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Abstract

pancreatic cancer survival.

Background: Recent global genomic analyses identified 69 gene sets and 12 core signaling pathways genetically
altered in pancreatic cancer, which is a highly malignant disease. A comprehensive understanding of the genetic
signatures and signaling pathways that are directly correlated to pancreatic cancer survival will help cancer
researchers to develop effective multi-gene targeted, personalized therapies for the pancreatic cancer patients at
different stages. A previous work that applied a LASSO penalized regression method, which only considered
individual genetic effects, identified 12 genes associated with pancreatic cancer survival.

Results: In this work, we integrate pathway information into pancreatic cancer survival analysis. We introduce and
apply a doubly regularized Cox regression model to identify both genes and signaling pathways related to

Conclusions: Four signaling pathways, including lon transport, immune phagocytosis, TGFf (spermatogenesis),
regulation of DNA-dependent transcription pathways, and 15 genes within the four pathways are identified and
verified to be directly correlated to pancreatic cancer survival. Our findings can help cancer researchers design new
strategies for the early detection and diagnosis of pancreatic cancer.

Background

Pancreatic cancer [1] is a devastating disease with a very
poor prognosis and a five-year survival rate around 3-5%.
The most common form of pancreatic cancer is the
pancreatic ductal adenocarcinoma (PDAC, a malignant
exocrine cancer). In the past 30 years, no substantial pro-
gress has been made in PDAC diagnosis and treatment.
New techniques and methods to investigate the dynamics
of PDAC are urgently needed. Modern microarray tech-
nology has revolutionized the way that we study the com-
plex biological systems, allowing pancreatic cancer
researchers to make genome-wide expression profiling
and measure other features for patients in a fast, precise,
and cost-effective way. One aim of systems biologists is
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to correctly decipher and interpret the high-dimensional
complex gene expression data, that is, to identify the key
genetic signatures and signaling pathways implicated in
the diseases.

Pancreatic cancer is characterized by rapid growth, early
local and distant invasion, interactions with stromal cells
(e.g., pancreatic stellate cells) [2] and fibrous tissue, and a
high resistance to chemotherapy and radiotherapy. The
evolution of pancreatic cancer is partially stimulated by
the overexpression of several growth factors, cytokines,
and genetic alterations [3,4] at different stages of PDAC.
Recent global genomic analyses identified 69 gene sets and
12 core signaling pathways genetically altered in the pan-
creatic cancer [1]. Most of the previous genomic analyses
and microarray studies focused on the identification of the
differentially expressed and metastasis-associated genes at
different stages of pancreatic cancer [3,5], ignoring an
important clinical factor - survival time. Stratford et al.’s
work identified six genetic signatures [6] associated with
metastatic pancreatic cancer using a sequence of statistical
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techniques, including the significance analysis of microar-
ray (SAM) [7], centroid-based predictor [8], Pearson corre-
lation, X-Tile [9], Kaplan-Meier estimator [10] and Cox
model [11]. Though these genes could help discriminate
high- and low-risk patients, the prediction was not based
on survival time. A comprehensive understanding of the
genetic signatures and signaling pathways that are directly
correlated to pancreatic cancer survival will help cancer
researchers to develop effective multi-gene targeted, perso-
nalized therapies for the pancreatic cancer patients at dif-
ferent stages and improve survival rate.

The Cox proportional hazards model [11] is the most
popular survival model used to describe the relationship
between the patient’s survival time and predictor variables.
When we have high-dimensional data (e.g. in a microarray
study) where the number of predictors (genes) far exceeds
the number of subjects (patients), the Cox model cannot
be fitted directly unless the high-dimensionality is properly
handled. The regularization approach has been widely
used to select important variables from a large pool of
candidate variables [12-14]. For example, a Lasso (least
absolute shrinkage and selection operator) penalty can be
imposed to individual variables to automatically remove
unimportant ones by shrinking their regression coeffi-
cients to be exactly zero [15]. In our previous work [16],
we applied a lasso penalized Cox regression method,
for the first time, to investigate the signature genes that
are correlated to the pancreatic cancer survival time. We
identified 12 genes associated with the pancreatic cancer
survival and eight of them have been confirmed to be
genetically altered and differentially expressed in the can-
cer of gastric, colorectal, ovarian, breast, skin, kidney,
colon, lung, and pancreatic in in vivo and in vitro experi-
ments [17-25]. It has been shown that these survival-asso-
ciated genes can also help to grade the stage and estimate
the survival time of the PDAC patients.

However, the genes may perform as groups rather than
individuals since some genes belong to the same path-
ways and get involved in the same biological processes.
The pathway information is biologically important to our
understanding of gene regulatory networks and cancer
development [1]. The previous work [16] performs gene
selection based on the strength of individual genes solely
and ignores the information of signaling pathways.
Recently, several variable selection methods have been
introduced to consider group effects. For example, the
group lasso method penalizes the L,-norm (Euclidean
norm) of the coefficients within each group in linear
regression [26] and Cox proportional hazards model [12].
Based on the boosting technique, a group additive regres-
sion model [27] and a nonparametric pathway-based
regression model [28] were developed to identify groups
of genomic features that are related to several clinical
phenotypes, including the survival outcome. However,
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those group selection methods only conduct “group
selection” without “within-group selection”, since they
select variables in an “all-in-or-all-out” fashion. That is, if
one variable in a group is selected, all the other variables
in the same group will also get selected.

Although pathways as a whole are involved in the
development of pancreatic cancer, according to the glo-
bal genomic analyses, not all the genes in the same path-
way are involved in the process. In this work, we employ
a doubly regularized Cox (DrCox) regression model [29]
that integrates both genes and signaling pathways for the
pancreatic cancer survival analysis. Both non-overlap and
overlap cases of DrCox are considered. Cyclic coordinate
descent algorithms are derived for parameter estimation.
We analyze the high-dimensional microarray data of pan-
creatic cancer patients with localized and resected PDAC
collected between 1999 and 2007 [6] using DrCox. Four
signaling pathways, including Ion transport, immune
phagocytosis, TGEB (spermatogenesis), regulation of
DNA-dependent transcription pathways, and 15 genes
within these four pathways are identified and verified to
be directly correlated to pancreatic cancer survival. Com-
pared with other methods, the DrCox model can provide
more accurate and useful prediction of survival time [29].
These findings can help cancer researchers design new
strategies for the early detection and diagnosis of pan-
creatic cancer at different stages.

Methods

In this section, we describe the doubly regularized Cox
(DrCox) regression and derive the parameter estimates via
cyclic coordinate descent algorithms. We first present the
case where the groups do not overlap, i.e., each variable
belongs to only one group. Then we discuss the overlap
case, i.e., variables are allowed to belong to multiple groups.

Doubly regularized Cox (DrCox) regression for non-
overlap cases

Assume that the p variables (genes) occur in K groups
(pathways). We further assume the kth group has py vari-
ables and denote the p; variables in the kth group by
X=Xy oo kak)T, with the corresponding regression
coefficients By = (Bras - - - » ﬁkpk)T. For a sample of # sub-
jects, let T; and C; denote the survival time and the cen-
soring time for subject i = 1, . . ., n. The observed survival
time is defined by Y; = min{T};, C;} and the censoring indi-
cator is d; = I(T; < C;). The p predictor variables of the
ith subject is denoted by Xi = (Xg(l), cn, XZ(K))T, where
Xy = Xik1, ... Xikp,)'. The survival time T; and the
censoring time C; are conditionally independent given X;.
The censoring mechanism is assumed to be noninforma-
tive. The observed data can be represented by the triplets
{(Ys 00 X),i=1,...,n}
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The Cox proportional hazards model [11] composed
of p genes and K pathways is written by

K K
h(t|X) = ho(t) exp (Z Zﬂk,xk]) = ho(t) exp (ZXiT,(k)ﬁ(k)) )

k=1 j=1 k=1

where Z{;l pr = p- The partial likelihood of the Cox
model is

exp (Zf:l XZ(k)ﬂ(k))
L(B) =11 « :
ieD X jer, €XP (Zk=1 Xz,(k)ﬁ(k))

where D is the set of indices of observed failures, and
R; is the set of indices of the subjects who are at risk at
time Y.

To achieve the goal of both group and within-group
variable selection and to overcome the non-convexity
drawback, the doubly regularized Cox regression model
imposes a mixture of lasso penalty and group lasso pen-
alty to the log-partial likelihood ¢,(8) = log L,.(B)

K K
—(B) + A1 ZZ Byl + 22y Zﬁk,
k=1

kl]l

3(B) =
(1)

= —La(B) + 1 Z I Bylla + 22 Z Il Bag 2,

k=1 k=1
where || Bll1 = Z]pfl |Brjl is the lasso penalty on indi-
vidual parameters, | Bl =\/ P ,Bk] is the group

penalty on groups of parameters, and A1 and A, are two
nonnegative tuning constants controlling the strength of
variables selection. The larger are the tuning constants,
the fewer variables are retained in the model. In this
paper, the value of the tuning constants are determined
using k-fold cross validation (data-driven) technique to
select a subset of relevant genes and signaling pathways
for accurate and robust prediction.

Coordinate descent for non-overlap cases

Since there are more predictor variables than subjects
(p >n), to tackle the high-dimensionality problem we
use a cyclic coordinate descent algorithm, which has
been shown to be computationally efficient [30-33]. The
idea is to break a large optimization problem into a
sequence of small ones. In other words, instead of esti-
mating all the parameters at the same time, we can
update each parameter one by one. Readers can refer to
[31,32] for more details.

In the non-overlap case, where each variable belongs to
only one group, estimation of parameters and selection of
important variables can be conducted via the minimization
of (1) iteratively w.r.t. one parameter by one parameter.
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The first step is to calculate the forward and backward
directional derivatives of each parameter. If e;; is the coor-
dinate direction along which f;; varies, then the forward
and backward directional derivatives of f3; are

. 8(B +tew) — 8(B)
de,8(B) = 1[%1 .
) (b1 + A2)(=1)=0) if | Buyll2 =0
— ( - )
3B GRS IR G OV C AT T Iy
Il By ll2

and

8(B — tey) — g(B)

d_e,8(B) = l;fg .

(A +22)(— l)l(ﬂwUJ

] if || Buyllz =0
= 4 + .
opy (P [ 2 (1) =0 — gy

if || Buyll2 > 0,

II2

where I(-) is an indicator function equal to 1 if the
condition in the parentheses is satisfied and 0 otherwise,
and

K or
ler, &P (Zk:l Xll,(k)ﬁ(k)) XLk
3;3 talP) = Z il K T
kj icD 2 _ick, €XP (Zk:l Xz,(k)ﬂ(k))

After obtaining the directional derivatives, we then
need to decide which parameters to be updated and the
direction for updating. If both of the directional deriva-
tives d,;8(B) and d-,8(B) are nonnegative, then the
update for fB;; is skipped. If either directional derivative
is negative, then we solve for the minimum along the
corresponding direction. It is impossible for both direc-
tional derivatives to be negative due to the convexity of
g(B). After identifying the direction to update the para-
meter, one can use Newton’s method to solve for the
minimum. The update at iteration m + 1 is given by

(B™) + M (=1) <0
m+1 m dﬂkr
B = B+ +

82
La(B™ Zn
apz ") % "

A . B
Aaf(—1)' O)h(ﬂ%) * g 2By}

where Bm is the estimate at iteration m, I,(-) = I(Il - ll, = 0),
and L,() = I(Il - lly >0).

DrCox regression via coordinate descent for overlap cases
However, in reality, one gene can get involved in different
pathways. To consider overlapping, we modify the nota-
tion and objective function (1). We denote the p variables
by Xi, ..., X, with the corresponding regression coeffi-
cients By, ..., B,. Let V, € {1, 2, ..., p} be the set of
indices of variables in the kth group. The objective func-
tion designed for the overlap case can be written as

8(B) = —¢ (ﬂ)+mz|ﬂ,|+x22 > B )

k=1 \ jeVi
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Note that predictor X; can belong to several pathways
but it is only associated with one coefficient j;.

The parameter estimation needs to be modified
accordingly. If we consider the coordinate direction e;
for B, the forward and backward directional derivatives
of B; are

8(B +tej) — &(B)

a,8(8) = 1im &0
= —dgtalf) - 1) i S )+ P e
P Il Bayll2
and
d o5(6) = lim {Che te;t) —38(P)
= —d g la(B)+ 1 (1) P00y Y {(*1)'w’>(])11(5(;:)) . ’2(/3(;1])}<
port Il By ll2
where G; € {1, 2, . . ., K} are the indices of groups

that X; belongs to. After determining the direction for
updating, the coefficient can be updated by

- o B
gt _ g, = o, a(B™) + 21 (—1)/¥'=0 +)~z Ykeq; {(*1)‘(’9’ 1 (Bgy) + \w;;’;)mz(ﬂ;z))}
i Th 92 9?2 :
Sl (B™ €. (8™
967 n(B™) o8 n(B™)

Results and discussion

The DrCox model with the cyclic coordinate descent
algorithm is applied to analyze the PDAC data collected
between 1999 and 2007. The aim of this work is to
identify core signaling pathway sets and genetic signa-
tures within those pathways related to pancreatic cancer
survival. The microarray data of pancreatic cancer
include 102 samples [6], which are publicly available at
Gene Expression Omnibus (access code 21501). Accord-
ing to [6], among these 102 PDAC patients, 66 died at
the end of the study (censoring rate 35%). The survival
time ranges from 1 month to 5 years. The Kaplan-Meier
curve is plotted in Figure 1 to show the probability of
survival in 5 years for the 102 PDAC patients. Each step
means an actual event happens, i.e. a pancreatic cancer
patient dies. A short vertical line without a drop means
a patient gets censored for different reasons, drops off
the study or the study ends. Additionally, two stage vari-
ables, T stage and N stage, are given to describe the
stages of pancreatic cancer, where T stage describes the
size of the primary tumor ranging from 1 to 4 and N
stage describes the spread to nearby (regional) lymph
nodes with values 0 or 1.

The whole dataset is randomly split into the training,
validation, and testing sets with equal sizes. The training
set is used for model fitting, and the validation set is
used for tuning constants selection. Using the 3-fold
cross-validation, we got the optimal values of 1; = 0.3
and A, = 0.1, which minimize the log-partial likelihood
function. Figure 2 shows the 3-D plots of the log-partial
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likelihood function and the number of selected genes vs.
(A1, A3), respectively. Under the optimal tuning con-
stants, 4 pathways and 15 genes are selected from the
pool of 12660 probes of 6910 genes in 130 pathway sets
organized in [1], which belong to 15 core groups in the
pancreatic cancer studies. The selected pathways include
the pathways of “regulation of DNA-dependent tran-
scription” (6 out of 2096 genes are selected), “Ion trans-
port” (7 out of 555 genes are selected), “immune
phagocytosis” (1 out of 215 genes is selected), and
“TGFB (spermatogenesis)” (1 out of 268 genes is
selected) pathways. These identified pathways and genes
are biologically meaningful and consistent with the
existing scientific findings. In particular, three genes -
ZNF233, SLC22A8, and PCYT1B - were identified in
the previous work [16] using a Lasso penalized Cox
model when considering gene signatures only.

+ Regulation of DNA-dependent transcription path-
way is well-known to be related to the development of
cancer. It regulates the frequency and rate of cellular
DNA-dependent transcription. This work identified
three families of six genes that are related to pancreatic
cancer survival. The six genes are DENND4A, KLF13,
ZNF229, ZNF233, ZNF395, and ZNF432.

- DENND4A is a c-myc promoter-binding protein
[34], which mediates signal transduction in the
nucleus and regulate the DNA replication and tran-
scription. DENND4A can also activate the RAB10
protein, which is a key regulator of polarized sorting
in epithelial cells, from an inactive GDP-bound form
to an active GTP-bound form through promoting
GDP — GTP exchange.

- KLF13 belongs to the KLF family of transcription
factors for several oncogenes and tumor suppressor
genes [35,36] and it plays an important role in the
tumor progression [36]. Recent study shows that
KLF13 is overexpressed in the oral cancer cells. Inhi-
biting KLF13’s expression can decrease the prolifera-
tion of cancer cell and increase its sensitivity to
ionizing radiation [36]. In pancreatic cancer, KLF13
can suppress the cell growth and neoplastic transfor-
mation mediated by K-RAS, which is mutated in
more than 90% of pancreatic tumors [35]. Our work
suggests that KLF13 may be a useful biomarker for
early detection and possible targets for the pancrea-
tic cancer therapy.

- Zinc finger protein family members: ZNF229,
ZNF233, ZNF395 and ZNF432 are DNA-binding
protein domains consisting of zinc fingers. Many of
these zinc finger proteins, including ZNF233 (also
identified in the previous work [16]), have been found
to be associated with the abnormality of chromosome
19 in the studies of kidney [23] and pancreatic
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Figure 1 Kaplan-Meier curve of survival probability and 95% confidence interval for 102 PDAC patients The Kaplan-Meier survival curve
(solid line) describes the probability of survival for the 102 PDAC patients. The dashed lines represent the 95% confidence interval. The
horizontal axis represents the survival time (in months). Each step means an actual event happens, i.e. a pancreatic cancer patient dies. A short
vertical line without a drop means a patient get censored for different reasons, e.g. drops off the study or the study ends.
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cancers [1]. Our analysis reveals that Zinc finger pro-
teins and the corresponding pathway might be asso-
ciated with the survival of pancreatic cancer.

« Ion transport pathway plays integral roles in the
development of cancer. Since the plasma membrane ion
channels contribute to all basic cellular process [37,38],
many jon channels are implicated in the uncontrolled pro-
liferation, decreased apoptosis, and unorganized angiogen-
esis. According to [37], the ion channels also contribute to
the six hallmarks of cancer [39]: “1) self-sufficiency in
growth signals, 2) insensitivity to antigrowth signals, 3)
evasion of programmed cell death (apoptosis), 4) limitless
replicative potential, 5) sustained angiogenesis and 6) tis-
sue invasion and metastasis.”

We identified seven genes from three different channels
or families, including the TRP channel (TRPV5 and
TRPMS6) regulating the transcellular Ca** transport,
KCNK channel (KCNK3 and KCNK18) regulating the K*
transport, and solute carrier (SLC) family (SLC22AS,
SLC8A3, and SLC24A6). Recent experimental studies have

indicated that these three families play important roles in
the cancer development.

- TRP (Ca’+) channel and TRPV5, TRPM6 genes
regulate the Calcium-mediated signal transduction
that is frequently altered in cancer [40]. Several
genes in TRPV channel have been detected to be
up-regulated in prostate, colon, and breast cancer
cells [40-42]. Particularly, TRPV5 and TRPV6 genes
exhibit unusually high levels of single nucleotide
polymorphisms (SNPs) in African populations as
compared to other populations [41]. Moreover, the
genes TRPM6 and TRPM7 in the TRPM channel
can enhance the secretion of angiogenic factors, for
example VEGF [40], resulting in a sustained unorga-
nized angiogenesis process. The TRP channel and
TRPV5, TRPM6 genes identified in pancreatic can-
cer survival data could be possible targets for the
future cancer diagnosis and treatment.

- KCNK (K+) channel and KCNK3, KCNK18
genes regulate the potassium (K+) transport and
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membrane potential (Vm) in response to different
physical and chemical factors [38,40]. Several KCNK
channel genes, for example, KCNK9 [43], are overex-
pressed in breast and lung cancers, and the gene

KCNK2 can promote prostate cancer cell’s growth
[40,44].

- SLC family: SLC22A8, SLC8A3, SLC24A6 are
membrane transport proteins that are involved in
the transport and excretion of many organic ions,
drugs and toxicants. Some genes in SLC family are
cancer-related, for example, SLC43A2 whose overex-
pression is associated with the adenocarcinomas and
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squamous cell carcinoma [45], which was identified
in the previous work [16].

+ Immune phagocytosis pathway and CYBA gene:
One prominent hallmark feature of cancer is the evasion
of immune destruction [39]. The immune system is
important in preventing tumor initiation and controlling
tumor growth through identifying and eliminating the
cancer cells (i.e., tumor immune surveillance) [46].
Macrophages and other phagocytic cells are important
players in the innate immune system whose functions
include phagocytosis (homeostatic cell clearance), antigen
presentation (pathogen defense), and cytokine produc-
tion (inflammatory responses). Recent evidence [46-48]
revealed that the active immune phagocytosis pathway
could inhibit tumor growth through phagocytic clear-
ance, i.e., programmed cell removal in clearing damaged
and foreign cells. The CYBA gene is a tumor suppressor
[49], which regulates the immune system cells - phago-
cytes, involved in autophagy. The phagocytosis and
superoxide production is primary regulated by the cyto-
chrome b- 245, (light) alpha subunit (also known as
p22PH°%) which is encoded by the gene CYBA. CYBA’s
mutation will cause the failure of phagocytosis and
immune defects [50]. This observation supports our
prediction that the immune phagocytosis and tumor
suppressor gene CYBA might be associated with pancreatic
cancer survival and tumor immune evasion. Targeting this
pathway might lead to effective cancer immunotherapies.

+ TGFpB core pathway (spermatogenesis signaling
set) and PCYT1B gene: The transforming growth factor
beta (TGFp) signaling pathway is critical in regulating
many cellular processes, including the cell growth, differ-
entiation and apoptosis. It has genetic alterations in 100%
of pancreatic cancers [1]. The gene PCYT1B (phosphate
cytidylyl transferase 1 choline ) was identified to be
associated with pancreatic cancer survival, which is con-
sistent with the previous work [16]. The expression of
PCYTI1B is frequently deregulated in cancer cells of
epithelial ovarian [21], high grade gliomas [51], and pan-
creatic ductal adenocarcinoma [22]. Moreover, PCYT1B
is a key regulator in the choline phospholipid metabo-
lism, which is altered in the cancers of breast [19], colon
[20], ovarian [21], and gliomas [51]. These observations
support our prediction that PCYT1B and TGFf pathway
are correlated with pancreatic cancer survival and they
might help to grade the stage of pancreatic cancer
patients.

Compared with the previous work [16], which selected
12 survival-relevant genes using a Lasso penalized Cox
model, the DrCox model identified 4 pathways and 15
genes related to pancreatic cancer survival. We divide
the patients into long- and short-survival groups based
on the selected pathways and genes and conduct the
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logrank test to compare the two groups. The survival
probabilities of these two groups are plotted in the
Figure 3. The logrank test gives a p-value of 0.0179,
which means the two groups can be well separated and
our finding of 4 pathways and 15 genes is significant.

Conclusions

In this work, we employed the doubly regularized Cox
(DrCox) regression coupled with the coordinate descent
algorithm to analyze the high-dimensional gene expres-
sion data of patients with localized and resected PDAC.
Different from the previous work [16], this DrCox model
can incorporate both gene and pathway information and
simultaneously infer genetic signatures and important
signaling pathways that are related to the pancreatic can-
cer survival. The proposed cyclic coordinate descent
algorithm can quickly remove irrelevant genes and sig-
naling pathways, so the prediction of survival time is
more accurate and robust than other methods. Other
group selection models select variables in an “all-in-or-
all-out” fashion with no within-group selection, that is, if
one variable in a group (pathway) is selected, all the
other variables in the same group will get selected. For
example, if gene PCYT1B in the TGFB pathway is
selected, all the rest of genes in the TGFS pathway will
be selected as well. However, not all the genes in the
TGFf pathway are involved in the development of pan-
creatic cancer. The advantage of our DrCox method is
that it can conduct both group selection and within-
group selection simultaneously and eliminate the
irrelevant.

This work identified four signaling pathways, including
Ion transport, immune phagocytosis, TGFf (spermato-
genesis), regulation of DNA-dependent transcription
pathways, and 15 genes within these four pathways,
which are directly correlated to pancreatic cancer survi-
val. Pancreatic cancer patients with these deregulated sig-
naling pathways and mutated genes might have a shorter
survival time. Several inferred signaling components have
been confirmed to be altered frequently in the cancer of
pancreatic, oral, prostate, colon, breast and lung in the
in vivo or in vitro experiments. Our finding predicts that,
the TRP (Ca?+) channel-related genes (TRPV5 and
TRPMS6) and KCNK (K+) channel-related genes in the
ion transport pathway are possible biomarkers of pan-
creatic cancer survival. The Immune phagocytosis path-
way with the tumor suppressor CYBA gene, which
regulates the immune system cells and autophagy
through phagocytic clearance, have not received enough
attention in the existing pancreatic cancer research litera-
ture. The gene PCYT1B in the TGFP pathway is fre-
quently deregulated in cancer cells compared with
normal cells, which might help to grade the stage of pan-
creatic cancer patients. The KLF13 in the regulation of
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Figure 3 Logrank test of the long- and short-survival groups based on the 4 pathways and 15 genes (p-value = 0.0179). The 102 PDAC
patients are divided into long- and short-survival groups based on the 4 pathways and 15 genes. The survival probabilities of these two groups
are compared using the logrank test. The p-value of 0.0179 means the two groups are well separated and our finding of 4 pathways and
15 genes is significant.

DNA-dependent transcription pathway could regulate
the cell growth through regulating KRAS pathway. These
findings demonstrate that these survival-associated
genetic signatures and pathways could be useful biomar-
kers for early cancer detection and diagnosis and help
pancreatic cancer researchers to grade the cancer stage
and select appropriate therapies to prolong the patient’s
survival time at different stages.

This work is the first attempt to infer the pancreatic
cancer survival-associated signaling pathway sets and
genetic signatures within those pathways using statisti-
cal techniques. However, any statistical findings need to
be tested by the further clinical and wet lab experiments
of pancreatic cancer. We are unable to test our results
with other independent datasets in this paper due to
the data source limitation. We do expect our results
can get verified or falsified by further investigation. We
hope the genetic signatures and pathways found in this
paper could help cancer researchers design new strate-
gies for the early detection and diagnosis and lead to
effective treatments and immunotherapies for pancreatic
cancer.
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