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Abstract

Background: Documented changes in levels of microRNAs (miRNA) in a variety of diseases including cancer are
leading to their development as early indicators of disease, and as a potential new class of therapeutic agents. A
significant hurdle to the rational application of miRNAs as therapeutics is our current inability to reliably predict the
range of molecular and cellular consequences of perturbations in the levels of specific miRNAs on targeted cells.
While the direct gene (mRNA) targets of individual miRNAs can be computationally predicted with reasonable degrees of
accuracy, reliable predictions of the indirect molecular effects of perturbations in miRNA levels remain a major challenge
in molecular systems biology.

Results: Changes in gene (mRNA) and miRNA expression levels between normal precursor and ovarian cancer cells
isolated from patient tissue samples were measured by microarray. Expression of 31 miRNAs was significantly elevated
in the cancer samples. Consistent with previous reports, the expected decrease in expression of the mRNA targets of
upregulated miRNAs was observed in only 20-30% of the cancer samples. We present and provide experimental support
for a network model (The Transcriptional Override Model; TOM) to account for the unexpected regulatory consequences
of modulations in the expression of miRNAs on expression levels of their target mRNAs in ovarian cancer.

Conclusions: The direct and indirect regulatory effects of changes in miRNA expression levels in vivo are interactive and
complex but amenable to systems level modeling. Although TOM has been developed and validated within the context
of ovarian cancer, it may be applicable in other biological contexts as well, including of potential future use in the rational
design of miRNA-based strategies for the treatment of cancers and other diseases.
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Background
Human miRNAs regulate gene expression post-tran-
scriptionally by degrading target mRNAs and/or blocking
their translation [1]. As a consequence, mRNA expression
changes are expected to be inversely correlated (IC) with
changes in levels of their targeting miRNAs. Although
this expectation has been validated in studies of individual
miRNAs and specific mRNA targets, the expected inverse
relationship is often not observed in global transcriptome
level studies [2-4]. While these unexpected findings may,
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in some instances, be attributed to inaccuracies in miRNA
target prediction algorithms [5], recent evidence suggests
that many of the unexpected regulatory effects may be the
result of feed-back or feed-forward loops and/or other
system level complexities [3,6].

Results
To systematically address the relationship between miR-
NAs and their regulated mRNA targets in the same cellu-
lar context, we employed microarray gene expression
profiling to compare differences in expression levels of
mRNAs and miRNAs in ovarian surface epithelial cells
(OSE) vs. serous papillary ovarian cancer epithelial cells
(CEPI) isolated from patient tissues (Additional file 1) by
laser capture microdissection. Gene expression profiling
identified 5910 significantly differentially expressed genes
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Table 2 Percentage of miRNA target genes displaying
changes in expression between OSE and CEPI

Algorithm Inversely
correlated

Positively
correlated

No change
detected

Total

miRanda-mirSVR 24% (3110) 13% (1719) 62% (8015) 12844

TargetScan 31% (1519) 16% (779) 54% (2681) 4979

SVMicrO 23% (2027) 13% (1164) 64% (5787) 8978

Predicted gene targets of miRNAs were computed independently using three
commonly used prediction algorithms: miRanda-mirSVR [7], TargetScan [8]
and SVMicrO [9]. For each prediction algorithm, the frequency of target genes
displaying changes in gene expression IC, PC or NC with changes in expression
of their regulating miRNAs are shown. The number of predicted target genes
falling into each class is presented in parentheses.
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(mRNAs) between OSE and CEPI (Additional file 2). Of
these, 2232 (38%) were upregulated and 3678 (62%) down-
regulated in CEPI. MiRNA expression profiling identified
31 significantly differentially expressed miRNAs between
OSE and CEPI. All of these miRNAs were upregulated in
CEPI (Table 1).
Employing three commonly used miRNA target predic-

tion algorithms (miRanda-mirSVR [7], TargetScan [8],
SVMicrO [9]), we identified putative mRNA targets of
these 31 miRNAs to determine if differences in their levels
of expression between the OSE and CEPI samples were
IC, positively correlated (PC) or unchanged (NC). Based
on the established molecular mechanism of miRNA regu-
lation, levels of miRNAs are expected to be IC with levels
of their target mRNAs. Contrary to this expectation and
consistent with previous findings [3], we observed a con-
sistently low percentage (23-31%) of target mRNAs dis-
playing expression level changes IC with their regulating
miRNAs (Table 2). Since predictions from the most com-
monly employed mirSVR algorithm were representative
of the results from all tested algorithms, mirSVR was
employed in subsequent analyses.
The transcriptional override model (TOM) postulates

that downregulation of target genes induced by elevated
levels of regulating miRNAs may be masked (NC) or
overridden (PC) by increases in expression mediated by
Table 1 MiRNA expression profiling identified 31
significantly differentially expressed miRNAs between
OSE and CEPI
MicroRNA P-value Fold-change MicroRNA P-value Fold-change

MIR7 0.00004 25.81 MIR106b 0.00204 32.90

MIR10a 0.00305 28.25 MIR128 0.00542 15.78

MIR17 0.01120 14.12 MIR130b 0.03129 11.71

MIR18a 0.00001 38.05 MIR141 0.00000 118.60

MIR18b 0.00000 46.21 MIR143 0.00792 5.98

MIR19a 0.00001 41.64 MIR148a 0.00406 10.70

MIR19b 0.00103 61.39 MIR148b 0.01725 7.94

MIR20a 0.00707 14.42 MIR155 0.00179 35.75

MIR20b 0.03363 19.16 MIR181d 0.02989 8.40

MIR21 0.01296 14.12 MIR182 0.00046 58.49

MIR25 0.01993 5.58 MIR200a 0.00264 39.12

MIR29b 0.00874 23.10 MIR200b 0.01871 14.52

MIR30b 0.01763 11.55 MIR200c 0.00232 13.36

MIR30c 0.01292 26.54 MIR205 0.00018 67.18

MIR93 0.02678 9.58 MIR429 0.00181 21.11

MIR106a 0.00505 20.53

Expression profiles for miRNAs in OSE and CEPI samples were determined
using the miRChip system (Asuragen Inc.). Human probe sets with >65%
present calls in either of the two groups (OSE and CEPI) were selected for
analysis. All reported microarray data are described in accordance with MIAME
guidelines. The processed and raw data files for the samples used in this study
have been deposited in the Gene Expression Omnibus (GEO) as
SuperSeries GSE42460.
the downregulation of repressor genes that are them-
selves targets of upregulated miRNAs (Figure 1A). The
possibility of such feed-forward loops was prompted by
the fact that several of the predicted mRNA targets of
the 31 overexpressed miRNAs encode documented re-
pressors of gene expression (e.g. ZNF24 [10], YY1 [11],
SPEN [12], BACH1 [13]). MiRNA-mediated downregula-
tion of these repressor genes would be expected to result
in the derepression of their respective target genes and a
consequent increase in levels of expression. If these
derepressed gene targets were also the targets of upregu-
lated miRNAs, the expected downregulation of these
genes by the miRNAs (IC) could be masked (NC) or
overridden (PC). For example (Figure 1B), one of the
predicted targets of ten of the 31 miRNAs upregulated
in cancer is the well-documented repressor gene ZNF24
[10]. Consistent with the fact that ZNF24 is targeted by
upregulated miRNAs, its expression in CEPI is signifi-
cantly reduced. An experimentally validated target of
ZNF24 is VEGFA [10]. Despite the fact that VEGFA is it-
self directly targeted by 11 upregulated miRNAs (includ-
ing five of those targeting ZNF24), its level of expression
is significantly increased (PC) in CEPI. These results are
consistent with the hypothesis that ZNF24-mediated de-
repression is overriding the expected downregulatory ef-
fects of the upregulated miRNAs on VEGFA expression.
Although many of the genes falling within the NC cat-

egory could be the result of partial transcriptional over-
ride, they might also simply be the result of no or slight
miRNA regulatory effects. Since we cannot experimen-
tally distinguish between these two possibilities, we will
operationally only consider PC differences in expression
as being inconsistent with the expected IC differences.
To further evaluate TOM, we identified 105 genes that

are 1) targets of one-or more of the 31 upregulated miR-
NAs, 2) significantly downregulated in our cancer samples
and 3) previously characterized as transcriptional repres-
sors [14] (Additional file 3). The targets of ten (Table 3) of
these 105 genes have been previously identified in the
Transcription Factor Binding Site database (TRANSFAC)
[15]. This resulted in 843 genes (Additional file 4)



Figure 1 The transcriptional override model (TOM). The network motif (A) typifies how the expected downregulation of target genes by
elevated levels of regulating miRNAs may be masked or overridden by target gene derepression mediated by miRNA-induced downregulation of
repressor genes. (B) MiRNA-mediated derepression of repressor gene ZNF24 (yellow triangle) overrides the expected downregulatory effects of
miRNAs (blue diamonds) on VEGFA expression (blue circle).

Table 3 Ten genes characterized as validated repressors
and predicted targets of one or more of the 31 miRNAs
upregulated in CEPI

Probeset_ID Gene-symbol P-value Fold-change

204194_at BACH1 0.000564 −3.65

236796_at BACH2 0.003707 −3.07

207186_s_at BPTF 0.001731 −6.64

204314_s_at CREB1 0.026886 −2.09

224891_at FOXO3 0.001945 −2.23

210002_at GATA6 0.000000 −56.60

212535_at MEF2A 0.000016 −4.99

209239_at NFKB1 0.001162 −1.66

209706_at NKX3-1 0.000000 −20.57

224718_at YY1 0.000758 −2.75
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predicted to be directly targeted by both the ten downregu-
lated repressors and one-or-more of the 31 upregulated
miRNAs. From the perspective of miRNA regulation, all
843 of these target genes are expected to be downregulated
while from the perspective of the downregulated repres-
sor genes all the targets are expected to be upregulated. The
observed reality lies somewhere between these two expecta-
tions (Figure 2). TOM predicts that the response of any
particular target gene will be determined by the relative
strengths of these two opposing regulatory controls.
The number of miRNAs targeting individual human

genes (mRNAs) is known to vary from zero to over 100
with an estimated average of 7.1 miRNA targets per gene
[16]. Thus, the relative strength of the regulatory effect of
miRNAs on target genes might be expected to be a func-
tion of the number of miRNAs targeting individual genes.
To explore this possibility, we grouped the 843 predicted



Figure 2 Highly interconnected network of 31 microRNAs, repressors and their mutual targets. Relationships among 31 miRNAs upregulated
in cancer (blue diamonds), ten downregulated repressors that are targets of one or more of the upregulated miRNAs (brown triangles) and 843 genes that
are the gene targets (blue and yellow circles) of both the upregulated miRNAs and the downregulated repressor genes. Yellow lines depict the regulatory
connection between miRNAs and their target genes; blue lines depict the regulatory connection between repressors and target genes.
From the perspective of the upregulated miRNAs, all target genes should be downregulated (all yellow circles); from the perspective of
the downregulated repressors, all target genes should be derepressed/upregulated (all blue circles). According to TOM, the response of
any particular target gene will be determined by the relative strengths of these opposing regulatory controls.
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gene targets of the 31 upregulated miRNAs and the 10
downregulated repressors into 5 groups based upon the
number of upregulated miRNAs predicted to target each
gene (Figure 3A). A sixth group was comprised of targets
of the ten repressor genes (TRANSFAC) but not predicted
targets of any of the 31 miRNAs. For each group, we com-
puted the percentage of target genes that were upregulated
(PC). In addition, for each group we divided the target
genes into those predicted to be regulated by a single re-
pressor vs. those predicted to be regulated by multiple re-
pressors (Figure 3B).
The results demonstrate that as the number of upregu-

lated miRNAs targeting individual genes increases, the per-
centage of target genes displaying the unexpected PC
change in expression decreases. These results are consistent
with TOM and indicate that as the relative strength of the
miRNA regulatory effect increases, the impact of the op-
posing derepression effect mediated by the downregulated
repressor genes is diminished. However, the fact that ~20%
of genes targeted by even large numbers (>15) of upregu-
lated miRNAs continue to display the unexpected PC indi-
cates that, in some cases, the magnitude of derepression is
sufficient to completely override miRNA regulation. The
results presented in Figure 3B suggest that genes targeted
by multiple repressors tend to be associated with a higher
percentage of PC genes than those targeted by a single re-
pressor. The effect, however, is not as consistent as
observed with increasing numbers of regulating miRNA
likely due to the relatively low number of repressor genes
in this dataset and the fact that not all repressor genes can
be expected to exert the same magnitude of regulatory
control.
We were next interested to see if the model’s ability to

account for trends observed using the limited dataset de-
scribed above might also extend more globally. We di-
vided all differentially expressed genes including those
that are predicted gene targets of the 31 upregulated miR-
NAs (4829) and those that are not (1081), into 6 groups
based on the number of miRNAs targeting each gene. The
results (Figure 4A) demonstrate a clear inverse relation-
ship between the number of miRNAs targeting genes and
the percentage of these genes displaying the unexpected
PC. Again, however, we found that ~20% of genes targeted
by even large numbers (>15) of upregulated miRNAs con-
tinue to display the unexpected PC consistent with the hy-
pothesis that the magnitude of repressor gene mediated
derepression is, in some instances, sufficient to completely
override miRNA regulation.
Testing the model’s ability to globally predict the relative

influence of miRNA and repressor gene regulatory controls
on target gene expression is problematic for two reasons:
first, a compendium of all human repressor genes and their
regulatory targets is currently unavailable; second, many
regulatory proteins can function as repressors or activators



Figure 3 Analysis of changes in expression of miRNA regulated repressor genes and their predicted target genes is consistent with
TOM. The 843 predicted target genes of 31 upregulated miRNAs and 10 downregulated repressors were divided into 6 groups based upon the
number of upregulated miRNAs targeting each gene. (The number of genes included in each group is shown over the bars). (A) The strength of
miRNA regulatory control on target genes increases with the number of miRNAs targeting individual genes. Bars represent the percentage of
upregulated genes. The fact that ~20% of genes targeted by even large numbers (16–31) of upregulated miRNAs continue to display the
unexpected PC is consistent with TOM. The chi-square test for trend is X2 = 67.34; p < 0.0001. (B) Genes targeted by 2–5 downregulated repressors
(gray bars) override miRNA regulatory effects on coregulated target genes relative to genes targeted by one downregulated repressor (blue bars).
The chi-square test for trend is X2 = 5.25, p < 0.0219.
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depending on cellular context and protein complex associ-
ation [17]. One approach taken by systems biologists to
model regulatory relationships in complex cellular contexts
is to use highly correlated changes in expression patterns
among genes as evidence of direct and/or indirect interac-
tions [18,19]. In our case, we examined variation in gene
expression patterns across our OSE samples to identify
genes displaying consistent inverse correlations (Pearson
correlation coefficient < −0.8) in expression with changes
in expression of the 105 repressor genes previously charac-
terized as significantly downregulated in CEPI and regula-
tory targets of one-or-more of the 31 miRNAs (see above).
Genes displaying an inversely correlated pattern of co-
expression (1205) were operationally classified as targets of
these repressor genes. Genes not displaying this pattern of
expression (3624) were classified as non-targets of the des-
ignated repressor genes. Having established these classes, it
became possible to distinguish between regulatory interac-
tions fulfilling the triangular relationship of TOM from
those that do not.
The results presented in Figure 4B again indicate that as

the number of upregulated miRNAs targeting genes
increases, the percentage of the unexpected PC decreases
significantly (chi-square test for trend X2 = 444.6, p <
<0.0001). Consistent with the results presented in Figure 4,
the overlap of miRNA targets and downregulated genes is
highly significant. (Figure 5A; hypergeometric p < 1E-12).
Likewise, the overlap of repressor targets and upregulated
genes is also highly significant (Figure 5B; hypergeometric
p < 1E-12). Collectively, the results indicate that the dere-
pression of target genes mediated by high (6–45) numbers
of downregulated repressors is sufficient to nearly or com-
pletely override the regulatory controls of even large num-
bers (>15) of upregulated miRNAs.

Discussion
Recent studies have clearly established miRNAs as early
indicators of disease [20,21] and as a potential new class
of therapeutic agents [22,23]. Full appreciation of the
biological significance of modulations in levels of miR-
NAs, as well as, the future rational employment of miR-
NAs as therapeutic agents will require an understanding
of both the direct and indirect molecular consequences
of changes in the levels of miRNAs on cell function.



Figure 4 Analysis of global changes in gene expression is consistent with TOM. The 5910 differentially expressed genes targeted by
upregulated miRNAs were divided into 6 groups based on the number of miRNAs targeting each gene (The number of genes included in each
group are presented on top of the bars). (A) An inverse relationship exists between the number of upregulated miRNAs targeting genes and the
percentage of these genes displaying the unexpected PC change in expression. The chi-square test for trend is X2 = 311.5, p < < 0.0001, indicating
a significant increase in downregulated targets as the number of targeting microRNAs increases. B) The strength of miRNA regulatory control is
diminished as the number of deregulated repressor genes increase. A chi-square test for trend for the miRNAs in this figure (4B) is X2 = 444.6,
p < < 0.0001, indicating a significant increase in downregulated miRNA targets as the number of miRNAs increases. The chi-square test for trend
for the transcriptional repressors in this figure (4B) is X2 = 1904.6, p < < 0.0001, indicating a significant increase in upregulated targets as the
number of repressors increases.

A B
Figure 5 Upregulated repressor targets and downregulated miRNA targets show significant enrichment consistent with TOM. Venn
diagrams display the enrichment of A) downregulated targets of miRNAs. The results are consistent with TOM (hypergeometric distribution,
p < 1E-12: population = 5910, downregulated genes = 3678, number of predicted miRNA targets = 4829, downregulated miRNA regulated targets =
3206; B) upregulated targets of repressors that are also predicted targets of 1 or more of the 31 upregulated miRNAs. The results are consistent with
TOM (hypergeometric distribution, p <1E-12: population = 4829, total upregulated genes = 1623, number of repressor targets = 1205, upregulated
repressor targets = 865).
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While the direct gene (mRNA) targets of individual miR-
NAs can be computationally predicted and experimen-
tally validated with varying degrees of accuracy [24],
reliable predictions of the indirect molecular effects of
changes in miRNA levels has remained a major chal-
lenge in molecular systems biology [23,25].
In this paper, we present a regulatory network model

(TOM) that explains a significant component of the un-
expected low frequency of IC changes in expression
levels between mRNAs and their regulating miRNAs.
The model postulates that the expected downregulation
of target genes induced by elevated levels of regulating
miRNAs may be masked or “overridden” by increases in
transcriptional initiation mediated by the downregula-
tion of repressor genes that are themselves targets of the
same regulating miRNAs (Figure 1A). Depending upon
the strength of the transcriptional override (i.e., the rela-
tive strengths of miRNA and repressor gene mediated de-
repression), TOM predicts that increases in miRNA levels
may display no effect (NC) or be positively correlated (PC)
with changes in levels of their targeted mRNAs.
It is widely recognized that the operation of regulatory

effects mediated by miRNAs in vivo is a complex and
interactive process and a number of explanatory models
have been previously offered [26-29]. In this paper, we
propose an additional model (TOM) that focuses on the
feedback interactions that exist between miRNAs, regu-
latory (repressor) genes and their mutual gene targets.
While we have evaluated TOM within the context of its
ability to account for global patterns of changes in gene
expression, the model also provides a framework for pre-
dicting interactions between specific miRNAs and target
genes (e.g., Figure 1). Further testing in other cancers
(and other biological contexts) will be needed to evaluate
the robustness of TOM. Nevertheless, our initial find-
ings in ovarian cancer indicate that interactions between
miRNAs and repressor genes may well play a significant
role in effecting the unexpected regulatory responses of
targeted genes to modulations in levels of their regula-
tory miRNAs.

Conclusions
It is now widely acknowledged that the complexity of mo-
lecular interactions taking place on the cellular level can
significantly obscure the expected consequences of mo-
lecular processes characterized in vitro [30,31]. Our find-
ings indicate that the direct and indirect regulatory effects
of changes in miRNA expression levels in vivo are inter-
active and complex but amenable to systems level model-
ing. We have shown that TOM can account for a major
component of the unexpected consequences of changes in
miRNA expression levels on their target mRNAs. Although
the model has been developed and evaluated within the
context of ovarian cancer, we believe it may be applicable
in other biological contexts as well including of potential
future use in the rational design of miRNA-based strategies
for the treatment of cancer and other diseases.

Methods
All tissues were collected according to previously pub-
lished procedures [32] following approved Institutional
Review Board protocols from Northside Hospital (Atlanta)
and Georgia Institute of Technology. Informed consent
was obtained from all subjects. The histopathology for all
cancer patients was serous papillary adenocarcinoma of
the ovary and for the control patients the ovaries were
considered within normal limits.

mRNA microarray data analysis
Ten OSE (normal) and ten CEPI (cancer) samples were
analyzed for mRNA expression using the Affymetrix
Gene Chip Operating System (GCOS HG-U133 Plus
2.0). CEL files generated by GCOS were converted to ex-
pression values using GCRMA normalization on the
arrayanalysis.org [33] website, which output also in-
cluded quality control metrics, principal components
analysis (PCA) and cluster dendrograms. Present/absent
calls were generated from the MAS 5.0 statistical algo-
rithm as implemented in Affymetrix Expression Console.
Probe sets with >60% present calls in either of the two
groups (OSE and CEPI) were selected for further ana-
lysis. After log2 transformation, signal values of those
probe sets were submitted to Statistical Analysis of Mi-
croarrays (SAM) for multiple testing correction where a
5.5% FDR was applied resulting in 7462 probe sets repre-
senting 5910 differentially expressed genes (DEGs). Anno-
tations for probe sets were obtained from Affymetrix [34].
The processed and raw data files for the samples used in
this study have been deposited in the Gene Expression
Omnibus (GSE52037 with SuperSeries GSE52460).

microRNA microarray data analysis
Expression profiles for microRNAs from three OSE and
three CEPI samples were generated by Asuragen (Austin,
TX) using Ambion miRChip technology (Life Technolo-
gies). Two sets of CEL files, created from 6 biological
replicates and two sets of technical replicates were norma-
lized using MAS 5.0 to expression signals, giving 6 values
per probe/gene. Probe sets labeled as human (those having
an “hsa-” prefix), known to be conserved to mouse, and
with at least 65% present calls (calculated by Asuragen) in
either of the two groups (OSE and CEPI) were selected for
further filtering. Thirty-one differentially expressed micro-
RNAs (fc > 6, p-value < .03) were selected. The repressive
potential of all 31 microRNAs was validated by noting
that > 65% of the predicted DEG targets of each upregu-
lated microRNA were actually downregulated, while only
44% of DEGs not predicted to be targets of any
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upregulated microRNA were downregulated. Mean re-
pression over all 31 microRNAs was 71%. The processed
and raw data files for the samples used in this study have
been deposited in the Gene Expression Omnibus
(GSE52459 with SuperSeries GSE52460).

microRNA target prediction
The miRNA target prediction file based on mirSVR was
downloaded from microRNA.org (August 2010 release).
The mirSVR score refers to targets of microRNAs with
scores obtained from their support vector regression algo-
rithm. To reduce the occurrence of false positives, only
predicted targets with a mirSVR score less than -.2 were
considered. The microRNA target predictions based
on TargetScan and SVMicrO were downloaded from
www.targetscan.org (retrieved 8/2010) and www.compge-
nomics.utsa.edu/Result/Human/hsa_human (retrieved 9/
2010), respectively.

Transcriptional repressor selection
Members of the Gene Ontology categories GO:0045892,
GO:0000122, GO:0010944, GO:0032088 and GO:0008156,
relating to the negative-regulation-of-transcription or its
child terms, were downloaded from the European Bio-
informatics Institute (EBI) and parsed using UNIX scripts.
In that download, we found 439 potential repressor genes.
Of those, 109 genes were significantly downregulated ac-
cording to our microarray analysis and 105 of these genes
were also predicted targets of one or more of the 31 up-
regulated microRNAs. These 105 transcriptional repressor
genes formed the basis for microRNA target derepression
in our model.

Transcriptional repressor target prediction and
experimental validation
To obtain predicted and/or experimentally validated
transcription factor binding site data, we downloaded
the TRANSFAC data file c3.tft.v3.1.symbols.gmt from
GSEA (Gene Set Enrichment Analysis website - http://
www.broadinstitute.org/gsea/downloads.jsp). Data files
were parsed with UNIX scripts, which extracted pairs of
genes consisting of one repressor and one or more bind-
ing partners. All repressor-partner pairs under consider-
ation had to be DEGs and predicted targets of at least
one of the 31 upregulated microRNAs, and all transcrip-
tional repressors were downregulated in cancer. Further,
all repressor-partner pairs were required to show a cor-
relation coefficient of r < −.8 across all normal samples.

Correlation coefficient calculation
For the global analysis of relationships among all 105
transcriptional repressors and their binding partners,
Pearson’s correlation coefficient (PCC) was calculated
across all ten OSE (normal) samples between all
transcriptional repressors and predicted microRNA tar-
gets. Specifically, we used the Mathematica [35] correl-
ation function (n = 10; r < −.8) for a directional
significance of (p < .0027). Fold-change from normal to
cancer in these genes ranged from −625 to 121.

Availability of supporting data
The processed and raw data files for the samples used in
the mRNA and miRNA expression studies have been de-
posited in the Gene Expression Omnibus (GSE52037
and GSE52459 with SuperSeries GSE52460).

Additional files

Additional file 1: Patient samples analyzed in this study. All tissues
were collected according to previously published procedures [32],
following approved Institutional Review Board protocols from Northside
Hospital (Atlanta) and Georgia Institute of Technology.

Additional file 2: Gene expression profiling identified 5910
significantly differentially expressed genes (mRNAs) between OSE
and CEPI. Of these, 2232 (38%) were significantly upregulated and 3678
(62%) significantly downregulated in CEPI.

Additional file 3: List of genes that are 1) targets of one-or more of
the 31 upregulated miRNAs, 2) downregulated in our cancer samples
and 3) previously characterized as transcriptional repressors [14].
Genes belonging to gene ontology categories GO:0045892, GO:0000122,
GO:0010944, GO:0032088 and GO:0008156, relating to the negative-regulation-
of-transcription, were downloaded from the European Bioinformatics Institute.
Downregulated repressor genes that were also predicted microRNA targets
formed the 105 transcriptional repressor genes presented in this list.

Additional file 4: List of TRANSFAC [15]-identified regulatory targets
of 10 repressor genes (see Table 3) that are also the targets of
one-or-more of 31 miRNAs upregulated in CEPI (843 genes).
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