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Abstract

Background: Osteosarcoma (OS) is the most common malignant bone tumor in children and adolescents. The
survival rate of patients with metastatic disease remains very dismal. Nevertheless, metastasis is a complex process
and a single-level analysis is not likely to identify its key biological determinants. In this study, we used a systems
biology approach to identify common metastatic pathways that are jointly supported by both mRNA and protein
expression data in two distinct human metastatic OS models.

Results: mRNA expression microarray and N-linked glycoproteomic analyses were performed on two commonly
used isogenic pairs of human metastatic OS cell lines, namely HOS/143B and Sa0S-2/LM7. Pathway analysis of the
differentially regulated genes and glycoproteins separately revealed pathways associated to metastasis including cell
cycle regulation, immune response, and epithelial-to-mesenchymal-transition. However, no common significant
pathway was found at both genomic and proteomic levels between the two metastatic models, suggesting a very
different biological nature of the cell lines. To address this issue, we used a topological significance analysis based
on a “shortest-path” algorithm to identify topological nodes, which uncovered additional biological information
with respect to the genomic and glycoproteomic profiles but remained hidden from the direct analyses. Pathway
analysis of the significant topological nodes revealed a striking concordance between the models and identified
significant common pathways, including “Cytoskeleton remodeling/TGF/WNT”, “Cytoskeleton remodeling/
Cytoskeleton remodeling”, and “Cell adhesion/Chemokines and adhesion”. Of these, the “Cytoskeleton remodeling/
TGF/WNT" was the top ranked common pathway from the topological analysis of the genomic and proteomic
profiles in the two metastatic models. The up-regulation of proteins in the “Cytoskeleton remodeling/TGF/WNT"
pathway in the Sa0S-2/LM7 and HOS/143B models was further validated using an orthogonal Reverse Phase Protein
Array platform.

Conclusions: In this study, we used a systems biology approach by integrating genomic and proteomic data to
identify key and common metastatic mechanisms in OS. The use of the topological analysis revealed hidden
biological pathways that are known to play critical roles in metastasis. Wnt signaling has been previously implicated
in OS and other tumors, and inhibitors of Wnt signaling pathways are available for clinical testing. Further
characterization of this common pathway and other topological pathways identified from this study may lead to a
novel therapeutic strategy for the treatment of metastatic OS.

* Correspondence: ctman@txch.org

Texas Children’s Cancer and Hematology Centers, Texas Children’s Hospital,
Houston, TX, USA

2Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
Full list of author information is available at the end of the article

© 2012 Flores et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative

() BioMed Central Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and

reproduction in any medium, provided the original work is properly cited.


mailto:ctman@txch.org

Flores et al. BVIC Systems Biology 2012, 6:50
http://www.biomedcentral.com/1752-0509/6/50

Background

Osteosarcoma (OS) is the most common malignant bone
tumor in children and adolescents, and accounts for
approximately 60% of bone cancers in the first two dec-
ades of life [1]. Despite intensive research in the pathogen-
esis of this cancer, the outcome of OS patients has not
significantly improved over the past three decades. The
main reason for the lack of survival improvement is that
this cancer is highly prone to metastasis, which is the most
consistent indicator of poor outcome. Even with the most
current multi-drug treatment protocols, the survival rate
for patients with metastatic disease at diagnosis is only
about 20% [2,3].

Similar to other types of cancer, metastasis in OS is a
complex process [4,5] and a single-level of analysis alone,
such as mRNA expression profiling, cannot capture the
complete information to fully understand the metastatic
mechanism. Therefore, a systems biology approach that
takes into account different data sources such as gene and
protein expression profiles is more likely to identify the
dysfunctional molecules and pathways of cancer biology.
Nonetheless, previous studies have revealed that direct
comparisons of transcriptomic and proteomic data are dif-
ficult [6-8]. Major sources of discordance between the two
types of omic data exist, such as mRNA degradation, alter-
native splicing, translational regulation, post-translational
modifications, and protein degradation. This suggests that
a new analytical approach is needed to identify biological
pathways that are hidden from the direct analyses but
commonly supported by various data sources. The goal of
our study is to test if we could identify common metastatic
processes or pathways that are jointly supported by both
mRNA and protein profiling data in OS using a topological
significance analysis to identify the hidden nodes.

Due to the low incidence and limited amounts of
biopsy materials, clinical OS samples available for re-
search are particularly scarce, making it extremely
difficult to analyze the tumor samples using multiple
genomic and proteomic platforms [9]. To circumvent
this problem, isogenic metastatic cell lines have been
developed for OS research. However, many of these cell
lines have different genetic origins and have not been
systematically characterized at the genomic or proteomic
level [10-14]. Therefore, in this study we applied a sys-
tems biology approach to analyze, integrate, and identify
hidden common functional pathways from two com-
monly used human metastatic OS cell lines and their
parental non-metastatic lines. The two human metastatic
OS cell line models were HOS/143B and SaOS-2/LM7.
The HOS cell line, originally known as M.T. and later as
TE-85, was derived from an OS of a 13 year-old girl. The
143B metastatic subline was generated from HOS by a
Ki-RAS oncogene transformation [15]. On the other
hand, the SaOS-2 cell was derived from an OS of an 11
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year-old girl, and its metastatic subline LM7, was devel-
oped by multiple in vivo selection of SaOS-2 cells in
mice with pulmonary metastases [14,16]. Our systems
biology approach involved the analysis of the transcrip-
tomes and glycoproteomes of the two pairs of cell lines.
We validated our results using Western blotting and
Reverse Phase Protein Arrays (RPPA), and the clinical
significance of our findings are discussed.

Results

To understand the common dysregulated processes in
metastatic OS, we employed a systems biology approach
to characterize the transcriptomes and proteomes of two
commonly used human metastatic OS cell line models.
The two models used were HOS and SaOS-2 and their
isogenic metastatic sublines, 143B and LM7 respectively
[14,15].

mRNA expression data

mRNA expression microarray analysis was performed on
both models, and the differentially expressed genes
within each cell line model were identified by comparing
the metastatic versus non-metastatic cell lines. The
differentially expressed genes were identified using two
criteria: a p-value of differential expression less than 0.05
and a fold change between the two classes greater than
2-fold. We identified 1,576 up-regulated genes and 1,656
down-regulated genes in the 143B cell relative to the
HOS cell, and 648 up-regulated genes and 745 down-
regulated genes in the LM7 cell relative to the SaOS-2
cell (See Tables 1 and 2). The two models had 102 com-
mon features in the up-regulated gene profiles and 157
of the down-regulated genes. By comparing to the LM7/
SaOS-2 results, which constitute smaller numbers of dif-
ferentially expressed genes, the common features repre-
sent 16% of up-regulated genes and 21% of down-
regulated genes. The overall level of concordance for all
differentially regulated genes between the two models
was 19% of the differentially expressed genes in the
LM7/Sa0S-2 model.

To identify the pathways that are enriched in the
mRNA expression data, the differentially regulated genes
from the cell line models were analyzed by calculating
enrichment in functional pathways. The most significant
pathways from the HOS/143B model were associated
with important biological functions such as cell cycle
regulation and G-protein signaling in the up-regulated
genes, and cell adhesion and immune response in the
down-regulated genes. For the SaOS-2/LM7 model, the
most significant pathways were associated with devel-
opment and cell adhesion in the up-regulated genes,
and muscle contraction and cytoskeleton remodeling in
the down-regulated genes. By analyzing all significant
pathways, we found only one common pathway, the
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Table 1 Top 10 up-regulated genes in HOS/143B model
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Up-regulated genes Entrez Gene HOS/143B (Log2) p-value Function

FOXR1 283150 8 84 x 10E-6  Play roles in determining cell fates during early development

RTN1 6252 7 1.1 x 10E-5  Involved in membrane trafficking in neuroendocrine cells

FRMD3 257019 7 1.7 x 10E-5  Structural protein essential for erythrocyte shape and
mechanical properties

HOXA9 3205 7 14 x 10E-5  Transcription factor which may regulate gene expression,
morphogenesis and differentiation

ANGPT2 285 7 94 x 10E-6  In concert with VEGF, may serve as a permissive angiogenic signal

KRT18 3875 6 1.1 x 10E-5 Involved in the uptake of thrombin-antithrombin complexes by hepatic cells

ILTORA 3587 6 1.0 x 10E-5  Interferon receptor that mediates the immunosuppressive signal of IL10

TPD52 7163 6 2.0 x 10E-5 Uncharacterized function, but expressed in many tumor cell lines
including colon, breast, prostate, pancreas and kidney

CA2 760 6 1.8 x 10E-5  Essential for bone resorption and osteoclast differentiation

BEND4 389206 6 1.2 x 10E-5  Uncharacterized function, but known to be phosphorylated

upon DNA damage

“Development_ WNT signaling pathway”, in the up-
regulated genes between the two models (Figure 1). Simi-
larly, there were 3 common pathways in the down-regu-
lated genes, namely the “Muscle contraction_GPCRs in
the regulation of smooth muscle tone”, “Cytoskeleton
remodeling Regulation of actin cytoskeleton by Rho
GTPases”, and “Development_MAG-dependent inhi-
bition of neurite outgrowth” (See Additional file 1: Table
S1).

Glycogenes expression and pathway analysis

Since there is no single platform that can characterize
the whole proteome in the cell and many of the clinically
applicable tumor biomarkers, such as Prostate-Specific
Antigen (PSA) and Carcinoembryonic Antigen (CA125),
are glycoproteins [17,18], we tested if glycosylation was

Table 2 Top 10 up-regulated genes in Sa0S-2/LM7 model

aberrantly regulated in the human metastatic cell line
models. The mRNA expression data of 191 known human
glycogenes in the metastatic and non-metastatic cell lines
were investigated. This panel of glycogenes represents a
comprehensive group of known human genes related to
glycosylation and glycan synthesis pathways [19]. The ana-
lysis showed that 23 and 9 glycogenes had a p-value of
differential expression less than 0.05 and a fold change
greater than 2-fold in the HOS/143B and SaOS-2/LM7
models, respectively. Pathway analysis using all 191 glyco-
genes identified the baseline pathways involved in these
glycogenes. The top significant baseline pathways are
O-glycan biosynthesis, neolacto-series glycosphingolipids
metabolism, and Keratan sulfate metabolism (Additional file
2: Figure S1). Then, the pathway analysis was performed on
the differentially regulated glycogenes from both cell line

Up-regulated genes  Entrez Gene  Sa0S-2/LM7 (Log2) p-value Function

NES 10763 30 1.8 x 10E-11 May play a role in the trafficking and distribution of
intermediate filaments and other cell factors during cell division

WDR72 256764 25 1.8 x 10E-9 Involved in enamel formation

VAMP8 8673 24 1.5 x 10E-10  Involved in the targeting and fusion of transport vesicles to
their target membrane

MUC15 143662 23 32 x 10E-12  May play a role in the cell adhesion to the extracellular matrix

LPPR4 9890 21 1.5 x 10E-10  Facilitates axonal outgrowth during development and
regenerative sprouting

PTPRB 5787 18 1.9 x 10E-9 Plays an important role in blood vessel remodelling and
angiogenesis

WIF1 11197 18 56 x 10E-11 Binds to Wnt proteins and inhibits their activities

PTPRR 5801 17 4.6 x 10E-9 Sequesters protein kinases in the cytoplasm in an inactive form
and releases them for activation and translocation into the nucleus

FIBIN 387758 17 1.5x 10E-11  Uncharacterized

SYK 6850 16 10 x 10E-10  Regulates several processes including immunity, cell adhesion,

osteoclast maturation, platelet activation and vascular development
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Figure 1 Pathway analysis of up-regulated genes from HOS/143B and
MetaCore using all the significantly up-regulated genes from (A) HOS/143B

“Development_WNT signaling pathway. Part 2", was identified in the top 10 significant pathways between the two models. Bars quantify the —log
(p-value) indicating the enrichment of the individual pathways identified. False discovery rate (FDR) is calculated for all identified pathways and a
cutoff of FDR < 0.05 is set to define pathways as significant. Asterisks denote significant pathways shown.

4. 0g p-values

Sa0S-2/LM7 models. Top 10 significant pathways identified by
and (b) Sa0S-2/LM7 models. Only one common pathway, the

models and the results were compared to the baseline
glyco-pathways. Results showed that “N-Glycan biosyn-
thesis” was the top common pathway between the two
models (Additional file 3: Figure S2). These results suggest
that the N-linked glycosylation may be involved in the
metastatic process of OS. Analysis of the N-linked glycopro-
teome will likely provide important information in meta-
static OS.

Glycoproteomic analysis by a lectin column followed by
multidimensional protein identification technology
(MudPIT)

Next, we used an affinity-based mass spectrometry
approach to identify the differentially expressed glycopro-
teins in the two cell line models. First, we used wheat germ
agglutinin (WGA) lectin chromatography to selectively
capture N-linked glycoproteins (Additional file 4). Subse-
quently, MudPIT analysis was performed on the captured

glycoproteins from the two pairs of human metastatic OS
cell line models. Totally, 14,928 spectra were detected in
the HOS/143B model, and 34,834 spectra in the SaOS-2/
LM7 model. These spectra corresponded to 3,147 and
3,123 unique peptides, which gave rise to 290 and 260
unique proteins identified in the HOS/143B and SaOS-2/
LM7 models, respectively. The protein identification cri-
teria were (1) at least two unique peptides, and (2) higher
than 99% confidence of protein identification.

To measure the expressions or abundances of the glyco-
proteins in the metastatic OS cell line models, a spectral
counting method was employed (see Methods). Spectral
counting entails averaging the spectrum counts across the
different protein samples tested, followed by calculating
the quantitative value for each identified protein. The
quantitative values of the identified proteins in the meta-
static versus non-metastatic cell lines were then compared
and their respective fold change was calculated. Then, the
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p-value for the differential expression of each protein be-
tween the two classes was calculated by Fisher’s exact test
[20] and corrected for multiple testing using a step-up
method [21]. Proteins with a corrected p-value less than
0.05 and a greater than 2-fold expression were considered
significantly differentially expressed. The analysis showed
that 90 and 135 glycoproteins were differentially regulated
in the HOS/143B and SaOS-2/LM7 models, respectively.
54 glycoproteins were up-regulated and 36 glycoproteins
down-regulated in the HOS/143B model (Table 3); and 75
glycoproteins were up-regulated and 60 glycoproteins were
down-regulated in the SaOS-2/LM7 model (Table 4). The
models had 6 common proteins in the up-regulated glyco-
protein profiles and 2 common proteins in the down-regu-
lated glycoprotein profiles. By comparing to the results of
LM7/Sa0s-2, the common differentially expressed proteins
represent 11% of up-regulated glycoproteins and 6% of
down-regulated glycoproteins. The overall level of con-
cordance for all differentially regulated glycoproteins be-
tween the two models was 9% of the differently expressed
glycoproteins in the LM7/SaOS-2 model.

To show that the identified proteins were likely to be
glycosylated, the top 20 up-regulated proteins from each
cell line model were analyzed using a post-translational
modification prediction algorithm. The selected proteins
were modeled using Net-N-Glyc [22,23] for prediction of
N-glycosylation sites in human proteins. The threshold
was established at greater than 50% potential of glycosyla-
tion for each identified site. Results showed that 70% and
75% of the top proteins in HOS/143B and SaOS-2/LM7,
respectively, have asparagines predicted to be N-
glycosylated.

Up-regulated proteins in each model included 14-3-3
protein theta and alpha enolase from HOS/143B, and nes-
tin and vimentin from SaOS-2/LM7, all of which have
been implicated in cancer progression and metastasis [24-
28]. Nonetheless, when the differentially regulated proteins
were interrogated by the pathway analysis, only one
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common significant pathway, the “Immune response_An-
tigen presentation by MHC class I”, was found in the up-
regulated proteins (Figure 2). In the down-regulated pro-
teins there were 3 common significant pathways, namely
the “Proteolysis_Role of Parikin in the Ubiquitin-Proteaso-
mal Pathway”, “Cytoskeleton remodeling Keratin fila-
ments”, and “Regulation of CFTR activity”. Notably, none
of these pathways was common at both the mRNA and
protein levels in the two models.

Validation of the differentially expressed glycoproteins by
Western blot

Two candidate glycoproteins were selected for validation
based on criteria that required the candidates to be among
the top significantly up-regulated glycoproteins from Mud-
PIT, be supported by the transcriptomic data, and have a
commercially available antibody for validation experi-
ments. The first candidate glycoprotein selected for valid-
ation was amidophosphoribosyltransferase (Atase), which
was up-regulated by 14-fold in the metastatic 143B relative
to the non-metastatic HOS in the MudPIT analysis. The
other candidate was vimentin, which was up-regulated by
350-fold in the metastatic LM7 relative to the non-meta-
static SaOS-2 in the MudPIT analysis. The results con-
firmed that both proteins were overexpressed in the
metastatic sublines compared to the parental cell line
(Figure 3).

Topological significance scoring analysis of genomic and
glycoproteomic data

Although the direct analyses indicated that no dysregu-
lated pathways were common between the two cell line
models at both the mRNA and protein levels, we hypothe-
sized that common metastatic processes could be uncov-
ered by identifying the hidden nodes in the data. We
applied the “shortest-path” algorithm of topological scor-
ing to the differentially regulated genes and glycoproteins.
This algorithm has been shown previously to be able to

Table 3 Top 10 up-regulated glycoproteins in HOS/143B model

Function

Gene Symbol Accession # HOS/143B p-value Unique Peptides
CANX(cDNA FLJ55574) IPI00020984 32 1.8 x 10E-9 7
RPSAP55 IPI00399077 32 1.8 x 10E-9 2
YWHAQ IPI00018146 32 1.8 x 10E-9 2
ENO1 IPI00465248 25 3.2 x 10E-7 8
LDHB IPI00219217 23 9.2 x 10E-7 9
EIF4A3 IPI00009328 23 9.2 x 10E-7 2
GAPDH IPI00219018 29 94 x 10E-9 9
EIF3 IPI00012795 18 2.5 x 10E-5 4
GLUD1 IPI00016801 16 7.7 x 10E-5 5
PSME1 IPI00479722 16 7.7 x 10E-5 4

Molecular chaperone and protein translation quality control machinery
Uncharacterized

Regulation of a large spectrum of signaling pathway

Role in glycolysis, growth control, and hypoxia tolerance

Catalyzes the interconversion of pyruvate and lactate

ATP-dependent RNA helicase

Role in glycolysis, transcription, RNA transport, DNA replication
and apoptosis

Required for several steps in the initiation of protein synthesis
Deamination of glutamate and role in energy homeostasis

Immunoproteasome assembly and efficient antigen processing
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Table 4 Top 10 up-regulated glycoproteins in Sa0S-2/LM7 model

GeneSymbol Accession # LM7/Sa0S-2  p-value  Unique Peptides Function

VIM IPI00418471 350 1 x10E-42 22 Filaments expressed in neoplasms originated from mesenchymal cells

TPM1 IP100940084 130 2.2 x 10E-41 2 Contractile system of muscles and the cytoskeleton of non-muscle cells

ALB 1P100022434 120 2 x10E-38 9 Primarily a carrier protein in serum

0oDZz3 IP100398020 97 1.1 x 10E-30 2 May function as signal transducer

KRT5 IP100009867 90 14 x 10E-28 2 Filaments found in basal layer of epidermis

WDR49 IP100216853 86 2.7 x 10E-27 2 Regulates cell division, cell-fate determination, gene transcription, and
transmembrane signaling

A2M IP100478003 84 1.9 x 10E-26 6 Inhibits all classes of proteinases by a unique 'trapping' mechanism

NES IPI00010800 81 1.3 x 10E-25 16 Disassembly of vimentin, role in the trafficking and distribution of cellular
factors during progenitor cell division

CAL2 IP100916600 70 34 x 10E-22 3 Mediates the control of numerous enzymes and proteins by calcium

ANXAS5 IPI00329801 58 24 x 10E-18 6 Anticoagulant, inhibitor of the thromboplastin-specific complex

identify significant topological nodes with respect to the
differentially expressed genes or proteins by combining the
high-throughput data with the global network of protein
interactions [29]. These significant nodes represent a com-
mon set of signaling proteins responsible for changes in
the expression of target genes and proteins. The activity of
such nodes often remains hidden from direct genomic and
proteomic analyses due to posttranslational modifications,
binding to second messengers, recruitment to sub-cellular
compartments, or specific limitations of the approach
used, such as glycoproteomics focusing on a specific sub-
proteome [29,30]. In our study, the identified hidden
nodes may reveal common dysregulated pathways between
the two models at the genomic and proteomic levels asso-
ciated to the metastatic phenotype.

In the HOS/143B model, the topological analysis
revealed 663 and 1,434 significant nodes for the up-regu-
lated genes and down-regulated genes respectively, and
242 and 325 nodes for the up-regulated proteins and
down-regulated proteins respectively. For the SaOS-2/
LM7 model, there are 474 and 450 significant nodes for
the up-regulated genes and down-regulated genes respect-
ively, and 424 and 180 significant nodes for up-regulated
proteins and down-regulated proteins respectively. The
numbers of common genes between the models for the
gene topological profiles were 85 for up-regulated genes
and 199 for down-regulated genes. For the protein topo-
logical sets, there are 50 common proteins for the up-regu-
lated proteins and 27 for the down-regulated proteins.
When compared to the direct analyses, the level of con-
cordance in the differentially regulated molecules between
the two models increased in both, the genomic profiles
(from 19% to 31%) and proteomic profiles (from 9% to
18%) following the topological analysis.

Additionally, the majority of the topological significant
nodes identified were hidden molecules that were not
present in the differentially regulated genes and proteins

sets. In the transcriptomic profiles, 85% and 95% of the
topological nodes from HOS/143B and LM7/Sa0OS2 re-
spectively, represent hidden molecules that were not
identified by the direct mRNA analysis. Similarly, in the
proteomic profiles 93% and 91% of the topological nodes
represent hidden molecules in the HOS/143B and LM7/
Sa0S2, respectively. Significant topological nodes that
had been already identified by the direct transcriptomic
analysis, and were therefore not hidden, include mole-
cules such as chemokine (CXCL2), oncogenes suppressor
(TP53), growth factor receptor (IGF1R), and downstream
Wnt signaling factor (JUN). Conversely, topological
nodes that were not hidden to the direct proteomic ana-
lysis include factors involved in cell division cycle
(CDC37), eukaryotic translation elongation (EEF1A1l),
and interleukin enhancement (ILF2, ILF3).

On the other hand, the topological nodes that remained
hidden to the direct transcriptomic and proteomic analyses
include a much larger number of molecules, many of which
also belong to important cancer associated families such as
SMAD (SMAD], 2, 3, 4, 7), FOX (FOXA2, C1, C2, M1),
GATA (GATAL, 2, 3, 6), and MMP (MMP7, 8, 10, 13, 16,
20). These hidden nodes may carry additional information
of functional processes and pathways that were unidentifi-
able in the direct analyses of differentially regulated genes
and glycoproteins. Therefore, after the statistically signifi-
cant nodes were identified, they were further interrogated
to identify the associated pathways. In contrast to the previ-
ous pathway analysis results, the topological nodes analysis
revealed a remarkable concordance between the two meta-
static models. In the top 10 significant pathways of the
genomic data, we identified that 2 and 4 pathways were
common between the 2 models from the topological
analysis of up-regulated genes and down-regulated
genes, respectively (Figure 4 and Figure 5). The common
pathways from the differentially regulated genes are the
“Cytoskeleton remodeling/TGF/WNT”, “Cytoskeleton
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Figure 2 Pathway analysis of up-regulated glycoproteins from HOS/143B and Sa0S-2/LM7 models. Top 10 significant pathways identified
by MetaCore using all the significantly up-regulated glycoproteins from (A) HOS/143B and (B) SaOS-2/LM7 models. No common significant
pathways were identified in the top 10 pathways between the two models. All pathways shown are significant. Refer to Figure 1 legend for graph details.

-Log p-values

-Log p-values
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Figure 3 Western blot validation of atase and vimentin. The
glycoproteomic analysis identified atase and vimentin to be
significantly up-regulated in metastatic 143B and LM7 cell lines,
respectively. 3-Tubulin was used as a loading control (second row)

remodeling/Cytoskeleton remodeling”, “Cell adhesion/
chemokines and adhesion”, and “Cell adhesion/ECM re-
modeling”. For the proteomic data, the two models
shared 3 common pathways for the up-regulated and
none in the down-regulated proteins in the top 10 most
significant pathways. The common pathways from the
differentially regulated glycoproteins nodes are the
“Cytoskeleton remodeling/TGF/WNT”, “Cytoskeleton
remodeling/Cytoskeleton remodeling”, and “Cell adhesion/
chemokines and adhesion”. Together, we identified the
“Cytoskeleton remodeling/TGF/WNT” pathway to be the
most significant common pathway of the topological
analysis of the up-regulated mRNA and glycoprotein
profiles from both cell line models (Figure 6).

To test the specificity of our pathway analysis and if the
common pathways could be identified by a random
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Figure 4 Topological nodes of up-regulated genes from HOS/143B and SaOS-2/LM7 models. Top 10 significant pathways identified by
MetaCore using all the topological significant nodes from the up-regulated genes from (A) HOS/143B and (B) Sa0S-2/LM7 models. Two common
significant pathways were identified in the top 10 pathways of the two models, namely the “Cytoskeleton remodeling/TGF/WNT" and the

"Cytoskeleton remodeling/Cytoskeleton remodeling”. All pathways shown are significant. Refer to Figure 1 legend for graph details.

chance, we created 10 sets of 300 randomly selected genes
(not differentially expressed). The number of selected
genes was chosen based on the topological proteomic ana-
lysis, where approximately 300 significant molecules were
identified. We then analyzed these gene sets in an identical
fashion using the topological scoring algorithm and the
pathway analysis. If the topological significance analysis or
the pathway analysis would bias certain pathways that are
not biologically relevant to the dataset, these specific path-
ways would be frequently identified from the analysis of
randomly selected genes. The result showed that the false
discovery rate (FDR) of identifying the “Cytoskeleton re-
modeling/TGF/WNT” within the most significant path-
ways was 10% if the top 10 pathways were considered
(Additional file 5: Figure S3). Similarly, the FDR within the
top ten pathways for the “Cytoskeleton remodeling/Cyto-
skeleton remodeling” and the “Cell adhesion/Chemokines
and adhesion” pathways were 10% and 20%, respectively.

Validation of the Cytoskeleton/TGF/WNT pathway using
RPPA

As previously described, the Cytoskeleton/TGF/WNT
pathway was the top common pathways for the topological
analysis of the up-regulated genes and up-regulated glyco-
proteins. We used an orthogonal platform, RPPA, to valid-
ate if the proteins involved in the “Cytoskeleton
remodeling/TGF/WNT” pathway were up-regulated when
compared to proteins involved in other pathways. Protein
lysates of the two models were analyzed by the RPPA,
which consists of antibodies for 120 unique proteins. The
numbers of up-regulated proteins in the RPPA were 35
and 14 for HOS/143B and SaOS-2/LM?7, respectively. Of
the unique proteins in the RPPA, 24 belonged to the
“Cytoskeleton remodeling/ TGF/WNT” pathway 16 of these
24 proteins were identified by the topological analyses of
up-regulated genes and proteins. The probability of these
“Cytoskeleton remodeling/TGF/WN'T” pathway proteins to
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be up-regulated relative to all 120 proteins in the RPPA
was found to be higher than expected in both, HOS/143B
(45.8% vs. 29.1%) and SaOS-2/LM7 (25.0% vs. 11.7%)
models, with p-values of 0.042 and 0.034, respectively (See
Additional file 1: Table S2a and S2b).

Discussion

Although cancer is a heterogeneous disease, accumula-
ting evidence supports the idea that signals for malignant
transformation, progression and invasion are likely
affected by a multitude of signaling pathways converging
on several key regulators [29,31,32]. Identifying these key
regulators will be critical for the development of novel
cancer therapeutics. Nonetheless, due to diverse genetic
backgrounds of tumors and the intrinsic limitations of
high-throughput profiling technologies, many of these

key regulators remain hidden from conventional single-
level or direct analyses. In this study, we used a systems
biology approach to reveal and identify topologically sig-
nificant nodes by integrating transcriptomic and glyco-
proteomic data of two human metastatic OS models.
Direct pathway analyses of the mRNA and glycopro-
teomic profiles revealed a low concordance of differen-
tially expressed genes or proteins and their respective
functional pathways between the models. These results
may in parts reflect the unique methodologies used to
develop the cell line models. The metastatic 143B subline
was generated in vitro via a Ki-RAS oncogene transform-
ation of the HOS cell line [15], while the LM7 subline
was developed in vivo through successive cycles of pul-
monary metastases selection and re-injections in mice
[14]. The different genetic background of the parental



Flores et al. BVIC Systems Biology 2012, 6:50 Page 10 of 17
http://www.biomedcentral.com/1752-0509/6/50

6“‘$" % — n& = o Pﬁa
o

(6
V%:«n ma;l.mw;,. e o I Plsminogen & & GG o1 ,&u
e @
G)c:um km% nbha?mmwm!n L:g 1 Fme ¢ asnw M& x 1% 4 ¥ TG%.”
= o, © o
uEIz ...,;., q;‘mm = .I ﬁé‘ T!_ mx.
receptor (]

G @Q el |Ir|‘-l ’0 B q @ ‘ S'ec?bﬁta
PA‘ - 2 = * ASTOKB) () $a & ©
o A o o o d‘ MLK3{MAP3K11)
2 oo o T S -
ly i ‘ o o MEK3(MAP2K3)
o © N- coca2 AD @ @
Vinculin DESTRAD @ = A %(
o z =
1 % Qo R A T
Alpha-actinin 1 O LIMK2 ‘ & @ @ l
O ) @ ey 9!&2 Tuberin 87" @
reg) D
O 20 .% . o QG - ’%ﬁ
Ap23 o q O o TCFTL2 (TCFAN s vinvmin ousse-7)
§ 09 LIMK1 N e M o o A i ©
by 2 o ‘ T ,.!;_lL-_" ; PPAR -tota(delta) h‘i
) Adin cyloskeltal : = ® P o P} RHED2 e o
% ® 2
&« R W e o= o T
© 1 @ @

3 (1) Apha-actinin P %
P o
T Sy T S

<

5 mJun
- -
M PK1) @ Erk pﬁm; o ERK1 (MAPK3) @ ‘

Figure 6 Map of Cytoskeleton remodeling/TGF/WNT pathway showing the molecules identified by the topological significance analysis
using significantly up-regulated genes and up-regulated proteins from the two metastatic models. The highlighted molecules in the
pathway represent the molecules identified by the topological analysis of the genomic and/or proteomic datasets.

cell lines and the in vitro versus in vivo development of  specific subproteome characterized in this study, namely
the respective metastatic sublines, may account for the the N-linked glycoproteins with affinity for WGA lectin.
differences observed in the genomic and glycoproteomic  These fundamental differences and the large number of
analysis of the models. The discordance between the discordant pathways between the cell line models, in-
mRNA and proteomics profiles was not surprising be-  crease the difficulty of prioritizing and identifying the
cause of their known limited correlation [7,8], and the key common regulators in the metastatic process of OS.
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Despite of the different origins, the two OS cell line
models share the same metastatic phenotype. Thus, we
hypothesized that some key metastatic pathways are
common to different tumors of the same cancer type,
but remain hidden from the direct genomic and prote-
omic profiling analyses. Therefore, we performed further
analysis and data integration to identify key nodes in the
pathways that will reveal the critical players in common
metastatic processes. For this analysis, we applied a re-
cently developed “topological scoring” algorithm to inte-
grate the genomic and glycoproteomic profiles and
identified significant hidden common pathways between
the two OS models. The “topological scoring” algorithm
scores nodes in a network built from the experimentally
derived, condition-specific genomic and proteomic pro-
files [29,30]. The output provides a series of signaling
proteins associated with the metastatic phenotype and
helps delineate the underlying biological processes. One
of the main advantages of the topological algorithm is
that it assesses the relative contribution of every node in
the condition-specific network under study relative to its
role in the global network. Thus, the “hubs” that are
commonly present in different pathways and have high
connectivity in the global network, are penalized if they
do not have any special role related to the experimentally
derived set of differentially expressed genes or proteins.
On the other hand, nodes that provide significant con-
nectivity among the differentially expressed genes or pro-
teins are highly scored regardless of their global network
interactions, rendering the results more specific.

Pathway analysis of the identified topological nodes
revealed many common and significant dysregulated path-
ways between the models, which were missed by the direct
analyses. Remarkably, the analysis revealed pathways such
as “Cytoskeleton remodeling/ TGF/WNT” and “Cell adhe-
sion/chemokines and adhesion”, which were common to
both models and present at both mRNA and protein levels.
All the processes represented in these common pathways
have been previously associated with metastasis in various
cancer types, and changes involved in these signaling net-
works associated to cytoskeleton remodeling, cell-cell and
cell-matrix adhesion are critical for the cancer cell migra-
tion and invasion [4,33-36]. To determine if these path-
ways would be identified by a random chance or
nonspecifically, we performed a false discovery analysis
using randomly selected genes and confirmed the specifi-
city of these pathways in our datasets.

Our results support the notion that there are common
metastatic mechanisms acting downstream of different
genetic aberrations or origins. This implies the existence of
common molecular therapeutic targets and disease bio-
markers irrespective of the driver genetic abnormalities in
the tumors. This finding is particularly significant in
tumors, such as OS, in which the genomic abnormalities
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are known to be highly complex and it is hard to deter-
mine the driver mutations from the passengers [37,38].
For instance, the most significantly overrepresented path-
way of the topological analysis was the “Cytoskeleton re-
modeling/TGF/WNT”, which includes the interesting
Wnt component. The Wnt signaling is particularly import-
ant for cancer cells as they are able to disrupt this pathway
in different ways resulting in tumorigenesis and metastasis.
Activation of the Wnt signaling pathway is necessary for
the commitment of mesenchymal stem cells to the osteo-
blast lineage. In addition, aberrant Wnt signaling activity
has been reported in a variety of human cancers including
soft tissue sarcomas and human OS primary tissues and
cell lines [36,39-42]. Abnormal activation of the canonical
Wnt pathway results in stabilized p-catenin that translo-
cates into the nucleus. Subsequently, it binds to transcrip-
tion factors and drives the uncontrolled expression of
target genes implicated in cell proliferation, transform-
ation, and tumor progression, such as Myc, matrix metal-
loproteinase 7, Axin-2, the cell adhesion molecule L1-
CAM, the metastasis gene S100A4, and others [33,43,44].
Therefore, targeting the Wnt signaling may have a thera-
peutic effect on different types of metastatic OS.

Similarly, our findings suggest that Wnt signaling is
highly relevant to the metastasis of OS. Previous studies
have shown that OS harbors an accumulation of -catenin
either in the cytoplasm or in the nucleus [45], a hallmark
of Wnt signaling activation. Additionally, the Wnt core-
ceptor LRP5 expression in OS tissue samples correlated
with metastasis and a lower rate of disease-free survival in
patients [46]. Furthermore, OS cell lines have been
reported to express many Wnt ligands and receptors,
whereas secreted Wnt antagonists including secreted
frizzled-related protein (sFRP) and Dickkopf (Dkk) families
are commonly absent [46,47]. Inhibition of similar
mechanisms by the reintroduction of secreted Wnt
antagonists in OS, such as the Wnt inhibitory factor (WIE-
1), has been proposed for downregulation of Wnt signaling
as a novel therapeutic approach. For instance, overexpres-
sion of WIF-1 significantly decreased tumor growth and
markedly reduced the number of lung metastasis of 143B
cells in vivo [48]. In other studies soluble LRP5 (sLRP5),
which blocks Wnt signaling, was able to reduce in vitro
cellular invasion, and transfection of sLRP5 in SaOS-2
caused a marked up-regulation of E-cadherin and down-
regulation of N-cadherin suggesting a reversal of epithe-
lial-mesenchymal transition [40]. These findings suggest
an important role for aberrant Wnt signaling in the patho-
biology and progression of OS. The Wnt pathway may
represent a promising source of novel therapeutic targets
and disease progression biomarkers.

Another common pathway relevant in metastasis is the
“Cell adhesion/chemokines and adhesion”, which was
identified at both the genomic and proteomic levels.
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Chemokine ligands and their cognate receptors have
been extensively implicated in the progression and me-
tastasis of multiple tumors such as melanoma, breast
cancer, prostate cancer, and others [49-53]. In OS, re-
search has revealed a complex interaction between che-
mokine ligand/receptor axis, and their role in tumor
invasion, metastasis and patient prognosis [54]. Our
group previously reported that expression of two CXC
chemokines were elevated in tumor and plasma of
pediatric OS patients, and their levels correlated with pa-
tient outcomes [55]. Several of the CXC chemokines
were also identified by the topological analysis in this
study, including CXCL12 which has been directly asso-
ciated to metastasis in OS and other tumors [56]. Identi-
fication of the significant topological nodes within such
complex networks could help identify the key players
and delineate their roles in cell adhesion, invasion and
other important metastasis functions.

In addition to the identification of therapeutic targets,
identification of tumor-derived biomarkers for early de-
tection of disease progression and metastasis is a critical
component for personalized medicine. As previously
noted, characterization of key hidden nodes could facili-
tate the identification of candidate biomarkers for meta-
static OS. Because of the diversity of the human
proteome and limitations of the current proteomic
methods, targeting specific subproteomes that are likely
to be secreted into the blood stream, such as the glyco-
proteome, will improve the likelihood of identifying
tumor-derived circulating biomarkers. In this study, we
characterized the N-linked glycoproteome due to their
involvement in metastatic OS as evidenced by the glyco-
gene analysis, and their frequent localization in the cellu-
lar membrane and extracellular space. In spite of the
limited number of glycoproteins identified in this study,
the topological analysis revealed common significant
pathways between the differentially regulated glycopro-
teins and genes in both OS models. Using this analysis,
we can prioritize the up-regulated glycoproteins and up-
regulated genes as well as the hidden molecules that may
serve as biomarkers for the disease or metastasis in the
future validation, such as proteins in the TGF beta (i.e.
TGFB1, TGFBR1, TGFBR2) and MAP kinase (MAPK1,
MAPK3, MAP3K1,MAP3KS8) families identified by topo-
logical analysis.

Despite the encouraging results, we recognize that
there are limitations in the current study. For instance,
the cell line models used in our study represents a sig-
nificant limitation. Although the in vitro models provide
a convenient and renewable platform that cannot be sur-
passed by clinical specimens, it may not faithfully reflect
the behavior of tumor cells in vivo. Therefore, future
directions include the development of orthotopic xeno-
graft mouse models to recapitulate and validate the
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results obtained in this study. In addition, the character-
ized N-linked glycoproteins with an affinity for the
WGA lectin represent a restricted number of proteins,
which is typical to this type of subproteome analysis
[57,58]. This limits the number of identifiable up-regu-
lated glycoproteins amenable for validation as candidate
biomarkers. Further studies with a wider range of pro-
teins including additional glycoproteins by different cap-
ture methods (i.e. cell surface biotin labeling, biocytin
hydrazide N-linked enrichment) [59,60] and other rele-
vant subproteomes, such as the secretome [61,62] will
help to alleviate this limitation.

Conclusions

We used a systems biology approach to identify key and
common metastatic mechanisms in OS. A similar ap-
proach can be applied to other genetically distinct but
phenotypically similar cell lines of other tumor types.
The use of the topological analysis revealed hidden bio-
logical networks known to play a fundamental role in
metastasis. The analysis will also provide new types of
information in this pediatric cancer that are not identifi-
able by conventional single-level analyses, and present
new directions for future research. Our study shows that
the systems biology analysis of metastasis through differ-
ent types of genomic and proteomic characterization can
shed light on the key biological processes of OS invasion.
Our findings have significant implications on both the
development of biomarkers for disease progression and
metastasis, and identification of potential targets for
novel therapies. Ultimately, we believe that the results
reported in this study will accelerate the development of
a personalized treatment for metastatic OS patients to
maximize their survival and decrease treatment toxicity.

Methods

Human metastatic OS cell line models

Human osteosarcoma cell lines 143B and HOS were pur-
chased from ATCC (Manassas, VA). The SaOS-2 and
LM-7 cell lines were provided by Eugenie S. Kleinerman
from The University of Texas M. D. Anderson Cancer
Center. The cell lines were maintained in GIBCO Mini-
mum Essential Media supplemented with 10% fetal bo-
vine serum at 37°C in 5% CO,, and they were tested to
be mycoplasma-free. Unless otherwise indicated, all chemi-
cals were purchased from Sigma-Aldrich (St. Louis, MO).
Cell lines were validated by STR DNA fingerprinting using
the AmpF_STR Identifiler kit according to manufacturer's
instructions (Applied Biosystems cat 4322288). The STR
profiles were compared to known ATCC fingerprints
(ATCC.org), and to the Cell Line Integrated Molecular Au-
thentication database (CLIMA) version 0.1.200808 (http://
bioinformatics.istge.it/clima/) (Nucleic Acids Research 37:
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D925-D932 PMCID: PMC2686526). The STR profiles
matched known DNA fingerprints or were unique.

mRNA expression profiling

The TRIzol reagent (Invitrogen, San Diego, CA) was
used to extract RNA from the cell lines, and the RNA
was further purified by the RNeasy kit (QIAGEN, Valen-
cia, CA). 250ng of purified RNA were labelled by the
Genechip 3” IVT express kit (Affymetrix, Santa Clara,
CA) following the manufacturer’s protocol. Then the la-
belled RNA was hybridized with the Human U133 plus 2
array using the GeneChip hybridization, wash and stain
kit (Affymetrix). The hybridization signals were obtained
from the GeneChip 7G Scanner (Affymetrix).

The data was normalized using the Robust Multichip
Average (RMA). RMA consists of three steps: a back-
ground adjustment, quantile normalization and
summarization [63-65]. The quality of the arrays data
was assessed through affyQCReport [66]. The microarray
data was then analyzed using the S-score algorithm,
which is a comparative method for gene expression data
analysis that uses probe level data. The algorithm con-
sists of an error model for the expression of probe pair
signals in which the detected signal is assumed to be
proportional to the probe pair signal for highly expressed
genes, while approaching a background noise level for
genes with low levels of expression. These probe pairs
level data are used to calculate the significance score (S-
score), which is a measure of relative change. Under con-
ditions of no differential expression between chips, the
S-scores of all the genes follow a standard normal distri-
bution. The p-values for differential expressions of genes
can be then obtained from the distribution, which
accounts for multiple testing [67,68]. Differential gene
expression was defined as genes with a p-value less than
0.05 and a 2-fold or greater difference in normalized
fluorescence intensity between the 143B (numerator)
and HOS (denominator), and LM7 (numerator) and
Sa0S-2 (denominator) cells.

N-linked glycoprotein capturing

Total proteins of approximately 10° cells were
extracted by the M-PER Mammalian Protein Extrac-
tion Reagent (Pierce. Rockford, IL). Insoluble debris
was removed by centrifugation at 14,000 g for 15
min at 4°C. The WGA high affinity lectin chroma-
tography was used to isolate glycoproteins with N-
acetyl glucosamine (GIcNAC) and terminal GIcNAC
structures as described in the manufacturer’s proto-
col (Pierce). The eluted glycoprotein concentration
was determined using BCA Protein Assay (Pierce).
The glycoproteins were stored at -80°C for the mass
spectrometry analysis following deglycosylation. Pep-
tide-N-glycosidase F was used for the deglycosylation
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of glycoproteins as described in the manufacturer’s
protocol (Sigma).

MudPIT

The MudPIT consists of two independent separation
steps, namely the strong cation exchange and the
reversed phase that are coupled with mass spectrometry
analysis. For the nanoLC-LC-MS/MS, a microbore HPLC
system (Paradigm MS4, Michrom, Auburn, CA) was
used with two separate strong cation exchange (SCX)
and reversed phase (RP) columns. A representative
twelve step LC-LC-MS/MS analysis was performed. The
elution was directly sprayed into a custom-built nanoe-
lectrospray ionization source of a ThermoFinnigan LTQ
ion trap mass spectrometer (ThermoFinnigan, San Jose,
CA). Dependent data scanning was then performed by
Xcalibur v-1.4 software [69]. The MS/MS spectra were
collected in an information-dependent acquisition mode
at 3-second intervals.

The MS analysis was performed at the Arizona Mass
Spectrometry Consortium, the University of Arizona. Tan-
dem MS spectra of peptides were analyzed with TurboSE-
QUEST v-3.1, a program that allows the correlation of
experimental tandem MS data with theoretical spectra
generated from known protein sequences [70]. The peak
list (dta files) for the search was generated by Bioworks
3.1. All spectra were searched against the latest version of
the non-redundant protein database downloaded from
NCBI. The results were also validated using X!Tandem,
and with Scaffold, (Proteome Software, Portland, Oregon,
USA) a program that probabilistically validates these pep-
tide identifications and derives corresponding protein
probabilities using ProteinProphet [71].

Peptide identifications were accepted if they exceeded
specific database search engine thresholds. Sequest iden-
tifications required at least deltaCn scores of greater than
0.08 and XCorr scores of greater than 1.8, 2.5, 3.5 for
singly, doubly, triply charged peptides. X! Tandem identi-
fications required at least -Log(Expect Scores) scores of
greater than 3.0. Protein identifications were accepted if
they contained at least two identified peptides. Proteins
that contained similar peptides and could not be differ-
entiated based on MS/MS analysis alone were grouped
to satisfy the principles of parsimony.

Relative expression of glycoproteins between the meta-
static OS cell line models was analyzed using spectral
counting function within the Scaffold software. Scaffold
calculates the quantitative value number by normalizing
spectral counts across the experiment. The normalized
spectral count for a given protein was compared between
the metastatic and non-metastatic cell line samples, the
minimum quantitative value was set at 1.0, and a relative
fold change between the two samples was calculated.
The p-value for the differential expression of each
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protein was calculated using a Fisher’s exact test. This
test uses spectral count statistics to measure differential
protein expression in pairwise experiments, and has been
found to be a reliable and preferable method when two
replicates are available in label-free proteomics experi-
ments [20]. Then, the p-values were corrected by a step-
up method [21]. Differential expression was then defined
as proteins having both, a corrected p-value lower than
0.05 and a fold change greater than 2.

Data analysis

For prediction of N-glycosylation, the top 20 identified
proteins from each cell line model were modeled using
Net-N-Glyc [22,23]. The predictions were done only on
the Asn-Xaa-Ser/Thr sequons and the threshold was
established at higher than 50% potential of glycosylation
for each identified site.

MetaCore was used for pathway analysis of the differen-
tially regulated genes and glycoproteins (GeneGo Inc, St.
Joseph, MI). We used all proteins in the MetaCore net-
work as the reference list for calculating enrichment
p-values. For the identification of key regulatory molecules
within the genomic and glycoproteomic data, the “topo-
logical scoring” method was used. This method utilizes
GeneGo’s MetaBase knowledgebase containing approxi-
mately 300,000 protein-protein and protein-small molecule
interactions manually extracted from the literature by
expert annotators. The algorithm used for the analysis
was the “shortest-paths among nodes”, the background
list used includes all network nodes, and the significance
level was 0.05 [29,30]. Functional analysis using MetaCore
was then performed on the identified topological nodes
derived from the genomic and glycoproteomic profiles
to determine the most significantly enriched canonical
pathways.

As the topological analysis identified close to 300 pro-
teins for each of the proteomic profiles, we utilized 10
sets of 300 randomly selected genes from the genome to
measure the false discovery rate of the results. The ran-
dom genes sets were analyzed as described above. First,
functional pathway analysis was performed on the ran-
domly selected genes. Then, topological analysis was per-
formed on the random genes, followed by functional
analysis of the identified key topological nodes. The top
significant pathways identified from the initial random
genes and the topological nodes were compared to the
respective identified pathways from the human cell line
models. Specifically, the chance of identifying each of the
“Cytoskeleton remodeling/TGF/WNT”, the “Cytoskel-
eton remodeling/Cytoskeleton remodeling”, and the “Cell
adhesion/Chemokines and adhesion” pathways within
the top 10 most significant pathways in the random sets
was calculated to determine their false discovery rates.
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Confirmation/validation by Western blot and RPPA

For Western blotting, the proteins were first resolved
by NuPAGE 4-12% Bis-Tris gel (Invitrogen) and then
transferred to a PVDF membrane. The membranes
were incubated with the primary antibody against the
specific protein of interest, i.e. mouse anti-human
atase, rabbit anti-human vimentin, and {{3-tubulin
antibodies. Proteins were detected by donkey anti-
mouse or goat anti-rabbit secondary antibodies (LI-
COR Biosciences, Lincoln, NE). 3-tubulin was used
as loading controls. The fluorescence was captured
by Odyssey imaging System (LI-COR Biosciences).

Proteins involved in the “Cytoskeleton remodeling/
TGE/WNT” pathway were validated using RPPA. The
RPPA consists of 242 antibodies that target 120 unique
proteins. The antibody with the largest differential ex-
pression for each of the 120 unique proteins was selected
for further analysis. 24 out of the 120 unique proteins in
the RPPA including AKT1, CAV1, EIF4E, GSK2B, JUN,
MAPK1, MTOR, MYC, PTK2, TP53, and VEGFA,
belonged to the “Cytoskeleton remodeling /TGF/WNT”
pathway. Under the null hypothesis, the 24 proteins from
the “Cytoskeleton/TGF/WN'T” pathway have no prefer-
ential up-regulation relative to the total set of RPPA
proteins.

For RPPA profiling, serial diluted lysates were arrayed
on nitrocellulose-coated slides (Grace Biolab, Bend, OR)
by Aushon 2470 Arrayer (Aushon BioSystems, Billerica,
MA). Each slide was probed with a validated primary
antibody plus a biotin-conjugated secondary antibody.
The signal obtained was amplified using a Dako Cytoma-
tion—catalyzed system (Dako) and visualized by DAB col-
orimetric reaction. The slides were scanned, analyzed,
and quantified using a customized Microvigene software
(VigeneTech Inc., Carlisle, MA) to generate spot inten-
sity. Each dilution curve was fitted with the logistic
model “Supercurve Fitting” developed by the Depart-
ment of Bioinformatics and Computational Biology in
MD Anderson Cancer Center (http://bioinformatics.
mdanderson.org/OOMPA).

RPPA data analysis showed that the Log2 expres-
sion of the 120 unique proteins in the 143B vs. HOS
model had a mean of 0.03 with a standard deviation
of 0.58. For the LM7 vs. SaOS-2 model, the mean
was -0.05 with a standard deviation of 0.40. Because
of the limited fold changes observed in the RPPA
platform, an up-regulated protein was defined as a
Log2 expression higher than 0.3 (fold change higher
than 1.23). The probability of a protein’s expression
being greater than a pre-determined “up-regulated”
threshold follows a hypergeometric distribution. In
this case, the 120 unique proteins from the RPPA
represent the sample size, and the 24 “Cytoskeleton
remodeling/TGF/WNT” pathway proteins represent a
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“selection”. If the proteins involved in the “Cytoskel-
eton remodeling/TGE/WNT” pathway are not
enriched, then the number of “up-regulated proteins”
in that pathway or “selection” follows the hypergeo-
metric distribution

[CK K)J[C(M, m)]

Pe=h =)

where P(x=k) is the probability of a “k” number of
up-regulated proteins being present in a specific
Pathway.

Note: C(A,a) = A! / [(A-a)! *(a!)]

k = number of up-regulated proteins in the Pathway

K =number of up-regulated proteins in the RPPA

m = number of not up-regulated proteins in the Pathway

M = number of not up-regulated proteins in the RPPA

n =number of all proteins in the Pathway

N = number of all proteins in the RPPA

The p-value is then calculated as the cumulative distri-
bution of the function above.

Availability of supporting data

The microarray data described in this study have been
deposited in the Gene Expression Omnibus [72] with the
accession number GSE37552. The proteomic data are
available in the Digital Object Identifier System with the
DOI number 10.6070/H47P8W9B.
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Additional file 1: Table S1. Significant Pathways from the ontology
enrichment of the down-regulated genes in the HOS/143B model and
Sa0S-2/LM7 model. Tables S2a and S2b. “Cytoskeleton remodeling/TGF/
WNT" pathway proteins up-regulated in the RPPA on HOS/143B and
Sa0S-2/LM7 models.

Additional file 2: Figure S1. Pathway analysis of all glycogenes. Top
significant pathways identified by MetaCore using all 191 glycogenes
identified in the genomic profile. All pathways shown are significant.

Refer to Figure 1 legend for graph details.

Additional file 3: Figure S2. Pathway analysis of differentially regulated
glycogenes from 143B/HOS and LM7/Sa0S-2 models. Top significant
pathways identified by MetaCore using (a) differentially regulated genes
from 143B/HOS model, and (b) differentially regulated genes from LM7/
Sa0S-2 model. Results showed that “N-Glycan biosynthesis” was the top
common pathway between the two models. Dark orange bars represent
significant pathways. Refer to Figure 1 legend for graph details.

Additional file 4: Methods for the N-Linked glycoproteins
enrichment by lectin affinity chromatography.

Additional file 5: Figure S3. Pathway analysis of random genes and
their topological nodes. Top significant pathways identified by MetaCore
using (a) 300 randomly selected genes and (b) topological significant
nodes from the 300 randomly selected genes. None of the top common
significant pathways identified from the topological analysis of the up-
regulated genes and up-regulated glycoproteins from the 143B/HOS and
LM7/5a0S-2 models were identified by the topological analysis of this
random gene set. Dark orange bars represent significant pathways. Refer
to Figure 1 legend for graph details.
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