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Abstract

Background: Mathematical modeling is often used to formalize hypotheses on how a biochemical network operates
by discriminating between competing models. Bayesian model selection offers a way to determine the amount of
evidence that data provides to support one model over the other while favoring simple models. In practice, the
amount of experimental data is often insufficient to make a clear distinction between competing models. Often one
would like to perform a new experiment which would discriminate between competing hypotheses.

Results: We developed a novel method to perform Optimal Experiment Design to predict which experiments would
most effectively allow model selection. A Bayesian approach is applied to infer model parameter distributions. These
distributions are sampled and used to simulate frommultivariate predictive densities. The method is based on a
k-Nearest Neighbor estimate of the Jensen Shannon divergence between the multivariate predictive densities of
competing models.

Conclusions: We show that the method successfully uses predictive differences to enable model selection by
applying it to several test cases. Because the design criterion is based on predictive distributions, which can be
computed for a wide range of model quantities, the approach is very flexible. The method reveals specific
combinations of experiments which improve discriminability even in cases where data is scarce. The proposed
approach can be used in conjunction with existing Bayesian methodologies where (approximate) posteriors have
been determined, making use of relations that exist within the inferred posteriors.

Keywords: Model selection, Inference, Bayes factor, Uncertainty

Background
Developing computational models of biochemical net-
works is complicated by the complexity of their inter-
action mechanisms [1-8]. Typically, hypotheses on how
the system operates are formalized in the form of com-
putational models [9-12]. These models are subsequently
calibrated to experimental data using inferential tech-
niques [13-19]. Despite the steady increase in data avail-
ability originating from new quantitative experimental
techniques, the modeler is often faced with the prob-
lem that several different model topologies can describe
the measured data to an acceptable degree [20-22]. The
uncertainty associated with the predictions hinders the
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investigator when trying to make a clear distinction
between competing models. In such cases, additional data
is required. Optimal Experiment Design (OED) methods
can be used to determine which experiments would be
most useful [23]. These methods typically involve spec-
ifying an optimality criterion or design aim and finding
the experiment that most effectively attains this goal while
considering the current parameter uncertainty. Existing
methods of OED for model selection are usually based on
assuming an uncertainty distribution around best param-
eter estimates [24,25] or model linearization [26]. Due
to the non-linearity of the model and the non-Gaussian
shape of the parameter distribution, these methods are
rarely appropriate for Systems Biology models [27] (See
Figure 1 for an example of the effect of model lineariza-
tion, and how it can skew predictive distributions in
cases of large parameter uncertainty). In this work, we
employ a Bayesian approach using the Posterior Predictive
Distribution (PPD) which directly reflects the prediction
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Figure 1 Limitations of estimating prediction variances using linearization. In this figure, the gray dots indicate model predictions
corresponding to simulations of the nonlinear model. On the prediction side, the black distribution is based on linearly projecting the parameter
uncertainties onto the predictions, while the gray distribution is based on the non-linear model. Shown on the left is the case with small uncertainty,
where the linear parameter sensitivities provide an adequate description for projecting the parameter uncertainty onto the predictions as can be
seen from the overlapping black and gray lines. On the right, the case with large parameter uncertainty, where the non-linearity of the model results
in a poor estimate of the predictive distribution when it is estimated via linear projection i.e. the black and gray lines do not overlap.

uncertainty and accounts for both model non-linearity
and non-Gaussianity of the parameter distribution. PPDs
are defined as distributions of new observations con-
ditioned on the observed data. Samples from the PPD
can be obtained by drawing from the posterior param-
eter probability distribution and simulating predictions
for each parameter set. By simulating a sample from the
PPDs for all experimentally accessiblemoieties and fluxes,
differences between models can be explored [28].
Previously, predictive distributions have been used to

perform experiment design targeted at reducing the
uncertainty of specific predictions [29-31]. In the field
of machine learning, optimal experiment design based on
information-theoretic considerations is typically referred
to as active learning [32]. In the neurosciences, the
Bayesian inversion and selection of nonlinear states space
models is known as dynamic causal modelling (DCM).
Although DCM is dominated by variational (approxi-
mate) Bayesian model inversion - the basic problems and
ensuing model selection issues are identical to the issues
considered in this work. In DCM, the issue of optimis-
ing experimental design focuses on the Laplace-Chernoff
risk for model selection and its relationship with clas-
sical design optimality criteria. Daunizeau et al. (2011)
consider the problem of detecting feedback connections
in neuronal networks and how this depends upon the
duration of design stimulation [33]. We will consider a
similar problem in biochemical networks - in terms of
identifying molecular interactions and when to sample
data. We present a method to use samples from simulated
predictive distributions for selecting experiments useful
for model selection. Considering the increased use of
Bayesian inference in the field [14,34-39], this approach is
particularly timely since it enables investigators to extract
additional information from their inferences.

In a Bayesian setting, model selection is typically based
on the Bayes factor, which measures the amount of evi-
dence the data provides for one model over another
[40,41]. For every pair of models, a Bayes factor can be
computed, defined as the ratio of their integrated likeli-
hoods. One advantage of the Bayes factor is that it auto-
matically penalizes unnecessary model complexity in light
of the experimental data. It therefore reduces the risk of
unwarranted model rejections. This penalization occurs
because more parameters or unnecessarily wide priors
lead to a lower weighting of the high likelihood region.
This is illustrated in Figure 2.
What the Bayesian selection methodology does not pro-

vide, however, is a means to determine which experiment
would optimally increase the separation between models.
Determining which measurements to perform in order
to optimally increase the Bayes factor in favor of the
correct model is a difficult task. We propose a method
which allows ranking combinations of new experiments
according to their efficacy at increasing the Bayes fac-
tors which point to the correct model. Predictions whose
distributions do not overlap between competing models
are good measurement candidates [42,43]. Often distri-
butions for a single prediction show a large degree of
overlap, hampering a decisive outcome. Fortunately, PPDs
also contain information on how model predictions are
related to each other. The relations between the differ-
ent prediction uncertainties depend on both the data and
the model. Differences in these inter-prediction relations
between competing models can be probed and used (see
Figure 3). We quantify these differences in predictive dis-
tributions by means of the Jensen Shannon divergence
(JSD) [44].
There are many design parameters that one could opti-

mize. In this paper, we focus on a simple example: namely,
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Figure 2 Effect of model complexity on marginal likelihood. Three different illustrative examples of integrated likelihoods. Left: Integrated
likelihood under wide priors. The mismatch of the prior with respect to the high likelihood region results in low weights for the high likelihood
region and therefore low model evidence. This situation is comparable to a case where the model contains too many parameters. A surplus of
model parameters leads to a larger parameter space and therefore lower weights in high likelihood region. Middle: A good match between prior
and likelihood. Right: A model that does not have sufficient freedom to describe the data very well.

which system variable should be measured and at which
time point. We argue that by measuring those time points
at which the models show the largest difference in their
predictive distributions, large improvements in the Bayes
factors can be obtained. By applying the methodology
on an analytically tractable model, we show that the JSD
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Figure 3 Different models can imply different inter-prediction
relations. An illustrative example of how different models can imply
different relations between predictions. On the top right are the 67%
(dashed) and 95% (solid) probability contours of the joint probability
density functions of two predictions obtained with modelM1 andM2,
while the other two panels show the distribution of that specific
prediction. Note how measuring one of the two predictions would
yield no additional discriminatory power while measuring both
predictions would.

is nearly monotonically related to the predicted change
in Bayes factor. Subsequently, the Jensen Shannon diver-
gence is computed between predictions of a non-linear
biochemical network. Since each model implies differ-
ent relations between the predictive distributions, certain
combinations of predictions lead to more discriminabil-
ity than others. The method serves as a good predictor
for effective experiments when compared to the obtained
Bayes factors after the measurements have been per-
formed. The approach can be used to design multiple
experiments simultaneously, revealing benefits that arise
from combinations of experiments.

Methods
Consider biochemical networks that can be modeled
using a system of ordinary differential equations. These
models comprise of equations f (�x(t), �u(t), �p) which con-
tain parameters �p (constant in time), inputs �u(t) and state
variables �x(t). Given a set of parameters, inputs, and ini-
tial conditions �x(0), these equations can be simulated.
Measurements �y(t) = g(�x(t), �q, �r) are performed on a
subset and/or a combination of the total number of state
variables in the model. Measurements are hampered by
measurement noise �ε, whilemany techniques used in biol-
ogy necessitate the use of scaling and offset parameters �r
[45]. The vector �θ , defined as �θ = {�p, �r, �x0}, lists all the
required quantities to simulate themodel. The parameters
�q determine the experimental design and could include
differences in when various responses are measured or
the mapping from hidden model states �x to observed
responses �y. We will refer to these as ‘design parameters’
that are, crucially, distinguished from model parameters
�θ . Design parameters are under experimental control and
determine the experimental design. In what follows, we
try to optimise the discriminability of models in terms
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of Bayesian model comparison by optimizing an objec-
tive function with respect to �q. In the examples, we will
consider �q as the timing of extra observations.
To perform inference and experiment design, an error

model is required. Considering R time series of length N1,
N2 . . . NR, hampered by independent noise, one obtains
the equation:

p
(
yD| �θ ,Mi

)
=

R∏
k=1

Nk∏
j=1

p
(
yDk

(
tj
)
, �θ ,Mi

)
(1)

whereMi indicates a model and yD the observed data. The
parameters are given by �θ , while yDk (tj) indicates the value
of a data point of state variable k at time j, respectively.

Predictive Distributions
Posterior Predictive Distributions (PPDs) are defined as
distributions of new observations conditioned on the
observed data. They correspond to the predicted distribu-
tion of future experiments, considering the current model
assumptions and uncertainty. To obtain a sample from
these predictive distributions, we propagate the uncer-
tainty from the data to the predictions. By specifying prior
distributions on the parameters and applying Bayes rule,
it is possible to define a posterior distribution over the
parameters. The posterior parameter probability distri-
bution p(�θ | yD) is given by normalizing the likelihood
multiplied with the prior to a unit area:

p
(�θ | yD

)
=

p
(
yD| �θ

)
p

(�θ
)

p
(yD) =

p
(
yD| �θ

)
p

(�θ
)

∫
p

(
yD| �θ

)
p

(�θ
)
d�θ
(2)

where p(yD| �θ) is the distribution of the observed data
given parameters �θ . The parameter prior distributions
p(�θ) typically reflect the prior uncertainty associated with
the parameters. To sample from the posterior parameter
distribution, one needs to verify that the posterior dis-
tribution is proper. This can be checked by profiling the
different parameters and determining whether the likeli-
hood times the prior does not flatten out [28,46]. After
checking whether the posterior distribution of param-
eters is proper, a sample from this distribution can be
obtained using Markov Chain Monte Carlo (MCMC)
[22,28]. MCMC can generate samples from probability
distributions whose probability densities are known up to
a normalizing factor [47] (see Additional file 1: section S1).
A sample of the posterior parameter distribution reflects
the uncertainty associated with the parameter values and
can subsequently be used to simulate different predic-
tions. The predictive distribution can now be sampled by
simulating the model for each of the samples in the poste-
rior parameter distribution and adding noise generated by

the associated error model. The latter is required as future
observations will also be affected by noise.

Model selection
In a Bayesian setting, model selection is often performed
using the Bayes factor [40,48,49]. This pivotal quantity in
Bayesian model selection expresses the change of relative
belief in both models after observing experimental data.
By applying Bayes rule to the problem of assigning model
probabilities, one obtains:

p
(
M| yD

)
= p

(yD| M)
p(M)

p
(yD) (3)

where P(M|yD) represents the probability of model M
given observed data yD, while P(M) and P(yD) are the
prior probabilities of the model and data, respectively.
Rather than explicitly computing the model probability,
one usually considers ratios of model probabilities, allow-
ing direct comparison between different models. As the
prior model probability can be specified a priori (equal
if no preference is given), the only quantity that still
requires evaluation is P(yD| M), which can be obtained by
integrating the likelihood function over the parameters:

p
(
yD| M

)
=

∫
p

(
yD| M, �θM

)
p

(�θM| M
)
d�θM. (4)

The Bayes factor is actually the ratio of these integrated
(also named marginal or marginalized) likelihoods and is
defined as:

B12 = p
(yD| M1

)
p

(yD| M2
) =

∫
p

(
yD| M1, �θM1

)
p

(�θM1 | M1
)
d�θM1∫

p
(
yD| M2, �θM2

)
p

(�θM2 | M2
)
d�θM2

(5)

where M1 and M2 refer to the different models under
consideration. Unnecessarily complex models are implic-
itly penalized due to the fact that these result in a lower
weighting of the high likelihood region, which results in
a lower value for the integrated likelihood. This is illus-
trated in Figure 2. This means that maximizing the model
evidence corresponds tomaintaining an accurate explana-
tion for the data while minimizing complexity [50].
Bounds can be defined where the Bayes factor value

becomes decisive for one model over the other. Typically,
a ratio of 100:1 is considered decisive in terms of model
selection [40,51]. In dynamic causal modelling, variational
methods predominate, usually under the Laplace assump-
tion. This assumes that the posterior density has a Gaussian
shape, which greatly simplifies both the integration prob-
lems and numerics. Note that assuming a Gaussian pos-
terior over the parameters does not necessarily mean
that the posterior predictive distribution over the data is
Gaussian (see Figure 1). Computing the required marginal
likelihoods is challenging for non-linear problems where
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such asymptotic approximations to the posterior distribu-
tion are not appropriate. Here one must resort to more
advanced methods such as thermodynamic integration
(see Additional file 1: section S2) [52] or annealed impor-
tance sampling [40]. Though the Bayes factor is a useful
method of model selection, determining what to measure
in order to improve the Bayes factor in favor of the cor-
rect model is a non-trivial problem. As such, it provides
a means to perform model selection, but not the optimal
selection of data features.

Experiment design
The approach is based on selecting measurements which
provide the largest discriminatory power between com-
peting models in terms of their predictive distributions.
The design parameter in the proposed methodology cor-
responds to the choice and timing of a new observation.
In other words, we want to determine which observable
should be measured when in order to maximize the diver-
gence between the posterior predictive densities, thereby
maximally informing our model comparison. This diver-
gence is quantified by means of the Jensen Shannon diver-
gence (JSD) as it provides a measure of the dissimilarity
between the probability density functions of competing
models. The JSD is defined as the averaged Kullback
Leibler divergence DKL between probability distributions
and their mixture:

DJS =
K∑
i=1

p (Mi)DKL

(
p (y| Mi) ,

K∑
i=1

p (Mi) p (y| Mi)

)
. (6)

Here K represents the number of probability densities,
p(Mi) the (prior) probability of model Mi and p(y| Mi)
the Posterior Predictive Distribution. Additionally, this
metric is monotonically related to an upper and lower
bound of the classification error rate in clustering prob-
lems [33,53] and is bounded between 0 and 1. In the case
where the model that generated the data is in the set of
competing models, it is analogous to the mutual infor-
mation between a new measurement (or sample) coming
from a mixture of the candidate models and a model
classifier (see Additional file 1: section S3). In this study,
we opted for comparing models in a pairwise fashion
(K = 2). This allows us to determine which models are
distinguished by a new experiment. Mutual information
has been considered before in the context of experimen-
tal design for constraining predictions or parameters of
interest [29], but not in the setting of model selection.
Though appealing for its properties, estimating the Jensen
Shannon divergence for one ormore experiments requires
integration over the predictive densities, since:

DKL(P,Q) =
∫

p(x) log2

(
p(x)
q(x)

)
dx. (7)

Here P and Q are random variables with p and q their
associated densities. Considering that only a sample of the
PPDs is available, it is required to obtain a density esti-
mate suitable for integration. Density estimation can be
approached in two ways: by Kernel Density Estimation
(KDE), or by k-Nearest Neighbor (kNN) density estima-
tion. In Kernel Density Estimation (KDE), an estimate
of the density is made by centering normalized kernels
on each sample and computing weighted averages. This
results in a density estimate with which computations can
be performed. The kernels typically contain a bandwidth
parameter which is estimated bymeans of cross validation
[54,55].
For well behaved low dimensional distributions, KDE

often performs well. Considering the strongly non-linear
nature of both the parameter and predictive distribu-
tions, a Gaussian kernel with constant covariance is not
appropriate. As the dimensionality and non-uniformity
of the problem increases, more and more weights in the
KDE become small and estimation accuracy is negatively
affected [56]. Additionally, choosing an appropriate band-
width by means of cross-validation is a computationally
expensive procedure to perform for each experimental
candidate.
With k-Nearest Neighbor (kNN) density estimation,

density is estimated by computing the volume required
to include the k nearest neighbors of the current sample
[55-57]:

p
(�θ

)
= 1

N
k

ρk

(�θ
)d

vd
(8)

In this equation ρk(�θ) represents the distance to the kth
nearest neighbor, d the number of dimensions and vd the
volume of the unit ball inR

d. Furthermore, N denotes the
number of included samples and vd is given by:

vd = πd/2

�(d/2 + 1)
(9)

where � corresponds to the Gamma function. The advan-
tage of using the kNN estimate is that this estimator
adapts to the local sampling density, adjusting its volume
where sampling is sparse. Note, however, that, similar to
the KDE, this estimator also suffers from a loss of accuracy
when estimating high dimensional densities. Fortunately,
the number of experiments designed simultaneously, and
therefore the dimensionality of the density, is typically
low. Consider �yMi

j , a vector of predictions simulated with
model Mi and parameter set �θj, where each element of
the vector corresponds to a different model prediction. A
model prediction is defined as a quantity which can be
computed by supplying model Mi with parameter set �θj
(e.g., a predicted value at a certain time point, a differ-
ence between predictions or an area under some predicted



Vanlier et al. BMC Systems Biology 2014, 8:20 Page 6 of 15
http://www.biomedcentral.com/1752-0509/8/20

curve). For OED purposes, these should be quantities that
could potentially be measured. The set of these predicted
values coming from modelMi shall be referred to as �Mi .
Inserting these quantities, the kNN estimate of the JSD
becomes:

Djs = 1
2NM1

NM1∑
i=1

log2
(
Q1,2(i)

) + 1
2NM2

NM2∑
i=1

log2
(
Q2,1(i)

)
(10)

withQa,b given by

Qa,b(i) =
2NMbrk

(
�yMa
i ,�Mb

)d
NMbrk

(
�yMa
i ,�Mb

)d+ (NMa −1)rk
(
�yMa
i ,�Ma\�yMa

i

)d
(11)

Here d denotes the number of elements in �yMi
j (the num-

ber of predictions included), and rk
(
xi,�Mj

)
corresponds

to the Euclidean distance to the kth nearest neighbor of
xi in �Mj . Note that the backslash indicates excluding an
element from the set. Using this equation, the JSD can
straightforwardly be computed for all possible combina-
tions of experiments and used to rank according to how
well these experiments would discriminate between the
models. A larger value for the JSD indicates an informa-
tive experiment. The last step involves sampling several
combinations of measurements and determining the set
of experiments which have the greatest JSD. The proposed
methodology is depicted in Figure 4.

Testing themethod: numerical experiments
To demonstrate the method, a series of simulation studies
are performed. Since we know whichmodel generated the
data, it is possible to compare to the Bayes factor pointing
to the true model. After generating an initial data set using
the true model, PPDs are sampled for each of the compet-
ing models. As the design variable, we consider the timing
of a new measurement. Hence, we look at differences
between the predictive distributions belonging to the dif-
ferent models at different timepoints. We use a sample of
simulated observables at specific timepoints to compute
JSD estimates between the different models. We thereby
test whether the JSD estimate can be used to compare dif-
ferent potential experiments. The new experimental data
is subsequently included and the JSD compared to the
change in Bayes factor in favor of the correct model. Note
that this new Bayes factor depends on the experimental
outcome and that this approach results in a distribution
of predicted Bayes factors. A large change in Bayes factor
indicates a useful experiment.

Analytic models
The method is applied to a number of linear regres-
sion models. Linear regression models are models of the
form:

y(t) =
L∑

i=1
θiBi(t) + ε (12)

where �θ represents a parameter vector and B constitutes
a design matrix with basis functions Bi(t). Given that σ ,
the standard deviation of the Gaussian observation error
ε, is known and the prior distribution over the param-
eters is a Gaussian with standard deviation ξ , the mean
and covariance matrix of the posterior distribution can be
computed analytically (see Additional file 1: section S4).
Using linear models avoids the difficult numerical inte-
gration commonly required to compute the Bayes factor
andmakes it possible to performoverarchingMonte Carlo
studies on how these Bayes factors adjust upon including
new experimental data. The analytical expressionsmake it
possible to compare the JSD to distributions of the actual
Bayes factors for model selection.

Non-linear biochemical networks
To further test the methodology, a series of artificial mod-
els based on motifs often observed in signaling systems
[58,59] were implemented (see Additional file 1: section
S5 for model equations). Artificial data was simulated for
M1. Subsequently, inference was performed for all four
competing topologies. The difference between each of the
models was the origin and point of action of the feedback
mechanism (see Figure 5).
Each of the artificial models was able to describe the

measured data to an acceptable degree.We used a Gamma
distribution with α = 1 and β = 3 for the prior
distributions of the parameters. This prior is relatively
non-informative (allowing a large range of parameter val-
ues), while not being so vague that the simplest model
is always preferred (Lindley’s paradox [40]). Data was
obtained using M1. Observables were Bp, of which three
replicates were measured, and Dp, of which two repli-
cates were measured. These were measured at t =
[0, 2, 5, 10, 20, 40, 60, 100].All replicates were simulated by
adding Gaussian white noise with a standard deviation
of 0.03. The parameter values corresponding to the true
system were obtained by running Monte Carlo simula-
tions until a visible overshoot above the noise level was
observed. Parameter inference was performed using pop-
ulation MCMC with the noise σ as an inferred parameter.
As design variables we consider both the choice of which
observable(s) to measure and the time point(s) of the
measurement.
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Figure 4 Different steps of the proposedmethodology. Different steps of the proposed methodology. Step 1: Different model topologies have
to be formulated into a form with which simulations can be obtained. Step 2: Posterior distributions of parameters have to be sampled. In the panel,
the joint posterior probability distributions of a few model parameters are depicted, with their marginals on the diagonal. Step 3: Use sample from
the posterior parameter distribution to make predictions of quantities that can be measured (a sample of the Posterior Predictive Distribution).
Step 4: Compute JSD between the predictive distribution of different models. Step 5: Perform the optimal experiment and compute the new Bayes
factors. Optionally repeat until the hypotheses are sufficiently refined.
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Figure 5 Non-linear biochemical network hypotheses.Models used to test the method. Here p refers to a phosphorylated species. The dashed
lines indicate the different hypotheses regarding the negative feedback mechanisms in each of the models. Here feedback 1 corresponds to the
true data generating model. Data of Bp and Dp was used for inference.

Computational implementation
All algorithms were implemented inMatlab (Natick,MA).
Numerical integration of the differential equations was
performed with compiled MEX files using numerical inte-
grators from the SUNDIALS CVode package (Lawrence
Livermore National Laboratory, Livermore, CA). Abso-
lute and relative tolerances were set to 10−8 and 10−9

respectively. MCMC was performed using a population
MCMC approach using NT = 40 chains with a tem-

perature schedule given by Tn =
(
NT
n

)4
[52]. This also

permitted computation of the Bayes factors between the
non-linear models by means of thermodynamic integra-
tion. The Gaussian proposal distribution for the MCMC
was based on an approximation to the Hessian computed
using a Jacobian obtained by simulating the sensitivity
equations. After convergence, the chain was thinned to
10000 samples. Since the number of experiments designed
simultaneously (and therefore the dimensionality of the
prediction vectors) was reasonably small (Nsamples >>

2k), the kNN search was performed using k-d trees [60].
The figures in this paper were determined using k = 10.

Results and discussion
Analytic models
A series of experiments were performed using linear
regression models. To demonstrate the method, consider
the following four competing models, whereM3 is used to
generate the data:

yM1 = θ1t (13)
yM2 = θ1t + θ2t2 (14)

yM3 = θ1t + θ2t2 + θ3sin
(
1
5
t3

)
(15)

yM4 = θ1t + θ2t2 + θ3sin
(
1
5
t3

)
+ θ4sin (2t) t (16)

The presence of sine waves in M3 and M4 elicits par-
ticularly noticeable patterns in the optimal experiment
design matrices. D equidistantly sampled time points
were generated as data (including Gaussian additive noise
σ ). To make sure that the model selection was unsuc-
cessful a priori, these were sampled in a region where
the models roughly predict the same behavior. Initially,
the Bayes factors were log10(B31) = 2.0439 (decisive),
log10(B32) = −0.0554 (pointing to the wrong model) and
log10(B34) = 0.4658 (‘not worth more than a bare men-
tion’ [51]). PPDs were generated for each of the models
and used to compute credible predictive intervals that
enclose 95% of the predictive density. Bayes factors were
computed for each of the models. Since the aim of the
design is to successfully select between the models after
performing new experiments, the change in Bayes fac-
tor in favor of the true underlying model was computed.
Since the experimental outcome is not known a priori, a
distribution of Bayes factors is predicted:

�(Bab) := E
[
log10

(
p(yD, yDn | Ma)

p(yD, yDn | Mb)

)]
− log10

(
p(yD| Ma)

p(yD| Mb)

)
.

(17)

The expectation is taken with respect to new realiza-
tions of the data yDn . Note that such an overarching estima-
tion would be computationally intractable for a non-linear
model. New experiments can be simulated in two ways.
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Either by using the correct model with the true param-
eter values and adding measurement noise or by taking
samples from the posterior predictive distribution of the
correct model (�BB

ab). In practice these ‘true’ parameter
values are not known and the predictive distribution of
the measurement based on the posterior samples provides
the best obtainable estimate given the current parame-
ter uncertainty. The change in Bayes factor (in favor of
the correct model) was compared to the Jensen Shannon
divergence between the competing models. Large pre-
dicted changes indicate that the experiment would result
in a successful selection. As for the JSD, a large value
indicates a large distance between the joint predictive
distributions, marking the measurement as useful. See
Figure 6 for an example of the analysis results. As shown
in the different panels, different models parameterized on
the same data, result in different posterior predictive dis-
tributions (dotted lines in the top row). When comparing
model 1 and 3 (the true model), we can see that differ-
ences in predictions occur mostly beyond the time range
previously measured.Whereas model 1 predicts a straight

line, the true underlying system deviates from a single line.
Consider two new measurements. From the differences in
PPDs, it is clear that measuring beyond the region where
data is available would lead to a decisive choice against
model 1 as corroborated by the large Bayes factor updates
shown in the left plot on the middle row (B13). It can
also be seen that the PPDs differ more for negative time
than positive time. Therefore the area which is decisive is
larger for negative time. The JSDs follow this same pat-
tern. The PPD for model 2 is less different from the PPD
the true model would have generated. For the simulations
coming from model 2, we can see that the value for pos-
itive and negative time is correlated. For model 3, these
prediction values are negatively correlated. Consequently,
performing one measurement for negative time and one
for positive time would lead to the largest discriminatory
power.
The JSD agrees well with the actual Bayes factor updates

as shown in the third row of Figure 6. Interestingly, all
the designs based on the JSD result in designs that would
effectively discriminate between the true model and its
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competitors without having to specify a true model a pri-
ori. Subsequently, a Monte Carlo study was performed
where a large number of random models were gener-
ated and compared. Plotting the relationship between the
updated Bayes factors upon a new experiment and the
corresponding JSD typically reveals a monotonic relation-
ship that underlines its usefulness as a design criterion
(see Figure 7 for two typical examples). These analyses
were performed for a large number of randomly gener-
ated linear models. The Spearman correlation coefficient
between the JSD and the expected Bayes factor averaged
at 0.91 for the experiments we performed (see Additional
file 1: section S6).

Nonlinearmodels
In Figure 8, we show the different predictions after per-
forming model inference. Two sets of PPDs were simu-
lated for two experimental conditions. These sets mimic
two different concentrations of a signaling molecule, and
have been implemented by setting the stimulus u to either
1 or 2. To test the effect of measuringmultiple predictions,
divergence estimates were computed for a large number
of different combinations of two measurements. These
results are shown in Figure 9. Each subplot corresponds
to a different model comparison. The axis of each sub-
plot is divided into ten sections corresponding to different
predictions.Within each section, the axis represents time.
The color value indicates the JSD, where a large value

indicates a lot of separation and therefore a good mea-
surement. Note the bright squares corresponding to the
concentration of BpCp in each of the models. These high
efficacies are not surprising considering that the PPDs
show large differences between the models for these con-
centrations (See Figure 8). Also noticeable is that many
of the experiments on the same predictions reveal dark
diagonals within each tile. Measuring the same concentra-
tion twice typically adds fewer predictive constraints than
measuring at two different time points, unless the second
measurement is performed using a different concentra-
tion of signaling molecule (note how the diagonal lights
up on the combination of measuring BpCp in condition
1 and 2 when selecting between model 3 and 4). Inter-
estingly, measuring certain states during the overshoot is
highly effective (Bp andDp for any comparison), while the
overshoot is less informative for others (Bp under stimu-
lus 1 and 2 for discriminating between M1 and M2). All
in all, the information contained in such a matrix is very
valuable when it comes to selecting from a small list of
experiments. For example, we can also see that consid-
ering the current predictive distributions, model 2 and 4
can barely be distinguished. This implies that in order to
actually distinguish between these two, a different experi-
ment is required. Such a new experiment could, again, be
evaluated by generating a new competing set of PPDs.
To test the results, in silico experiments have been per-

formed by simulating new data from the true model and
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determining the Bayes factor change upon including this
data. Bayes factors were estimated using thermodynamic
integration (see Additional file 1: section S2). The cal-
culation of each set of four marginal likelihoods took
about 6 days of wall-clock time on an Intel i7 CPU (2.93
GHz) with MATLAB R2010a. To validate the method,
experiments are selected where differences between
models are expected. The following experiments were
performed:

• 1. Steady state Cp and BpCp concentration
• 2. Bp and Dp during the peak in the second condition

(u = 2)
• 3. Steady state Cp

Experiment 1 should differentiate between M1 and M3
(D13 ≈ 0.49), but not between M1 and M2 or M1 and
M4. Experiment 2 should give discriminatory power for all
models (D12 ≈ 0.48,D13 ≈ 0.54,D14 ≈ 0.61). Experiment
3 should not provide any additional discriminatory power
at all. The results of these analyses are shown in Table 1.
As predicted, experiment 1 leads only to an increase in
discriminatory power between model M1 and M3. Exper-
iment 2 improves the discriminatory power between all
the models, while experiment 3 even reveals a decrease in
discriminatory power for model 1 and 2. Noteworthy is
also the large variance observed for experiment 3, which is
likely related to the large variance in the steady state pre-
dictions ofCp. Again, the predictions based on the JSD are
well in line with the Bayes factors obtained.

Conclusions
This paper describes a method applicable to perform-
ing experiment design with the aim of differentiating
between various hypotheses. We show by means of a sim-
ulation study on analytically tractable models that the JSD
is approximately monotonically related to the expected
change in Bayes factor in favor of the model that gener-
ated the data (considering the current uncertainty in its
parameters). This monotonic relation is useful, because
it implies that the JSD can be used as a predictor of the
change in Bayes factor. The applicability to non-linear
models of biochemical reaction networks was demon-
strated by applying it tomodels based onmotifs previously

Table 1 Sample table title

D12 �B12 D13 �B13 D14 �B14

0.03 0.06± 0.19 0.49 0.32± 0.39 0.05 −0.07± 0.36

0.48 0.26± 0.14 0.54 0.72± 0.36 0.61 0.43± 0.38

−0.06 −0.49± 0.73 −0.01 −0.35± 0.68 −0.04 0.32± 0.54

JSD and change in Bayes factors denoted as mean ± standard deviation for each
of the reported experiments (n = 3).

observed in signaling networks [58,59]. Experiments were
designed for distinguishing between different feedback
mechanisms.
Though forecasting a predictive distribution of Bayes

factors has been suggested [61], the implicit penalization
of model complexity could have adverse consequences.
The experiment design could suggest a measurement
where the probability densities of two models overlap.
When this happens, both models can describe the data
equally well, which leads to an implicit penalization of
the more complex model (since it allows for more varied
predictions due to its added freedom). This penalization
can then be followed by subsequent selection (of the sim-
pler model). Though a decisive selection occurs, such an
experiment would not provide additional insight however.
In [61], this is mitigated by determining the evidence in
favor of a more complex model. Moreover, computing the
predictive distributions of Bayes factors required for this
approach is computationally intractable for non-linear
models that are not nested. By focusing on differences
in predictive distributions, both these problems are miti-
gated, making it is possible to pinpoint where the different
models predict different behavior. Aside from their useful-
ness in model selection, such predictive differences could
also be attributed to the different mechanisms present
in the different models. This allows for follow-up stud-
ies to investigate whether these are either artificial or true
system behavior.
A complicating factor in this method is the compu-

tational burden. The largest challenge to overcome is
to obtain a sample from the posterior parameter dis-
tribution. Running MCMC on high dimensional prob-
lems can be difficult. Fortunately, recent advances in
both MCMC [19,62] as well as approximate sampling
techniques [39,48,63,64] allow sampling parameter distri-
butions of increasingly complex models [14,34-38]. The
bottleneck in computing the JSD resides in searching for
the kth nearest neighbor. A subproblem which occurs
in many different problems and for which computation-
ally faster solutions exist [65,66]. An attractive aspect of
this methodology is that it is possible to design multi-
ple experiments at once. However, the density estimates
typically become less accurate as the number of designed
experiments increases (see Additional file 1: section S8).
Therefore, we recommend starting with a low number of
experiments (two or three) and gradually adding exper-
iments while the JSD is low. Density estimation can
also be problematic when the predictions vary greatly in
their dispersion. When considering non-negative quan-
tities such as concentrations, log-transforming the pre-
dictions may alleviate problems. Finally, the number of
potential combinations of experiments increases expo-
nentially with the number of experiments designed. It
is clear that this rapidly becomes infeasible for large
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numbers of experiments. However, it is not necessary
to fill the entire experimental matrix and techniques
such as Sequential Monte Carlo sampling could be con-
sidered as an alternative to more effectively probe this
space. We revert the reader to Additional file 1: section
S7 for a proof of principle implementation of such a
sampler.
One additional point of debate is the weighting of each

of the models in the mixture distribution used to com-
pute the JSD. It could be argued that it would be more
sensible to weight models according to their model prob-
abilities by determining the integrated likelihoods of the
data that is already available. The reason for not doing
this is two-fold. Firstly, the computational burden this
adds to the experimental design procedure is significant.
More importantly however, the implicit weighting in favor
of parsimony could strongly affect the design by remov-
ing models which are considered unnecessarily complex
at this stage of the analysis. When designing new experi-
ments, the aim is to obtain measurements that allow for
optimal discrimination between the predictive distribu-
tions under the different hypotheses. Optimal discrimi-
nation makes it sensible to consider the models equally
probable a priori.
The method has several advantages that are particularly

useful for modeling biochemical networks. Because the
method is based on sampling from the posterior parame-
ter probability distribution, it is particularly suitable when
insufficient data is available to consider Gaussian parame-
ter probability distributions or model linearisations. Addi-
tionally, it allows incorporation of prior knowledge in the
form of prior parameter probability distributions. This
is useful when the available data contains insufficient
constraints to result in a well defined posterior param-
eter distribution. Because the design criterion is based
on predictive distributions and such distributions can
be computed for a wide range of model quantities, the
approach is very flexible. In biochemical research, in vivo
measurements are often difficult to perform and practi-
cal limitations of the various measurement technologies
play an important role. In many cases measurements on
separate components cannot be performed and measure-
ments result in indirect derived quantities. Fortunately, in
the current framework such measurements can be used
directly since distributions of such experiments can be
predicted.
Moreover, the impact of specific combinations of

experiments can be assessed by including them in
the design simultaneously which reveals specific com-
bination of measurements that are particularly useful.
This way, informative experiments can be distinguished
from non-informative ones and the experimental efforts
can be targeted to discriminate between competing
hypotheses.
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