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Abstract

Background: Metabolism is a vital cellular process, and its malfunction can be a major contributor to many human
diseases. Metabolites can serve as a metabolic disease biomarker. An detection of such biomarkers plays a
significant role in the study of biochemical reaction and signaling networks. Early research mainly focused on the
analysis of the metabolic networks. The issue of integrating metabolite networks with other available biological
data to reveal the mechanics of disease-metabolite associations is an important and interesting challenge.

Results: In this article, we propose two new approaches for the identification of metabolic biomarkers with the
incorporation of disease specific gene expression data and the genome-scale human metabolic network. The first
approach is to compare the flux interval between the normal and disease sample so as to identify reaction
biomarkers. The second one is based on the Reaction-Reaction Network (RRN) to reveal the significant reactions.
These two approaches utilize reaction flux obtained by a Linear Programming (LP) based method that can
contribute to the discovery of potential novel biomarkers.

Conclusions: Biomarker identification is an important issue in studying biochemical reactions and signaling
networks. Two efficient and effective computational methods are proposed for the identification of biomarkers in
this article. Furthermore, the biomarkers found by our proposed methods are shown to be significant determinants
for diabetes.

Background
Deficiency in essential metabolites can directly cause
metabolic diseases. Metabolic diseases profiling is promis-
ing in uncovering the mechanism of disease-metabolite
associations. Existing research mainly emphasized on the
analysis of metabolic networks [1-3]. Models in investiga-
tion of large-scale metabolic networks outperform other
quantitative approaches [4,5]. The widespread appearance
of gene expression data gives a clue for the integration of
metabolite network data to reveal significant biomarkers.
Flux Balance Analysis (FBA) [6] is a constraint-based

and traditional approach for predicting flux distribution. It
has been employed in [7] to identify a number of impor-
tant metabolic reactions. Drug targets are adopted to

reduce abnormal metabolites through formulating an opti-
mal combinatoric problem on metabolic networks [8,9]. In
[10], drug target prediction can be formulated as an inte-
ger linear programming model. A quantitative method
based on two-stage FBA has been proposed in [11] for
drug target identification. In [12], by profiling human
metabolic reactions, a drug-reaction network was estab-
lished for predicting enzyme targets. Here we develop a
computational approach to identify metabolic biomarkers
using human metabolic reactions incorporating disease-
specific gene-expression data [13]. Metabolic biomarkers
are metabolites demonstrating consistent variation in con-
centration in disease state; they can be very useful for a
diagnostic purpose, see for instance [14]. As an efficient
diagnostic tool and a safe evaluator for drug candidates,
metabolomics will play an important role.
Furthermore, we also construct a RRN which provides

a platform for ranking the significance of reactions by
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using the PageRank algorithm. The reaction network
can be constructed in such a way that the nodes repre-
sent reactions and an edge is placed whenever the reac-
tions share the common metabolite. Note that one
reaction can have thousands of edges with the related
reactions which makes the network extremely compli-
cated. This issue can be addressed by identifying densely
connected subgraphs. The clustering toolbox is therefore
employed to find the subnetworks. The graph clustering
is based on the assumption that a group of functionally
related nodes are likely to highly interact with each
other while being more separate from the rest of the
network [15]. In [16], the challenge of the clustering
network graphs was presented. In particular, the results
of most methods are highly sensitive to their parameters
and the predicted clusters can vary from one method to
another. Here we focus on analyzing the cluster with
the largest number of entities. The selected metabolic
reactions provide a platform for us to draw the RRN
which depicts the interactions of the reactions. For the
ease of interpretation and visualization of the networks,
we apply Cytoscape to construct the network. PageRank
approach is a promising method to evaluate the impor-
tance of a webpage. We then integrate the PageRank
algorithm and the FBA method to evaluate the signifi-
cance of the reactions. We also propose simple statisti-
cal criteria to select significant reactions which enable
us to identify the corresponding metabolites.
Diabetes Mellitus is a group of metabolic diseases that

are amongst the major human malnutrition diseases. Risk
assessment is one of the possible ways to prevent the dis-
ease. Metabolic profiling, an unbiased technique, can
potentially trigger the identification of high-risk candidates
and therefore it can reduce the related costs [17].
We then integrate the human metabolic network with

disease-specific gene expression data to analyze the flux
profiles within the network. In the following section, we
introduce two methods for metabolite biomarkers discov-
ery. The validity of the two approaches will be further dis-
cussed. The identified metabolite biomarkers may have
potential applications for disease diagnosis.

Materials and methods
Materials
The genome-scale human metabolic network recon-
structed by Duarte et al. [18] consists of 3742 reactions,
2766 metabolites and 1905 genes. Three types of infor-
mation have been used to describe a metabolic network.
One of them is stoichiometry, which is used to depict the
quantitative associations among reactants and products
in all the involved reactions. Another part consists of
enzymes corresponding to each reaction in the network.
The last part is the flux capacity of each reaction. We
employ Human Recon 1, one of the two independently

developed human metabolic networks [18,19] in our
study. The data is available at the BiGG database (http://
bigg.ucsd.edu/). One can retrieve the reactions and the
involved genes using MATLAB. And the RRN can be
implemented in the Cytoscape software package which is
available at (http://www.cytoscape.org).

Methodology
We introduce two novel methods for integrating gene
expression data and the human metabolic network in
biomarker discovery.

Flux profile comparison (FPC) method [13]
There are several major steps that we have to conduct
before the construction of LP model, and eventually
allow us for the detection of biomarkers.

1. Expression levels in reactions
2. The LP model
3. Flux profiles in disease/normal samples
4. Identification of significant reactions
5. Significant metabolite discovery

Comparing to the well known model using the human
metabolic network to predict metabolic biomarkers of
human inborn errors of metabolism [14], our model takes
more realistic constraints into consideration. Firstly, the
genome-scale human metabolic network we utilize here
consists of 1905 boundary metabolites and 3742 reactions
in total. Secondly, we integrate gene expression data in
both normal and disease state to mark highly and lowly
expressed reactions. Without forcing the reactions to be
active in the normal state or inactive in the disease state,
we adopt a probability measure for the reaction to be
active or inactive instead. We use two pairs of gene
expression data in both healthy and disease status and
consider the overlap of the discovered metabolic biomar-
kers. Regarding the solutions of the LP problems, we use a
large-scale optimization method which is based on Linear
Interior Point SOLver (LIPSOL) [20] in MATLAB on a
Windows Vista machine. These characteristics of our
approach contribute to the discovery of metabolic biomar-
kers in a more significant way.

RRN construction method
In this section, we propose the second novel approach
to identify the metabolite biomarkers based on RRN.
• Clustering toolbox for identifying the subnetworks.
The availability of the human metabolic network from

Duarte et al. [18] enables us to retrieve the reactions and
the genes. It includes 3742 reactions with 2766 metabo-
lites and 1905 genes, which suggests a potential way to
build a network if the reactions share the common meta-
bolites. The nodes of the network represent the reactions,
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while the reactions are linked if they have the same meta-
bolite. Some reactions have thousands of edges based on
the foundation of constructing the network. Therefore
the RRN can be extremely complex which makes it diffi-
cult to draw the network by using Cytoscape. We address
this problem by using a clustering toolbox to identify the
subnetworks which have similar properties. Clustering
analysis [21] aims to classify a set of observations into
two or more mutually exclusive unknown groups based
on combinations of variables. Thus, cluster analysis is
usually adopted in the context of unsupervised classifica-
tion [22]. It can be applied to a wide range of biological
study cases, such as microarray, sequence and phyloge-
netic analysis [23]. The purpose of clustering is to group
different objects together by observing common proper-
ties of elements in a system. In a biological network, this
can help identify similar biological entities, like proteins
that are homologous in different organisms or that
belong to the same complex and genes that are co-
expressed [24,25]. Among all the clustering algorithms,
the k-means algorithm [26] aims to partition n observa-
tions into k clusters in which each observation belongs to
the cluster with the nearest mean. The k-means method
and its modifications are widely used for gene expression
data analysis [27]. Here we utilize this method to classify
the reactions into several groups. Reactions in the same
cluster have similar behavior. We focus on analyzing the
cluster with the largest number of elements and we
choose k to be 50. With different k the classification is
consequently different. It is interesting to note that the
elements in the largest cluster are quite similar. Thus
parameter k does not have much influence on the results
of the cluster. We finally choose the largest cluster with
134 reactions for our analysis. And the network is shown
in Figure 1.
• The PageRank algorithm for evaluating the reac-

tions in the RRN.
With the obtained reaction network, one can evaluate

the significance of each network. The page rank of a web-
page is a number for representing the relative importance
of the webpage based on the number of inbound and out-
bound links. Inbound links are links from outside pointing
to a webpage. Outbound links are links from a webpage to
any other webpages [28]. The page rank of a webpage can
be obtained from the following formula:

Pi = (1 − d) + d
∑
j∈M(i)

Pj
L(j)

where Pi is the page rank of the webpage i, M (i) is the
set of the webpages linked to webpage i, L( j) is the num-
ber of outbound links of webpage j, and d is a residual
probability which is usually set to be 0.85 [28]. Here we
remark that the numerical results are similar in our

experiments for other d ≥ 0.85. The values of the PageR-
ank of the webpages are the entries of the dominant
eigenvector of the modified adjacency matrix. We denote
the eigenvector

r = [P1,P2, · · · ,PN]T

where N is the total number of pages and r is the
solution of the recursive formula:

r =

⎡
⎢⎢⎢⎢⎢⎣

1 − d

1 − d

...

1 − d

⎤
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. . .

...
...
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⎤
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r

and the adjacency matrix ℓ(i, j) is 0 if webpage i does
not link to webpage j, and we have the normalization
condition that, for each j

N∑
i=1

�(i, j) = 1

i.e., the sum of each column is 1. The value of the
ranking indicates an importance of a particular page.
Inspired by [29], one can apply the PageRank algorithm
to rank the importance of the reaction in the RRN.
Here we apply this approach on two subgraphs which
are exactly the subsets of Figure 1. The subgraphs are
described in Figures 2 and 3. Figure 2 is the left upper
corner of Figure 1 and Figure 3 is the right upper side
of Figure 1. Then we can evaluate the nodes (reactions)
in these two subnetworks. Furthermore, each reaction
also has the flux value which represents the significance.
Here we propose a simple approach to integrate flux
value and rank value to yield a final significant score for
each reaction. Let z be the vector containing the final
values used for ranking the reactions. We define

zk = pk × vk

where p is the ranking result obtained from the
PageRank algorithm, v is the flux vector for all the reac-
tions generating from the flux analysis, and k represents
the kth entry (reaction) of the vector. We then select
several reactions with the comparatively high value from
the RRN using this criteria.

Results and discussions
In this section, we discuss some of our findings by our
proposed two approaches: FPC and RRN. For FPC, we
have filtered out 5 reactions and all the participating genes
in these reactions [13]. In terms of genes, we have identi-
fied 11 significant genes involved in diabetes, “ALDH” and
its variants(9 in total), “HSD3B2” and “KHK”. In [30],
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“ALDH” activity has been experimentally shown to be
related to the increasing risk of large vessel disease in dia-
betes. Direct intra-pancreatic delivery of ALDH activity
could be a potential feasible strategy for diabetes [31].
Furthermore, researchers have found that, ALDH2.487Lys
allele was related to the decreasing prevalence odds in
type II diabetes in a clinical study on diabetes [32].
“HSD3B2” is discovered highly expressed with regulation
of FXR (farnesoid × receptor) while FXR agonists are an
appearing therapeutic treatment for diabetes [33]. The
value of “KHK” as a pharmacological target needs further
verification [34], but it can be a possible biomarker in dia-
betes treatment.
Considering the metabolites related diabetes, “ac[e]”

acting as an inhibitor, is very helpful for patients in clini-
cal trials, see for example [35]. Both “nadph” and “nadp”
are valuable metabolites in l-xylulose (l-xylulose is

obtained by “nadph” and “nad” reduction with “d-xylu-
lose” [36]) which is intensively used in diabetes diagnosis.
While reaction 1951 is glycolaldehyde dehydrogenase,
glycolaldehyde has been shown to play a significant role
in diabetic cardiomyopathy [37]. And “pi” is a critical
component in the disturbance of diabetes [38].
Furthermore, we analyze the significant reactions

selected by integrating the flux analysis and the PageRank
algorithm based on the subnetworks of the RRN. We fil-
ter out five reactions which are reported in Table 1. All
the participating genes in these five reactions are listed in
Table 2.
We remark that the symbol “⇆” means the reaction is

reversible and “®“ means the reaction is irreversible. The
number inside the parentheses (.) is the quantity of the
metabolite. For example, in the Reaction 3511 of Table 1,
we need “coa[m]:tetpent6crn[m] = 1:1” to produce “crn

Figure 1 Reaction network.
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Figure 2 The left upper corner of figure 1.

Figure 3 The right upper corner of figure 1.
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[m]:tetpent6coa[m] = 1:1”. In the associated genes of
Table 2, “CPT2” and “SDHD” etc are the gene symbols.
Considering the genes involved in the reactions, we have

identified 9 important genes participating in Diabetes in
Table 2. In [39], experiments have shown that gene
“EHHADH” is involved in mitochondrial fatty acid b-oxi-
dation and the variants in “EHHADH” are associated with
type 2 Diabetes. In [40], it is demonstrated that obese dia-
betes impairs the rhythmic expression of various genes,
including “UPP2”. It has been shown that Diabetes appears
to be associated with increased levels of oxidative stress in
[41]. And gene “TXNRD1” exhibited increases in oxidative
stress. “SDHB”, “SDHA”, “SDHC” and “SDHD” are four
protein subunits forming succinate dehydrogenase. The
role of “SDH” needs further investigation, but it is sus-
pected that malfunction of the SDH complex can cause a
hypoxic response in the cell that leads to tumor formation.
Pharmacological inhibition of the CPT system by the gly-
cidic acid derivative etomoxir, an irreversible and noniso-
form-specific active site inhibitor of CPTs, has been
demonstrated to reduce fasting blood glucose in an animal
model of type 2 diabetes mellitus [42].
From the perspective of the metabolites related to the

disease, reaction 3115 is an active reaction involved in
fatty acid cholesterol metabolism during prostate cancer
progression [43]. Here “pi” is a determining factor in
regulation of metabolism in diabetes [38] and “nadh”
involves in lactate formation (3-4-hydroxyphenyl lactate
formation) [43]. Both “fad” and “fadh2” play an impor-
tant role in fatty acids metabolism [44]. The role of mal-
onyl CoA as a key glucose-derived metabolite, an
allosteric inhibitor of fatty acid oxidation, has attracted
many attentions. Recent studies have investigated the
effects of manipulating this metabolite in various tissues
[45]. For the issue of diabetes, a study in [46]

demonstrated that high levels of malonyl CoA and
reduced fat oxidation enhance glucose disposal in pri-
mary human skeletal myocytes.
One can see that these two approaches are extremely

different, but some of the metabolite biomarkers are the
same. It has been shown that “nadh” and “pi” are the
important factors for detecting diabetes. We can con-
clude that both our proposed methods are effective for
identifying the metabolite biomarkers for diseases.

Conclusions
In this paper, we first develop a computational method
to identify significant genes and metabolites for meta-
bolic diseases. LP based strategy is then utilized to
obtain flux profiles in disease/normal samples. Gene
expression data in two pairs of samples at disease/nor-
mal states contributes to discovering genes and metabo-
lites that can be potential biomarkers. We then further
present a second novel approach to identify the signifi-
cant metabolites for the metabolic disease. We also
employ the constraint-based flux distribution to analyze
the metabolic network. The clustering method makes it
possible to identify the subgraphs with the common
properties, which is a key step to construct the RRN
with Cytoscape. To evaluate the reaction in the network,
we propose the PageRank algorithm to evaluate the
node. We integrate the flux value and the rank result to
select the significant reactions, from which the related
metabolites biomarkers can be identified. The integra-
tion of genome-scale human metabolic network data
with gene expression levels offers a new way for system-
atically identifying potential biomarkers.
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