamics
of the PKA-RN elements, for graphing we used a syn-
chronous updating scheme (see Methods).

For each network (we will consider WT, tpklA, etc., as
different networks) we sampled about 10 % of the
complete set of initial conditions (which consists of
more than 4 billion points) looking for steady states of
expression (attractors) (see Additional file 4: Text SI).
As several initial conditions may fall into the same at-
tractor, we define the size of the basin of attraction By as
the number of initial conditions that fall into attractor K.
Our extension of this traditional modeling framework
consists in two simple modifications. First we averaged
the level of expression for each element over a time win-
dow whose length equaled the attractor period. This
gave us a single continuous value A; for each element o;
in the K’ attractor. Then, to better represent the experi-
mental measurements from liquid batch cultures where
a single average expression level is obtained, we averaged
the quantities A;; over all the attractors of the network,
weighted by the size of the corresponding basin of at-
traction (see Methods). Thus, contrary to other studies
[9, 46, 52], we avoided discarding any attractor reached
by the network deeming it as “non-biologically relevant”.

From now on, we will refer to this extension as the
Windowed Discrete Model (WDM). This statistical
treatment of data is supported by experimental studies
showing that individual yeast cells in batch cultures ex-
hibit different cell cycle phases, physiological states, and
gene expression patterns that result in a heterogeneous
population [23, 40, 53]. With this procedure, we were
able to make a direct and semi-quantitative comparison
between the model predictions and the experimental
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measurements. The WT interaction network considered
is shown in Fig. 1 and the logic rules governing the dy-
namics of the system are presented on the Supplemen-
tary Information (see Additional file 3: Section 3).

The modeled PKA-RN starts with the Cdc25-Ras
branch. Cdc25 abundance and function are dependant
on the activity of the Hsp70 chaperones (Ssal and Ssa2)
[26]. Under optimal temperature and nutrients condi-
tions, Cdc25 acts as the positive regulator of Ras2 activ-
ity [6, 22], which in turn activates Cyrl (adenylate
cyclase) [43]. The product of Cyrl, cAMP, negatively
regulates the inhibition imposed by Bcyl upon the CS
Tpkl, Tpk2, and Tpk3 [84]. The CS were modeled as a
module showing antagonism, as our results (Figs. 1 and
5) and those from others have suggested [61, 68, 69].
We propose that Tpk2 activity inhibits the activation of
Ssal and Ssa2 by the Tpkl and Tpk3 subunits. The im-
plication for this interaction is that, in a WT background
where the three CS are active, only the activity of Tpk2
is effective in activating Ssal and Ssa2 chaperones. The
mechanistic basis for this antagonism remains to be stud-
ied. A systematic study of yeast kinases, made in vitro,
showed that some CS have as substrates other CS. In par-
ticular, Tpkl phosphorylates Tpk2 and Tpk3; Tpk3 phos-
phorylates Tpk2; and Tpk2 phosphorylates Tpk3 [65]. It
remains to be seen whether the antagonism between the
CS is caused by their mutual phosphorylation or whether it
occurs via other indirect mechanisms.

As mentioned above (Fig. 6), the inhibition of the HSE-
dependent expression by the PKA-RN requires the activa-
tion, by the TPKs, of an inhibitor of Hsfl and Skn7. Ssal
and Ssa2 (Hsp70 proteins) were introduced into the model
as repressors of the HSE-dependent expression [4, 78]
(Fig. 6). Moreover, based on the expression levels of the
triple mutant ssalA ssa2A tpk2A (Fig. 6), we included a
third repressor of Hsfl/Skn7 that gets activated exclusively
when Tpkl and Tpk3 become the only CS (i.e., when Tpk2
is absent or at minimum levels). We believe that a very
plausible candidate for such a repressor could be Hsp90,
given that Hsp90 binds to Hsfl [59, 96] and its deletion in-
creases HSE-dependent expression [16]. Moreover, Tpkl
and Tpk3 phosphorylate Hsp82 (Hsp90) in vitro [65]; al-
though the functional significance of this phosphorylation
is unknown. It is plausible that the binding of Hsp90 to
Hsf1 could be enhanced upon phosphorylation by Tpk1 or
Tpk3, but this needs to be addressed experimentally. Simi-
larly, Tpkl and Tpk3 could enhance the repression of Hsfl
by other members of the Hsp70 family, such as Ssbl or
Ssb2, as it is known that Ssbl and Ssb2 form complexes
with Hsfl and deletion of their genes also increases HSE-
dependent expression [4]. However, more work is needed
to identify the third repressor that is unleashed in the ab-
sence of Tpk2. In any case, it is important to stress that
only by including the three repressors (Ssal, Ssa2, and the
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putative third repressor), the experimental measurements
could be reproduced by the model.

Quantitative comparison between theoretical and
experimental results corroborates the proposed
regulatory interactions

To validate the simulations of our model, we compared
the HSE-dependent expression results obtained compu-
tationally and those obtained experimentally in a num-
ber of mutant strains. Population measurements were
reported as the ratio (strain expression level)/(WT ex-
pression level) and are presented in Additional file 1:
Table S4. Figure 7 shows that the results obtained with
the WDM closely resembled the experimental results
obtained for all strains. The great concordance between
theory and experiment suggests that the novel interac-
tions proposed here for the PKA-RN are very likely true.
Additionally, we also implemented several asynchronous
updating schemes and the results that we obtained for
the population expression level were almost identical re-
gardless of the synchronicity or asynchronicity of the up-
dating scheme (Additional file 2: Figure S3). This feature
is quite relevant because, for a particular network (sin-
gle-cell level) the use of asynchronous updating can
significantly change the dynamical attractors of the net-
work [15, 36] to the point that random asynchronous
updating has been called inadequate in some scenarios
[15]. We present the structure of the attractor landscape
for the 25 °C WT network using synchronous updating
(Additional file 2: Figures S5 and S6). As this example
shows, different basins of attraction varying in size can
be visualized. The WDM takes this fact into account to
simulate subgroups of cells that might correspond to the
different basins of attraction.

In addition to the population measurements, we present
simulations for the temporal dynamics of Bcyl, cAMP,
HSE-lacZ, and Tpk3 that, presumably, could be valid for
single-cell measurements (Fig. 8). Each curve represents a
simulation corresponding to a different strain (W, ssalA
ssa2A, tpk2A, and tpklA tpk3A) starting from a random ini-
tial condition. At time £y, an increase in the temperature
was simulated by turning on the heat shock node. In the
absence of Ssal and Ssa2 (Fig. 8, red lines), the levels of
HSE-lacZ activity and Bcyl increased dramatically, while
the levels of cAMP and Tpk3 were very low. In the absence
of Ssal and Ssa2, the dynamics of Tpkl and Tpk2 were
identical to Tpk3 (data not shown). The particular temporal
dynamics observed in these simulations (oscillatory behav-
ior, spikes, etc.) remain to be experimentally confirmed
through the use of single-cell measurements. Nonetheless
the predictions reported in Fig. 8 fit well the experimental
data showing that ssalA ssa2A mutants are constitutively
resistant to high temperature and display elevated produc-
tion of Hsp’s and slow growth rates [34]. Deletion of TPK2
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Fig. 7 Comparison between experimental data and predictions by
the WDM. Comparison between experimental and theoretical
measurements for HSE-lacZ activity. Values are given as average
ratios between strain expression and WT expression at 25 °C, making
the average expression ratio of the WT strain at 25 °C equal to one.
Theoretical and experimental values show similar quantitative
behavior across strains. Moreover, since the theoretical values are no
longer discrete, subtle differences occurring experimentally are
reproduced also by the model. a Ratios at 25 °C, b ratios after a heat
shock at 39 °C

also decreased the expression of HSE-lacZ with respect to
the WT, but more conspicuously at 39 °C than at 25 °C,
consistent with the lower induced thermotolerance level in
this mutant (Additional file 1: Table S3).

Conclusions

Our results clarified the control of Hsfl and Skn7 by the
PKA-RN, demonstrating that in the W303 strain, PKA
represses Hsfl and also Skn7 via Ssal, Ssa2 and a third
unidentified repressor. No single component of the
PKA-RN could be used to predict accurately the
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experimental levels of downstream targets (i.e, HSE-
dependent gene expression) in all the situations studied.
Instead, modeling of the PKA-RN showed that the ob-
served experimental dynamics arose from the complex
interactions of the network making it necessary to
analyze the system as a whole. It remains to be unveiled
the exact molecular mechanisms by which the PKA CS
inhibit Hsfl and Skn7 activities. Our results indicate that
such mechanism must exist and it depends on Ssal,
Ssa2, and at least a third unidentified repressor. During
PKA-RN controlled processes, such as pseudohyphal
growth and iron uptake, the PKA CS display similar an-
tagonistic relationships to those observed during the
control of HSE-dependent gene expression. Tpk2, but
not Tpkl or Tpk3, is required for the induction of pseu-
dohyphal growth and for the inhibition of genes involved
in iron uptake [61, 68, 69]. Additionally, the fact that
various updating and averaging schemes produced es-
sentially the same results is quite interesting (Additional
file 2: Figure S3), as this means that the WDM really
captured the population average in batch cultures re-
gardless of the specific updating scheme. To our know-
ledge, this is the first model with this property. Thus,
with simple modifications, it can pave the way for the
analysis of many other cellular responses at the popula-
tion level apart from the PKA-RN.

Methods

Media and growth conditions

Yeast cells were grown at 25 °C in media prepared as
previously described in [23], unless otherwise indicated.

Duplication times of the strains were also calculated as
described in [23].

Strains and plasmids
All strains employed are described in Additional file 1:
Table S5. Strains with identical auxotrophies and other
genetic markers were used in all experiments to avoid
phenotypic differences due to marker effects. Integrative
gene-disruption cassette kanMX6 [31, 54] was used to
generate strains with full disruptions in CDC25, RAS2,
BCY1, SKN7, TPK1, TPK2, TPK3, SSA1, SSA2, or in the
C-terminal transcriptional activation domain of Hsfl
(hsfI-ACTA) in strains W303-1a, W303-6B, JF3100 or
JF3000. Transformants were selected on YPDA medium
plus 300 pg ml™" of geneticin. The correct insertion of
the cassette on each mutant was verified by PCR.
Reporter plasmid pRY016 (HSE-CYClI-lacZ) was gen-
erated by annealing oligonucleotides, HSEA and HSEB
(Additional file 1: Table S6). Self-ligation products were
separated by electrophoresis in agarose gels and the
band corresponding to the dimer was eluted from the
gel. The protruding ends were filled-in using the Klenow
enzyme and ligated to Bg/Il adapters for cloning into the
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Bglll site of plasmid pLGABS. Plasmid pLGABS is a high
copy number 2 p vector with a CYCI-lacZ fusion, lack-
ing UAS and derived from the pLG669Z [35]. The
resulting plasmid, pRY016, contained nine 5 bp units of
the HSE consensus sequence nGAAn [21] arranged in
both, sense and anti-sense orientations. To assess the
dependency of p-galactosidase activity on the HSEs
present in pRY016, the W303 WT strain and several
PKA-RN mutants, we transformed them with a pRY016-
derivative plasmid expressing the same CYCI-lacZ gene
fusion but lacking HSEs. The [-galactosidase activity at
25 °C or after a heat shock at 39 °C in all strains was
negligible (10 to 30 units) indicating that enzyme expres-
sion using pRYO016 is indeed HSE-dependent. To investi-
gate whether the levels of [3-galactosidase activity in the
strains used in this work were influenced by differences
in the copy number of the reporter plasmid, pRY016
copy number was measured in all strains. The correl-
ation coefficient of pRY016 plasmid copy number and p-
galactosidase activity (Pearson’s =0.35341449) was not
significant (P =0.0765) (Additional file 2: Figure S4).
Therefore, the activity of the pRY016 reporter seems to
be a reflection of actual changes in HSE-dependent gene
expression influenced by the mutations and not by plas-
mid copy number.

Stress tolerance assays
Basal thermotolerance was measured as described [23].
To determine induced-thermotolerance, cultures were

exposed at 39 °C for 60 min prior to a 50 °C heat shock
for 20 min. For both basal and induced thermotolerance,
aliquots of each culture were taken before and immedi-
ately after the 50 °C treatment, and dilutions were plated
on solid YPD to measure cell viability by colony count-
ing. Thermotolerance levels are expressed as the per-
centage of the number of colonies after a heat shock
divided by the number of colonies in the control sample.

Biochemical analysis

[B-galactosidase assays were performed from exponen-
tially grown cultures (ODgoo between 0.4-0.6) in SD
media as described [70]. -galactosidase specific activity
is expressed as nmol of hydrolyzed ONPG min™' mg™
protein. To measure the response to a heat shock, cells
were treated at 39 °C for 1 or 2 h as described [60, 77].

Genetic techniques and nucleic acid manipulations

DNA manipulations and genetic techniques were per-
formed according to Sambrook, Fritsch & Maniatis [72]
and Guthrie & Fink [32], respectively. DNA sequencing
was performed at the Unit for DNA Synthesis and Se-
quencing of the Instituto de Biotecnologia. Yeast trans-
formation was performed following the method
presented in [27].

RNA isolation and northern blot analyses
Total RNA was isolated from exponentially-growing cells
in SD medium at 25 °C by the method of Collart and
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Oliviero [11]. Aliquots (10 pg) of total RNA were separated
by electrophoresis on 1-2 % (w/v) agarose gels containing
formaldehyde, transferred to IMMOBILON-NY+ mem-
branes (Millipore) and hybridized as described by the
manufacturer. The 3 -0 kbp BamHI fragment of clone pYS-
Gal104 (courtesy of Dr. Susan Lindquist) was used as DNA
probe to detect HSP104 transcripts. Gene-specific DNA
probes for HSP82, SSA3, HSP26, HSP12, and ACTI were
amplified by PCR. Primer pairs used during PCR were:
FSHSP82 and RSHSP82 for HSP82; fc-ssa3 and rc-ssa3 for
SSA3; HSP26-F and HSP26-R for HSP26; HSP12-F and
HSP12-R for HSP12; ACT1-1 and ACT1-2 for ACTI
(Additional file 1: Table S5). Estimation of band intensities
of autoradiograms was performed by image analysis with
NIH Image 1.62 software. Data was normalized to account
for differences between samples in actual total-RNA loading.

Estimation of plasmid copy number in yeast strains
Strains were grown under similar conditions to those of
[-galactosidase assays. Southern blots of total genomic
DNA were digested with PstI and hybridized to the
340 bp Pstl-Scal fragment of plasmid pRS3 encoding
the N-terminus of Ura3. Copy number of pRY016 was
estimated as the ratio of plasmid/genome URA3 signal.
Band intensities of autoradiograms were measured with
NIH Image 1.62 software.

Complementation of strain tpk24 tpk34 by reintroduction
of TPK2 gene

Complementation of strain KS590 (tpk2A::loxP tpk3A:loxP),
was carried by a protocol based on the delitto perfetto tech-
nique [30, 79]. First, the LURA3 gene was amplified by PCR
using plasmid pRS306 [74] as template. Oligonucleotides
FTPK2-URA3 and RTPK2URA3 contained 40 bp of se-
quence flanking each side of the tpk2A::loxP chromosomal
deletion followed by URA3 flanking sequences. The PCR
product obtained was transformed by homologous recom-
bination into strain KS590 to get strain KS590-URA3
(tpk2A:URA3  tpk3A:loxP). Finally, URA3 gene in strain
KS590-URA3 was evicted by interchanging TPK2 using the
product of a PCR reaction that amplified TPK2 with TPK2-
Ucl and TPK2-Lcl oligonucleotides. The resulting strain,
KS590-URA3-TPK2 (tpk2A:: TPK2 tpk3A:loxP), was selected
by resistance to FOA at 1 mg/ml [7]. TPK2 gene was re-
amplified by PCR from KS590-URA3-TPK?2 to select candi-
dates with the correct DNA sequence.

Measurement of cAMP-dependent PKA activity

Cells were cultured in 50 ml of SD medium at an ODgg of
0.4. After centrifugation, the pellet was washed in cold
miliQ water and centrifuged once more. The washed pellet
was frozen in liquid Nj. Cells were broken with a mortar
and pestle under liquid N, and resuspended in extraction
buffer (50 mM Tris pH 7.4, 20 mM B-mercaptoetanol,
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0.5 mM PMSE, and 4 mg/ml COMPLETE", a mixture of
protease inhibitors [Roche, cat. no. 11697498001]). The
total protein extract was centrifuged twice and the final
supernatant was saved. Total protein was estimated by the
Bradford method [5]. Finally, aliquots containing 4 mg of
protein were assayed for PKA activity according to the
Pep Tag® protocol (PROMEGA, cat. no. V5340). Activity
was assayed in the presence or absence of 1 uM cAMP.
Only extracts from a bcylA mutant, used as a control,
showed PKA activity in the absence of exogenous cAMP.
WT and TPK mutants showed total dependency on cAMP
for PKA activity.

Statistical analysis

All experiments were conducted at least three times.
Comparisons between given pairs were analyzed using
the two-tailed T Student test. Pairs of data were consid-
ered significantly different only when P < 0.05. For mul-
tiple comparisons, data were subjected to analysis of
variance (ANOVA), and differences between the means
were compared by Tukey (one-way) or Bonferroni (two-
way) post-tests. Treatments were considered as statisti-
cally different to the control when P <0.05. Prism 5.0
software package was used.

The Windowed Discrete Model
The dynamic model consists of a network of 15 nodes
representing the regulatory interactions of the PKA-RN
shown in Fig. 1. Each node acquires a set of discrete values
that represent the level of expression of the corresponding
network element. Like many other discrete models available
[2, 9, 52], ours focuses on the functional state of expression
(or activation) of the network components, rather than on
their exact concentrations. These functional states of ex-
pression are modeled trough discrete variables that take a
finite number of values. To capture the various levels of ex-
pression observed experimentally for the HSE-CYCl-lacZ
reporter, the number of functional states for each node was
determined by the maximum number of statistically-
significant different groups of 3-galactosidase activity dis-
played experimentally by the whole panel of WT and PKA-
RN mutant strains during exponential phase (Figs. 2, 4, 5,
and 6). Our final model consisted on two binary nodes, one
ternary, four four-valued, one five-valued and seven six-
valued elements. This gives a total of Q =4,299,816,960
possible dynamical states for the network.

As in the standard Kauffman model [44], the network
dynamics is given by the simultaneous updating of all
the network elements according to the equation 1:

;Okn(t) )

n

o,(t+1) = F,,(ai,(t),oﬁ(t),

where 0,(f) represents the state of the n™ element of

the network at time ¢, {o},0%,---,0% } are the k,
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regulators of 0, and F,(-) is a discrete function (also
known as a logical rule) that determines the state of
0, in terms of the states of its regulators. This func-
tion F,(-) is constructed according to experimental
evidence regarding the regulatory interactions (activa-
tor or inhibitor) for each node. All the functions F,(-)
for the PKA-RN are listed in the Supplementary In-
formation (see Additional file 3: Section 3).

Since each variable acquires a finite number of states,
there are also a finite number of possible dynamical config-
urations for the entire network, ranging from the confi-
guration in which all the nodes are inactive, to the
configuration in which all the nodes have reached their
maximum values of activation. Once the dynamics from
any of these possible configurations starts, successive itera-
tions of Eq. (1) will make the network traverse through a
series of states until a periodic pattern of activity is reached.
This periodic activity is known as an attractor, and for each
network several attractors might exist. Which attractor the
network falls into depends on the initial condition the net-
work starts from. The set of all the initial conditions that
eventually fall into the same attractor is known as the basin
of attraction. It has been previously shown that attractors
represent the stable patterns of activity of the real biological
system, and the basins of attraction correspond to the dif-
ferent ways to reach these stable states [41]. Nonetheless, a
direct comparison of an attractor to HSE-dependent ex-
pression levels might not be so straightforward, as attrac-
tors may be often composed by several states (cyclic
attractors) and experimental gene expression is often
presented as a single value (e.g. P-galactosidase activity).
Moreover, experimental measures of gene expression are
commonly taken from a population of cells, which makes
the final measurement an average. For this reason we have
developed the WDM, where the state of each element of
the network is represented by its average expression over a
time window. In our model, the length of the window (L)
for each realization corresponds to the length of the at-
tractor reached. Although other sizes can be used with
similar results, sizes bigger than the length of the attractor
are not convenient as they tend to flatten the dynamics.

Additionally, since a network can have more than one
attractor, we have calculated a weighted average using
the entire set of attractors (N) for each network. Thus,
we define the average expression level of g, as:

Ly
. Zr:lan(to + T)
a=1 a

a

where N is the number of different attractors and the ex-
ternal sum is carried out over all the attractors. The par-
ameter o, is the fractional size of the basin of attraction
of the a™ attractor (XY_,w,=1). The internal sum is
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carried out over the L, states of the a”” attractor, and ¢,
is a transient time long enough as to guarantee that the
system has reached the attractor.

This simple modification, apart from allowing an eas-
ier comparison between the model and experimental
data, resembles the way in which experimental data is
gathered for gene expression in batch cultures, where
traditionally measurements of the level of expression
represent the population average, as cells in the popula-
tion are at different stages of a stable pattern of gene ex-
pression (unless synchronization is enforced).

To simulate deletions in our numerical experiments,
we just kept the value of the deleted node equal to zero
throughout the dynamics, which represents the complete
absence of that node.

Elevated temperatures increase the number of targets of
the Hsp70s, reducing their positive interaction over Cdc25
[26] and the inhibition of Hsfl [4, 89]. Therefore, heat
shock (HS) was introduced into the model as a node of
the PKA-RN that affects the functional state of Ssal and
Ssa2. Its logical function corresponds to a positive auto
regulation (see Additional file 3: Supplementary Informa-
tion, Section 3). This means that whenever this node is ac-
tive (which corresponds to the 39 °C condition), it
remained active all the time. By contrast, the 25 °C condi-
tion is represented by inactivating the HS node and keep-
ing it inactivated throughout the simulation time.

Availability of supporting data
All supporting data are included as additional files.
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