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Abstract

provide cancer treatment options.

Background: The genome is continuously attacked by a variety of agents that cause DNA damage. Recognition of
DNA lesions activates the cellular DNA damage response (DDR), which comprises a network of signal transduction
pathways to maintain genome integrity. In response to severe DNA damage, cells undergo apoptosis to avoid
transformation into tumour cells, or alternatively, the cells enter permanent cell cycle arrest, called senescence. Most
tumour cells have defects in pathways leading to DNA repair or apoptosis. In addition, apoptosis could be
counteracted by nuclear factor kappa B (NF-kB), the main anti-apoptotic transcription factor in the DDR. Despite the
high clinical relevance, the interplay of the DDR pathways is poorly understood. For therapeutic purposes DNA
damage signalling processes are induced to induce apoptosis in tumour cells. However, the efficiency of radio- and
chemotherapy is strongly hampered by cell survival pathways in tumour cells. In this study logical modelling was
performed to facilitate understanding of the complexity of the signal transduction networks in the DDR and to

Results: Our comprehensive discrete logical model provided new insights into the dynamics of the DDR in human
epithelial tumours. We identified new mechanisms by which the cell regulates the dynamics of the activation of
the tumour suppressor p53 and NF-kB. Simulating therapeutic intervention by agents causing DNA single-strand
breaks (SSBs) or DNA double-strand breaks (DSBs) we identified candidate target proteins for sensitization of
carcinomas to therapeutic intervention. Further, we enlightened the DDR in different genetic diseases, and by
failure mode analysis we defined molecular defects putatively contributing to carcinogenesis.

Conclusion: By logic modelling we identified candidate target proteins that could be suitable for radio- and
chemotherapy, and contributes to the design of more effective therapies.

Keywords: Topoisomerase inhibitors, Signal transduction, Cell cycle arrest, Apoptosis, Cancer, Logical model

Background

DNA damage is of profound biomedical interest, as this
type of lesions largely contributes to cancerogenesis [1].
DNA damage is induced by environmental factors, like
ionizing radiation [2], but also by intrinsic agents, like
metabolically generated reactive oxygen species [3].
Damaged DNA becomes bound by so-called sensor pro-
teins, like replication protein A (RPA) or a complex
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composed of meiotic recombination 11 (Mrell) - radi-
ation 50 (Rad50) - nijmegen breakage syndrome 1
(Nbs1) (MRN). They trigger a complex network of signal
transduction pathways designated as DDR [1]. The DDR
causes temporal cell cycle arrest, if the level of DNA
damage is low, so the cell can repair it [4]. In response
to severe DNA damage, cells undergo apoptosis to avoid
transformation into tumour cells [5]. Alternatively, the
cells enter permanent cell cycle arrest, called senescence
[6]. In presence of DNA damage, the tumour suppressor
p53 plays a key role in the decision between survival and
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death of the cell. Activated p53 either induces cell cycle
arrest or apoptosis, mainly by activation of distinct target
genes [7]. As shown in biochemical and network model-
ling studies, p53 levels oscillate in response to DNA
damage caused by ionizing radiation. The p53-dependent
expression of wild-type p53-induced phosphatase 1
(Wipl) and murine double minute 2 (MDM2) mediates
the oscillations [8]. Whereas Wipl is essential for the
generation of oscillations, MDM2 mediates their fine
tuning [9]. The duration of the oscillations was proposed
to determine, whether p53 acts pro-apoptotic or not [9].
However, apoptosis can be counteracted by activation of
NF-«B, the main anti-apoptotic transcription factor in
the DDR. Posttranslational modifications of NF-kB es-
sential modulator (NEMO) exert an important role in
the signal transduction that links DNA damage in the
nucleus with activation of NF-kB in the cytoplasm [10].
Whether DSBs trigger stable oscillations of NF-kB on the
level of single cells has not been shown.

SSBs and DSBs are the most lethal types of DNA damage
[2]. They can be triggered by ionizing radiation or topo-
isomerase inhibitors, as therapeutically applied to eliminate
tumour cells. Usually, higher proliferation rates of tumour
cells render them more susceptible to DNA damage
induced apoptosis than normal cells [11]. The efficiency of
DNA damaging therapies can be potentiated by blocking
cell survival pathways in tumour cells (sensitization) [12].
A strategy to sensitize tumours to DNA damaging agents
is adjuvant abolishment of cycle arrest, resulting in necro-
sis or apoptosis-like cell death by mitotic catastrophy [13].
Other important sensitization targets are components that
contribute to NF-kB activation, which otherwise often
impedes efficient elimination of cancer cells [14].

However, most tumour cells have a defective DDR [11].
Such molecular defects due to mutations within tumours
can be exploited to selectively sensitize tumours to therapy.
Inhibitions that result in cell death only in combination
with a molecular defect in targeted tumour cells would
predominantly eliminate the tumour. Corresponding pro-
teins are thus ideal drug targets [15]. Based on a network
modelling approach following this strategy, inhibition tar-
gets that sensitize p53-deficient tumours to DNA dam-
aging treatment were found [16].

Despite the high clinical relevance of the DDR, the
interplay of the signal transduction involved herein is
poorly understood, particularly due to high complexity.
Therefore, systems biology approaches are of high value
to gain deeper insights. Quantitative modelling requires
both, detailed knowledge of kinetic parameters and high
computational power. Therefore, such approaches are
suitable to model rather small signal transduction mod-
ules. Qualitative models provide a better basis for the
representation and analysis of large-scale signal trans-
duction networks. Particularly discrete logical modelling
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is a powerful tool to address important issues, such as
detection of network-wide functional interdependencies,
identification of intervention targets and predictions on
the network dynamics [17,18]. For instance, a literature-
based Boolean model has been used to identify cellular
myelocytomatosis oncogene (c-Myc) as a putative thera-
peutic target to treat breast cancer [19]. We previously
identified putative therapeutic targets in signal transduc-
tion pathways induced by the pathogen Helicobacter pyl-
ori [20]. With a Boolean model of the DDR, we
predicted candidate targets to abolish NF-kB activation,
while leaving apoptotic pathways unaffected. The latter
targets might be suitable to sensitize carcinomas to
DSBs-inducing therapeutics by promoting apoptosis
[21]. A literature-based Boolean model of T cell large
granular lymphocyte (T-LGL) leukemia has been used to
identify potential therapeutic targets and to investigate
the dynamics of the signal transduction underlying this
disease [22]. Signal transduction emanating from the
death receptor has been studied with a discrete logical
model. After inactivating certain proteins, the fraction of
pathways that lead to a particular cell fate (apoptosis, ne-
crosis or survival) has been determined in dynamical
analyses [23].

Here, we present a comprehensive discrete logical
model of the response to SSBs and DSBs based on pub-
lished experimental data. Our dynamical analysis pro-
vided new insights into the regulation of p53 and NF-kB
in the DDR. We identified candidate target molecules to
sensitize tumour cells to DNA damaging therapeutics.
By failure mode analysis, we predicted mutations that
might contribute to the formation of carcinomas and
validated our model with data from published studies.

Results and discussion

Logical model of the DDR

Based on quality-controlled literature data, we built a
discrete logical model of the response to SSBs and DSBs
in human epithelial cells. The model encompasses 96
regulatory components, connected by 98 interactions. It is
represented by a logical interaction hypergraph (Figure 1),
and a list of logical functions describing the interactions
(Additional file 1: Table S1). The numbers assigned to
interactions in Figure 1 correspond to the numbers of the
logical functions. The network shows the typical structure
of signal transduction networks: the input layer is given by
stimuli, which damage the DNA, from where signals are
being transmitted to and processed in the intermediate
layer, finally reaching the output layer (cell cycle arrest
and ‘onset of apoptosis’). We chose ‘onset of apoptosis’ in-
stead of ‘apoptosis’ as an output, as this output corre-
sponds to the beginning of apoptotic processes, but not to
completion of apoptosis, ie. cell death. The activity levels
of most regulatory components (nodes) are represented
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Figure 1 Logical interaction hypergraph of the DDR. Genotoxic agents generate DSBs, thereby triggering signal transduction pathways to cell
cycle arrest and onset of apoptosis. Arc colours mark earliest (time step 1, black), intermediate (time scale value 2, red) and latest (time scale value

by Boolean state variables, i.e. they can only attain the
values ‘0’ (inactive or absent) or ‘1’ (active or present).
Ternary (three-valued) variables were only assigned to
phosphorylated ataxia telangiectasia mutated (ATM-P),
phosphorylated inhibitor of kappa B kinase (IKK-com-
plex-P) and inhibitor of kappa B a (IxBa). In that way, we
took account for the fact that each of those components
differs in its functions, depending on whether its activity is
low (‘1’) or high (2’). Specifically, a low activity of ATM
(ATM-P = 1) is required for inactivation of the ATM
phosphatase protein phosphatase 2 A (PP2A) [24] (inter-
action 22). Once PP2A is inactivated, DSBs can induce
high activity of ATM (ATM-P = 2), which is now able to
phosphorylate further substrates [25] (interaction 23).
Similarly, the IKK complex has a low basal activity (IKK-
complex-P = 1), which is sufficient for partial degradation
of IxBa (decreasing IkBa’s activity level from 2’ to ‘1),
leading to activation of proto-oncogene c-Rel (c-Rel) in
absence of induced DNA damage [26,27] (interaction 67).
Upon induction of DNA damage, the IKK complex attains
high activity (IKK-complex-P = 2), which enables more

degradation of IkBa (IkBa = 0), enabling the activation of
the NF-xB dimers p50-p65-P and p50-p50 [10] (interac-
tions 68, 69). For some structural analyses, we took ac-
count for the limited knowledge of time-dependent signal
transmission by assigning each interaction to one of three
time scale values. Interactions composing the signal trans-
duction pathways leading to activation/inactivation of
components that are directly linked to the components
“CELL CYCLE ARREST” or “ONSET OF APOPTOSIS”
were assigned to time scale value 1, as long as literature
data did not indicate a distinct delay. Examples of compo-
nents that are directly linked to “CELL CYCLE ARREST”
or “ONSET OF APOPTOSIS” are the transcription fac-
tors. Time scale value 2 was assigned to interactions that
also lead to cell cycle arrest, apoptosis, or anti-apoptosis,
but were shown to occur distinctively later than interac-
tions of time scale value 1. For example, p53-induced pro-
tein with a death domain (PIDD) binds to NEMO
(interaction 44, time scale 1), and later, PIDD binds to
RIP1-associated ICH-1/CED-3 homologous protein with a
death domain (RAIDD) (interaction 43, time scale 2) [28].
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Time scale value 2 was also assigned to interactions linked
directly to the regulatory components “CELL CYCLE AR-
REST” or “ONSET OF APOPTOSIS”. Activation of pro-
teins that initiate switching off parts of the DDR was
assigned time scale value 3. This was based on the as-
sumption that these events occur during the latest phase
of the DDR. For instance, Wipl interrupts signal trans-
duction pathways by dephosphorylating ATM and other
proteins [29] (e.g. interaction 21). Accordingly, induction
of Wip1 expression [30] (interaction 82) has been assigned
to time scale value 3. Detailed information on assignments
of time scale values are given in Additional file 1: Table
S1. For most analyses, we simulated the DDR at time scale
value 2, i.e, at a time before feedback inhibition comes
into play. Our study focused on inhibitions and molecular
defects interfering with cell cycle arrest, apoptosis, or anti-
apoptosis. As follows from the considerations above, only
time scale value 2 pertains to maximum activity of all
components promoting cell cycle arrest, apoptosis, or
anti-apoptosis. Hence, for this time scale value, the sensi-
tivity of the simulation results to changes in time scales of
interactions should be minimal.

For dynamical analyses, we took account for the know-
ledge of time-dependent signal transmission by defining
three priority classes (see below).

Validation of the predictive quality of the model

In order to validate the predictive quality of our model,
we evaluated simulations on the basis of published stud-
ies on epithelial cells (Table 1). We inactivated certain
proteins in the model and then calculated the logical
steady state of the model at time scale value ‘2 i.e. prior
to onset of negative Feedback inhibition. Cells can be
sensitized to DNA damaging therapy by events that

Page 4 of 19

promote cell death [31]. Blockage of cell cycle arrest can
cause mitotic catastrophy, a form of cell death [13],
whereas blocking of the anti-apoptotic transcription fac-
tor NF-kB promotes apoptosis [14].

Inactivation of ATM blocked all pro-survival pathways
(cell cycle arrest and NF-«B activation) in the response
to DSBs. This is confirmed by studies in which ATM in-
hibition sensitizes cells to agents causing DSBs [32-34].

Ataxia telangiectasia and rad3-related protein (ATR)
inactivation blocked two pathways leading to cell cycle
arrest (downregulation of c-Myc, expression of p21) in
response to SSBs in our model. This is in agreement
with the reported potentiation of SSBs-induced cell
death by ATR inactivation in carcinoma cells [35,36].

In our simulation of the response to SSBs, loss of
checkpoint kinase 1 (Chk1) blocked one of two pathways
promoting cell division cycle 25 A (Cdc25A) degrad-
ation. Degradation of Cdc25A leads to cell cycle arrest.
Additionally blocked was one pathway leading to activa-
tion of p53, a pro-apoptotic and cell cycle arresting pro-
tein. Thus, loss of Chkl suppressed pathways leading to
cell cycle arrest and apoptosis. Hence, our results do not
indicate, whether Chk1 inhibition sensitizes cells to SSBs
inducers. Chkl1 inhibition was demonstrated to increase
the cytotoxicity to topoisomerase I (TOPI) inhibitors by
diminishing cell cycle arrest in carcinoma cells with
functional p53 [37-39]. As previously proposed, a partial
suppression of p53 activation diminishes predominantly
its apoptotic function and to a lesser extent its cell cycle
arresting function [15]. This effect might contribute to
the sensitization by Chk1 inhibition, but is not captured
by the model.

In response to ionizing radiation, absence of Chk2 in our
model blocked cell cycle arresting phosphorylation of

Table 1 Validation of the model on reported effects with functional p53

Inactivated DNA damage Reported effects with References Model prediction
Protein functional p53
ATM DSBs - cell cycle arrest diminished  Lavin 2008 - cell cycle arrest blocked
- cell death enhanced Bolderson et al. 2009 . anti-apoptotic NF-kB (p50-p65-P) blocked
Tofilon and Camphausen 2009 . apoptosis diminished
ATR SSBs - cell death enhanced Flatten et al. 2005 - cell cycle arrest diminished
Wagner and Kaufmann 2010
Chk1 SSBs - cell cycle arrest diminished ~ Tse et al. 2007 - Cdc25A degradation diminished (degradation of
Ma et al 2011 Cdc25A leads to cell cycle arrest)
- cell death enhanced Garret and Collins 2011 ;j?ri?niascﬁle\?t\on (causes apoptosis or cell cycle arrest)
Chk2 DSBs cell death reduced Morgan et al. 2010 - cell cycle arrest diminished
Ma et al. 2011 - apoptosis diminished
Garret and Collins 2011 - p53 activation (causes apoptosis or cell cycle arrest)
diminished
TAK1 SSBs - cell death enhanced Martin et al. 2011 - cell cycle arrest diminished
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Cdc25C, and one of two pathways leading to degradation
of Cdc25A. On the other hand, activation of the pro-
apoptotic effectors promyelocytic leukemia (phosphory-
lated at serine 117) (PML-PS117) and phosphorylated
adenovirus E2 gene promoter region binding factor 1 (E2F-
1-P), and one p53 activating pathway are blocked. Hence,
the numbers of both, cell cycle arresting and apoptotic
pathways were reduced. The simulation did not indicate,
whether Chk2 inhibition confers sensitization or protection
from cell death caused by ionizing radiation. In most stud-
ies, Chk2 inhibition diminished cell death caused by ioniz-
ing radiation [37,39]. Correspondingly, Chk2 knockdown
protects MIA PaCa-2 carcinoma cells against ionizing
radiation [40].

When simulating the response to camptothecin (in-
hibitor of TOPI) in the model, inhibition of TGEF-f
activated kinase 1 (TAK1) abolished two cell cycle
arresting pathways (c-Myc downregulation and p21-
mediated cell cycle arrest). Hence, the model indicates
a sensitizing effect of TAK1 knockdown, which was

demonstrated in carcinoma cell lines treated with
camptothecin [41].
Moreover, putative therapeutic targets for the

sensitization of tumours with dysfunctional p53 have
been proposed (Table 2). We compared the response to
the topoisomerase II (TOPII) inhibitor doxorubicin in
absence of p53 only with the response in absence of p53
and ATM. In the absence of only p53, four cell survival
pathways were still active, ie. activation of anti-
apoptotic NF-kB, cell cycle arrest induced by c-Myc
downregulation, Cyclin-dependent kinase 2 (Cdk2)
inhibition, and phosphorylation of Cdc25C. When p53
and ATM were absent, no cell survival pathway was acti-
vated by doxorubicin in the model. Accordingly, the
ATM inhibitor KU-55933 sensitizes p53-deficient human
carcinoma cells to doxorubicin. Moreover, p53-deficient
breast and lung tumours showed higher sensitivity to
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genotoxic chemotherapy when ATM is inactive as well
[16].

In the p53-deficient model, TOPI inhibitors still
induced cell cycle arrest. Additional loss of Chkl abol-
ished one of the pathways leading to degradation of
Cdc25A, a phosphatase necessary for cell cycle progres-
sion. Apoptotic pathways in p53-deficient cells were not
suppressed by inactivation of Chkl. Hence, our model
indicated that p53-deficient cells might be sensitized to
SSBs inducers by inhibition of Chkl. Indeed, the afore-
mentioned sensitization to TOPI inhibitors by Chk1 in-
hibition was reported to be more pronounced when p53
is dysfunctional [37-39]. Accordingly, preclinical studies
support the combination of Chkl inhibitors with SSBs
inducers particularly for treatment of p53-deficient
tumours [37,39].

In the model, inactivation of Chk2 in absence of p53
reduced the number of cell cycle arresting and pro-
apoptotic pathways. The sensitivity of tumours with dys-
functional p53 to DSB-causing agents was reported to
be potentiated by inactivation of Chk2 [16]. In contrast,
another study showed no pronounced potentiation of
cell death by Chk2 inhibition in carcinoma cells with a
loss of function mutation in p53 [42]. As suggested by
our simulations, whether Chk2 inhibition potentiates cell
death caused by DSBs might depend on the genetic
background, providing a possible explanation for the
conflicting experimental data.

In summary, our simulations recapitulated most pub-
lished studies on the sensitivity of carcinoma cells to
DNA damaging agents after inactivation of a certain
protein. These results support the suitability of the
model for the generation of predictions.

Network-wide interdependencies
Network-wide causal relationships between all pairs of
regulatory components are displayed in the dependency

Table 2 Validation of the model on reported effects without functional p53

Inactivated DNA Reported effects without References Model prediction
Protein damage functional p53
ATM DSBs - cell death enhanced Jiang et al. 2009 . cell cycle arrest blocked
- anti-apoptotic NF-kB (p50-p65-P) blocked
- apoptosis diminished
Chk1 SSBs - cell cycle arrest diminished Tse et al. 2007 - Cdc25A degradation diminished
Ma ot al 2011 (degradation of Cdc25A leads to cell cycle arrest)
- cell death enhanced Garret and Collins 2011
- these effects of Chk1 inhibition are
more pronounced in p53-deficient
cells than in cells with a functional p53
Chk2 DSBs - cell death enhanced or cell death Jiang et al. 2009 - cell cycle arrest diminished

not enhanced?

Anderson et al. 2011

- apoptosis diminished
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matrix (Figure 2). Two components have a causal rela-
tionship, if a sequence of adjacent components, a path-
way, links them. As the large fraction of yellow matrix
elements in Figure 2 illustrates, in most causal relation-
ships between two components i and j, i is an ambivalent
factor for j. In other words, i has an activating as well as
an inhibiting influence on another component j. Usually,
the activating influence becomes operational at another
time scale than the inhibiting influence. ATM for in-
stance phosphorylates, i.e. has an activating influence on
Chk2 [43] (interaction 25). However, ATM phosphory-
lates p53 as well [44,45] (interaction 31), leading to ex-
pression of Wipl later (at time scale value 3) [30]
(interaction 82). Wip1 in turn deactivates Chk2 by means
of dephosphorylation [46] (interaction 25). Therefore,
the activation of Chk2 by ATM is counteracted by the
ATM-dependent deactivation of Chk2 by Wipl. Thus,
ATM is an ambivalent factor for Chk2, as the yellow
matrix element in Figure 2 indicates. As the high fre-
quency of coincidences of activating and inhibiting rela-
tionships indicates, most pathways become inactivated in
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a later phase of the DDR. Moreover, these coincidences
suggest an important role of crosstalk in the DDR.

Dynamics of the DDR
Feed-forward loops (FFLs) and Feedback loops (FLs) can
play decisive roles in the processing of the signals, which
are being transmitted in signal transduction networks.
Moreover, they may profoundly influence the dynamics
(temporal behaviour) of a signal transduction network
[47]. For these reasons, we identified FFLs (Figure 3). They
appear in two groups, those with AND gates’ and those
with ‘OR gates’. For example, AND gated’ is the activation
of sumoylated and phosphorylated IKKe (IKKe-S-P) by
IKKe-P and PML-P (Figure 3A), as IKKe-S-P activation
requires both proteins, ie. IKKe-P AND PML-P. ‘OR
gated’ is for instance the activation of p53-P by either
ATM-P or Chk2-P (Figure 3F), as either ATM-P OR
Chk2-P phosphorylates p53.

Coherent FFLs of type 1 with ‘AND gates’ may delay
the transmission of activating signals [48]. Such FFLs in
the model are shown in Figure 3A-E. Coherent FFLs of

AT PP HEM

ATHLBRIP 1HEMO L

-P" = phosphorylation, -S" = sumoylation, -Ub’ = ubiquitinylation.

Figure 2 Dependency matrix. Interdependencies between all pairs of regulatory components in the model are displayed. The colour of a
matrix element Mij defines the type of impact of a component i (left hand side) on a component j (bottom). Colour codes: dark green,
strong activator; turquois green, weak activator; dark red, strong inhibitor; pink, weak inhibitor; yellow, ambivalent factor; black, no effect.

~




Poltz and Naumann BMC Systems Biology 2012, 6:125 Page 7 of 19
http://www.biomedcentral.com/1752-0509/6/125

1 68 °
~

K M
w/
CELL-CYCLE-ARRE!

Coherent FFLs
Negative FLs

) 4
[Mre11)Raas0] |
(__Nostsa43 (B

e .
S1

a A

L

L NFxB

c g mportin_a-1

9 mportin_-1

(4]

S N
g 54680 5536

Figure 3 (See legend on next page.)




Poltz and Naumann BMC Systems Biology 2012, 6:125
http://www.biomedcentral.com/1752-0509/6/125

Page 8 of 19

(See figure on previous page.)

Figure 3 Feed-forward loops (FFLs) and Feedback loops (FLs) in the logical model. Coherent FFLs of type 1 with AND logic (A-E), or OR
logic (F-K), respectively; coherent FFLs of type 2 with AND logic (L, M); coherent FFLs of type 3 (N-R); coherent FFLs of type 4 (S-A), and

an incoherent FFL of type 2 (O). Among negative FLs (a-g), only the functional (in the logical model) are shown. Letters in circles:

P = phosphorylation, S = sumoylation.

type 4 can have the same function [48]; they are shown
in Figure 3S-A.

As also reported by Mangan and Alon [48], transmis-
sion of the fade away of signals (‘OFF’ signals) in a path-
way could be delayed by coherent type 1 FFLs with ‘OR
gate’ (Figure 3F-K), by coherent type 2 FFLs with ‘AND’
gate (Figure 3L and M), as well as by the coherent type
3 FFLs (Figure 3N-R).

Incoherent type 2 FFLs with AND gate’ may accelerate
the transmission of ‘OFF signals [48]. We found only
one example (Figure 30).

In summary, all but one (Figure 30) FFLs identified
may delay either ‘ON’ or ‘OFF’ signals, thereby transmit-
ting only long-term signals. Moreover, we found that
most of these FFLs include either p53, or its regulators.
Taken together, short-term signals arising from noise ra-
ther than from DNA damage might be filtered out. The
same regards signals arising from minor damage of
DNA, which becomes rapidly repaired. Only long-term
signals from more severe DNA damage would be trans-
mitted to and activate p53. Such a careful regulation
seems reasonable in light of the well-known key role of
p53 in determining cell fate (survival or apoptosis) after
DNA damage. Indeed, such a regulation of the actelya-
tion of p53 involving so far unknown FFLs has been pro-
posed [49]; our results provide evidence for a regulation
of p53 phosphorylation by only long term signals and
provide candidate FFLs for that mechanism. As we
found moreover, the FFL in Figure 3A might delay ‘ON’
signals transmitted to IKKe-S-P. Similarly, the FFLs in
Figure 3Z and A could delay ‘ON’ signal transmission to
the IKK complex. In both cases, short-term signals could
be filtered out. IKKe-S-P and the IKK complex mediate
activation of NF-«B. Similarly to the mentioned control
of p53, such a careful regulation of NF-«kB seems reason-
able in light of its mayor role in counteracting apoptosis.

Next, we identified FLs that are functional in the lo-
gical model (Figure 3a-g). All of them are negative. The
presence of a negative FL is necessary for stable oscilla-
tions [50]. Again, most FLs (Figure 3a-f) contain p53,
whereas the FL in Figure 3g contains the NF-«B dimer
p50-p65. In the latter FL, NF-kB drives the expression of
its own inhibitor IxBa. This FL was shown to cause os-
cillatory behaviour of NF-«B in a multitude of cells and
treatment conditions [51]. Also the FLs in Figure 3a-c
have been studied previously with ordinary differential
equation or stochastic models as well as experimentally
in cells exposed to ionizing radiation [8]. In a logical

approach, effects of varied (i) degradation rates of
MDM?2, (ii) transcriptional activities of p53, and (iii)
DNA damage levels on the dynamic behaviour of the
MDM2-p53 circuit has been studied. It has been shown
that variations in parameter values (e.g. corresponding
to mutations) can lead to only four different scenarios of
dynamical behaviour of the network [52]. Recently, the
feedback-controlled oscillations of p53 were proposed to
impact the ultimate cell fate decision [9]. As our results
suggest, the negative FLs in Figure 3d-f might cause
oscillations of p53 levels in vivo as well.

In order to study the terminal fate (attractors) of the
network, we reduced it to a model with conserved
attractors. Previously, a method has been proposed to
reduce Boolean models to their functional interactions.
However, this method is only applicable to models of
intermediate dimension (i.e. maximal 20 variables) [53].
Therefore, we used a different network reduction tech-
nique, which is applicable to large-scale models
(see Methods). The reduced model contains only the
regulatory components DSBs early, DSBs late, RPA-
ATR-ATRIP-P, ATM-P, p53-P and NF-kB (nuclear p50-
p65-P) (Figure 4). We calculated the state transition
graph of the reduced model by using an asynchronous
updating schedule with three priority classes. The state
transitions that were assigned to priority classes 1, 2,
and 3 coincide with the interactions of time scale values
1, 2, and 3, respectively. Hence, state transitions involv-
ing activations of RPA-ATR-ATRIP-P, ATM-P, p53-P or
nuclear NF-kB were assigned to priority class 1; priority
class 2 embraces the subsequent state transitions lead-
ing to activation of ‘DSBs late’ by ‘DSBs early’. State
transitions coinciding with the initiation of the inactiva-
tion of signal transduction pathways, i.e., the downregu-
lation of RPA-ATR-ATRIP-P, ATM-P, p53-P and NF-kB,
constitute priority class 3.

We emphasize that the attractors of the model var-
iants correspond to the fate of the DDR before the cell
either completes DNA repair or dies. In response to
DSBs, the model (Figure 4A) finally enters a complex
cyclic attractor (Figure 4a). This suggests the cellular
network might transit through an intertwined cycle of
states before completion of either DNA repair or apop-
tosis. Negative feedbacks are necessary for cyclic attrac-
tors [50]. We thus aimed to elucidate in more detail the
roles of the identified feedbacks (Figure 3) in generating
the cyclic attractor. For this purpose, we calculated state
transition graphs for model variants with interrupted
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Figure 4 Dependence of the network dynamics on p53 and NF-kB. A-E: Interaction graphs of the core network comprising only the
regulatory components ‘DSBs early’, DSBs late’, ‘RPA-P-ATR-ATRIP-P', 'ATM-P’, p53-P’, and ‘nuclear p50-p65-P". Shown are the networks for the
wildtype (A), the mutant with constitutively active p50-p65-P (B), p53-deficiency (C), both constitutively active p50-p65-P and p53-deficiency (D),
and constitutively active p53 (E). a-e: corresponding state transition graphs, which illustrate the dynamical behaviour of the networks. The nodes
of the state transition graphs gives the activity levels of ‘DSBs early’ (first digit), ‘DSBs late’ (second digit), ‘RPA-P-ATR-ATRIP-P',(third digit), 'ATM-P’
(fourth digit), p53-P" (fifth digit), and ‘nuclear p50-p65-P" (sixth digit). State transition graphs a-c show only attractors. In d and e, complete state
transition graphs are given, wherein the logical steady states are marked with ellipses.

e

feedbacks. Models with constitutively active NF-kB
(Figure 4B) or deficiency of p53-P (Figure 4C) still enter
cyclic attractors (Figure 4b and c). Similarly, the model
variant with deficiency of NF-kB enters a cyclic attractor
as well (not shown). In contrast, the model variant with
both p53-deficiency and constitutively active NF-kB
(Figure 4D) enters a logical steady state (marked with an
ellipse in Figure 4d). Even constitutive activation of only
p53-P is sufficient to direct the network into a logical

steady state (Figure 4e). The network reduction we ap-
plied can lead to loss of trajectories in the STG. There-
fore, not every trajectory in the STG of the full model
might have a counterpart in the STG of the reduced
model [54]. Consequently, the reduced model variant’s
attractors we identified might be different from those of
the full model variants (i.e. of the model variants before
the reduction was done). Therefore, we checked for each
of the five reduced model variant’s attractors (Figure 4),
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whether it is equivalent to the attractor of the corre-
sponding full model variant. In general, any attractor is
either a logical steady state or a cyclic (simple loop or
complex loop) attractor [50,55]. Whereas we were able
to identify the logical steady states of the full model var-
iants, their state spaces are too big to identify cyclic
attractors. Therefore, if a full model variant has no
logical steady state, we inferred the presence of a cyclic
attractor. The identified logical steady states are inde-
pendent of the updating scheme applied [18], and there-
fore, insensitive to changes in the priority classes. As our
aim now was only to check for the type of attractor
(steady state or cyclic attractor), there was no need to
specify priority classes. As we found, neither the wild-
type full model, nor its variant with constitutively active
NE-kB or deficiency of p53-P enter a logical steady state
(Additional file 1: Table S2, columns A-C). Hence, these
full model variants should enter cyclic attractors; the
results are in agreement with the identified cyclic attrac-
tors of the corresponding reduced model variants
(Figure 4a-c). The full model variants with both p53-
deficiency and constitutively active NF-xB (Additional
file 1: Table S2, column D) as well as the full model vari-
ant with constitutively activative p53-P (Additional file
1: Table S2, column E) enter logical steady states. Again,
the results agree with the results from the analyses of
the reduced model counterparts (Figure 4d and e). In
addition, none of the full model variants contains a func-
tional positive FL (data not shown); thus, this necessary
condition for bi- or multistability [50] is not fulfilled.
Therefore, each full model variant possesses only a sin-
gle attractor. Again, our results coincide with the finding
that each reduced model variant possesses only a single
attractor.

We conclude that all attractors of the reduced model
variants correspond to those of the full model variants.
Both, the results gained from the analyses of the attrac-
tors and the identified functional FLs independently sug-
gest an essential role of p53 and NF-«B in the generation
of cyclic attractors of the DDR. This and the prevalence
of p53, and NF-«B in the FFLs support the importance of
these proteins in governing the dynamics of the DDR.

Candidate target proteins for sensitization of carcinomas
to therapies

To identify putative targets for sensitization of carcinomas
to therapy, we simulated treatments with agents causing
SSBs (inhibitors of TOPI) or only DSBs (e.g. inhibitors of
TOPII). p53, homeo-domain interacting protein kinase 2
(HIPK2), ATM or Chk2 are frequently mutated and in-
active in carcinoma cells [56-59], therefore, we simulated
treatment with inhibitors of TOPI or TOPII in the ab-
sence of these proteins. In order to simulate the behaviour
of the network before the onset of feedback inhibition, we
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chose the time scale value 2’ of the model. We calculated
minimal intervention sets of targets, whose inhibition
might sensitize tumours by fulfilling three intervention
goals: (i) blocking cell cycle arrest, (ii) blocking activation
of anti-apoptotic NF-«B, and (iii) keeping at least one
pathway activating ‘onset of apoptosis’ intact. In presence
of (therapeutically induced) severe DNA damage inhibi-
tors that fill out goal (i) would eliminate tumour cells by
mitotic catastrophy, and inhibitors fulfilling goals (ii) and
(iii) would potentiate apoptosis. We identified 85 sets of
molecular targets that could sensitize tumour cells to ther-
apies inducing SSBs or DSBs (Table 3), and protein sets
containing putatively less suitable targets (Additional file
1: Table S3). ATM deficiency in the model already fulfils
the intervention goals in presence of DSBs. Hence, we
found no sensitization target for such conditions. This re-
sult agrees with most studies, showing that ATM inhib-
ition sensitizes cells to therapeutics causing DSBs [32].
Accordingly, cells isolated from Ataxia telangiectasia (dys-
functional ATM) patients show enhanced radiosensitivity
[33]. For certain sets, inhibitions of the target proteins
might specifically sensitize tumour cells with the indicated
mutation, but allow normal cells to survive by entering
cell cycle arrest (asterisks in Table 3).

Some predicted target sets include ATR or Chkl,
which beside their contributions to the DDR are essen-
tial for proliferation. Nevertheless, partial and transient
inhibition of ATR or Chkl during DNA damage
diminishes cell cycle arrest rather than proliferation
[35,37]. Additionally, some protein target sets that
sensitize Chk2-deficient tumours include p53. Although
p53 can promote apoptosis, it mediates predominantly
cell cycle arrest in Chk2-deficient tumours, resulting in
tumour cell survival [15]. Correspondingly, p53 inhib-
ition might sensitize certain tumours to therapeutic
treatment [60]. Hence, inhibition of p53 in Chk2-
deficient cells seems reasonable. Taken together, we pre-
dict putative protein target sets that might sensitize
tumours carrying certain mutations to therapeutic inter-
ventions. Our candidate target sets in Table 3 include all
published sensitization targets in Tables 1 and 2. How-
ever, with the exception of ATM, inhibiting the pub-
lished sensitization targets in Tables 1 and 2, blocks only
part of the cell survival pathways of the model in
tumours containing certain mutations. In contrast, our
proposed target sets (Table 3) might block all cell survival
pathways of the model in tumours containing certain
mutations. Hence, our candidate targets might sensitize
tumours to DNA damaging therapeutics with higher
efficiency.

Simulation of genetic disorders
Next, we aimed to enlighten the DDR in genetic dis-
eases. For this purpose we inactivated in our model the
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Mutated Protein in Tumor

Candidate targets to sensitize tumours to therapies inducing

DNA SSBs

DNA DSBs

p53

HIPK2

ATM

Chk2

ATM-P & ATR

ATM-P & Chk1-P & Chk2-P

ATM-P & Chk2-P & c-Rel

ATM-P & Chk2-P & IKK_complex-P
ATR & Chk2-P & FKBP51*

ATR & Chk2-P & IKK_complex-P*
ATR & Chk2-P & IKKe-P*

ATR & Chk2-P & p50-p65-P*

ATR & MRN

Chk1-P & Chk2-P & MRN

Chk2-P & c-Rel & MRN

Chk2-P & IKK_complex-P & LUBAC*
Chk2-P & IKK_complex-P & MK2-P*
Chk2-P & IKK_complex-P & MRN
Chk2-P & IKK_complex-P & TAK1-P*
Chk2-P & IKK_complex-P & TRAF6*
Chk2-P & IKK_complex-P & XIAP*
PP5

ATM-P & ATR

ATM-P & Chk1-P & Chk2-P

ATM-P & Chk2-P & c-Rel

ATM-P & Chk2-P & IKK_complex-P
ATR & MRN

Chk1-P & Chk2-P & MRN

Chk2-P & c-Rel & MRN

Chk2-P & IKK_complex-P & MRN
PP5

ATR*

Chk1-P & Chk2-P*

Chk2-P & c-Rel*

Chk2-P & IKK_complex-P*

PP5

ATM-P & ATR

ATM-P & Chk1-P*

ATM-P & c-Rel*

ATM-P & IKK_complex-P*

ATR & BARD1-BRCAT-P & FKBP51*
ATR & BARD1-BRCA1-P & IKK_complex-P*
ATR & BARD1-BRCA1-P & IKKe-P*
ATR & BARD1-BRCA1-P & p50-p65-P *
ATR & FKBP51 & p53-P*

ATR & IKK_complex-P & p53-P*
ATR & IKKe-P & p53-P*

ATM-P

ATR & Chk2-P & FKBP51*

ATR & Chk2-P & IKK_complex-P*
ATR & Chk2-P & IKKe-P*

ATR & Chk2-P & p50-p65-P*
Chk2-P & IKK_complex-P & LUBAC*
Chk2-P & IKK_complex-P & MK2-P*
Chk2-P & IKK_complex-P & TAK1-P*
Chk2-P & IKK_complex-P & TRAF6*
Chk2-P & IKK_complex-P & XIAP*
MRN

PP5

ATM-P
MRN
PP5

No targets found.

ATM-P

ATR & BARD1-BRCA1-P & FKBP51*
ATR & BARD1-BRCAT-P & IKK_complex-P*
ATR & BARD1-BRCA1-P & IKKe-P*

ATR & BARD1-BRCA1-P & p50-p65-P *
ATR & FKBP51 & p53-P*

ATR & IKK_complex-P & p53-P*

ATR & IKKe-P & p53-P*

ATR & p53-P & p50-p65-P*
IKK_complex-P & LUBAC & p53-P*
IKK_complex-P & MK2-P & p53-P*
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Table 3 Candidate targets to sensitize epithelial tumours to therapy (Continued)

ATR & MRN

ATR & p50-p65-P & p53-P*
Chk1-P & MRN*

c-Rel & MRN*

IKK_complex-P & LUBAC & p53-P*
IKK_complex-P & MK2-P & p53-P*
IKK_complex-P & MRN*
IKK_complex-P & p53-P & TAK1-P*
IKK_complex-P & p53-P & TRAF6*
IKK_complex-P & p53-P & XIAP*

IKK_complex-P & p53-P & TAK1-P*
IKK_complex-P & p53-P & TRAF6*
IKK_complex-P & p53-P & XIAP*
MRN

PP5

PP5

" Sets of targets whose inhibition might specifically sensitize tumor cells with the indicated mutation, but allow normal cells to survive by entering cell cycle

arrest.

protein whose defect causes a given disease. Then, we
simulated the response to SSBs and DSBs simultaneously
at time scale value 2} and evaluated our in silico results
based on published data. For investigations of the feed-
back control of the DDR, we simulated at time scale
value ‘3’ (Table 4). The disease Ataxia telangiectasia
(ATM-deficiency) has been associated with defects in
the activation of p53, G1/S, intra-S, and G2/S cell cycle
checkpoints, genomic instability, enhanced radiosensitiv-
ity and increased incidence of lymphoid tumours
[33,61]. In our simulation, loss of ATM blocked p53 acti-
vation and p21 expression, resulting in abolished cell
cycle arrest by these proteins. Additionally, the cell cycle
promoting protein c-Myc became expressed, and abol-
ished another cell cycle arrest pathway. Cell cycle check-
point defects are known to contribute to genomic
instability, which promotes tumorigenesis [11], and
increased cell death by mitotic catastrophy [13]. The
abolished activation of NF-«kB in the model might fur-
ther promote apoptosis, although p53-dependent apop-
tosis was blocked as well. Moreover, in absence of ATM
we identified in our model the loss of many signalling
pathways involved in the regulation of p53 and NF-«xB
target genes.

Ataxia telagiectasia-like-disorder (Mrell-deficiency) is
also associated with defective induction of cell cycle ar-
rest, genomic instability, and enhanced radiosensitivity
[33]. As Mrell in the model is a subunit of the MRN
complex, which solely activates ATM, the blocked path-
ways are the same as in the Ataxia telangiectasia simula-
tion. The same is true for Nijmegen breakage syndrome
(Nbs1-deficiency), as in the model also Nbsl is only a
MRN complex subunit. Nijmegen breakage syndrome
has moreover been reported to diminish DNA repair
[33,62]. However, DNA damage induced cell cycle arrest
promotes DNA repair [11]. Hence, the abolishment of
cell cycle arrest by p53 phosphorylation, p21 expression,

and c-Myc downregulation in the simulation might con-
tribute to lost repair capabilities. Moreover, breast can-
cer 1, early onset (BRCAL) is essential for homologous
recombination repair of DSBs [1]. ATM-dependent
phosphorylation of BRCA1 is averted by loss of Nbs1 in
the model, possibly further contributing to DNA repair
deficiencies.

Also Rad50 in the model is a subunit of the MRN
complex, which solely activates ATM. Hence, the path-
ways blocked in Nijmegen breakage syndrome-like dis-
order (Rad50-deficiency) [63,64] are identical to those in
the Ataxia telangiectasia simulation.

A reduction of the ATR level causes ATR-Seckel syn-
drome. Hence, ATR-dependent phosphorylations of
Chkl and p53 are diminished, whereas ATM-dependent
responses to ionizing radiation remain intact. There is
no pronounced radiosensitivity, and no enhanced inci-
dence of cancer [65]. In line with this report, ATR in-
activation in the model did not affect ATM-dependent
signalling induced by ionizing radiation. Instead,
ATR-deficiency abolished cell cycle arrest mediated
by p21 expression and c-Myc downregulation in the
model. However, these cell cycle arresting pathways
could still be active in presence of an ATR level as
low as in ATR-Seckel syndrome cells.

Molecular defects putatively contributing to
carcinogenesis

DDR defects that diminish apoptosis and cell cycle arrest
are well known to contribute to carcinogenesis by pro-
moting uncontrolled proliferation [11]. We aimed to
identify putatively relevant malfunctions in the DDR in
epithelial cells. For this purpose, we simulated the re-
sponse to both SSBs and DSBs simultaneously. Again, we
chose the time scale value 2’ of the model. By calculating
minimal intervention sets, we identified protein defects
(i.e. constitutive activations and inactivations that in
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Genetic disorder Molecular cause

Reported defects

References Model prediction

Ataxia Telangiectasia ATM dysfunctional

- p53 activation blocked

cellular defects

- cell cycle checkpoints

all defect

molecular defects

Jorgensen & Shiloh - p53 activation blocked

199% - anti-apoptotic NF-kB

(p50-p65-P) blocked
- cell cycle arrest diminished

Lavin 2008 - some feedback loops, which
terminate signal transduction

pathways blocked

- genomic instability

- radiosensitivity enhanced

clinical features

- incidence of lymphomas

increased

Mre11
dysfunctional

Ataxia Telangiectasia-
Like-Disorder

cellular defects

- genomic instability

- cell cycle arrest diminished

Lavin 2008 - cell cycle arrest diminished

- some feedback loops, which
terminate signal transduction
pathways blocked

- radiosensitivity enhanced

Nijmegen Breakage
Syndrome

Nbs1 dysfunctional

- p21 expression reduced

cellular defects

molecular defects

Antoccia et al. - activation of ATR by

- ATR activity reduced

2006 ATM abolished

- p21 expression blocked

- cell cycle arrest diminished
Lavin 2008 - no BRCAT phosphorylation

- some feedback loops, which
terminate signal transduction
pathways blocked

- cell cycle checkpoints

all defect

- sensitivity to agents
causing DSBs enhanced

- DNA repair diminished

clinical features

- incidence of lymphomas

increased

Rad50
dysfunctional

Nijmegen Breakage
Syndrome-Like Disorder

cellular defects

- genomic instability

- cell cycle arrest diminished

Barbi et al. 1991
Waltes et al. 2009

- cell cycle arrest diminished

- some feedback loops,
which terminate signal
transduction pathways blocked

- radiosensitivity enhanced

ATR level
reduced

ATR-Seckel Syndrome

- phosphorylations of

Chk1 and p53 by
ATR reduced

molecular defects

O'Driscoll et al.
2004

- activation of p53 and Chk1
by ATR diminished

- cell cycle arrest diminished

combination block both, ‘onset of apoptosis’ and cell
cycle arrest in the model. In vivo, constitutive activation
of a protein can result from constitutive expression or
gain of function mutations of the gene encoding that
protein, whereas constitutive inactivation can result from
loss of function mutations. Alternatively, such defects of
a protein might result from mutations of a gene encoding
another protein that regulates the relevant protein. We
found 117 combinations of defects that putatively

contribute to carcinogenesis by allowing cells with
damaged DNA to proliferate (Table 5). From our search,
we excluded activations and inactivations that according
to literature data might counteract uncontrolled prolif-
eration (Additional file 1: Table S4). By doing so, we
accounted for protein functions being relevant to car-
cinogenesis, but are not captured by the model. Each row
gives an alternative combination of relevant defects
(Table 5). Here, [0] means inactive; [1]: constitutive active
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Table 5 Combinations of constitutive activations and
inactivations putatively leading to carcinogenesis

No. Events putatively contributing to carcinogenesis

1 [0IPP5 & [0]PIDD-RAIDD-caspase2

2 [0]PP5 & [0]lkappaBalpha

3 [0IPP5 & [0]PIDD

4 [OPP5 & [0]Hsp90

5  [0IPP5 & [11p90-P

6  [O]PP5 & [2]IKK_complex-P

7 [0]PP5 & [1JMEK-P

8  [0IPP5 & [1]ERK-P

9  [0]PP5 & [1]cytosolic_p50-p65

10 [O]PP5 & [1]nuclear_p50-p65-P

11 [0IPP5 & [1TAK1-P

12 [Wipl & [0]Hsp90

13 [1Wip1 & [0]IKK_complex-P & [O]PIDD-RAIDD-caspase2
14 [1Wip1  &I[OIPIDD & [0]IKK_complex-P

15 [1Wip1 & [0]IKK_complex-P & [1]cytosolic_p50-p65

16 [1]Wip1 & [0]IKK_complex-P & [1Inuclear_p50-p65-P

17 [0JATM-P & [0]Hsp90 & [0]Chk2-P

18 [0JATM-P & [1]PP2A-Bx & [0]PIDD-RAIDD-caspase?
19 [0JATM-P & [1]PP2A-Bx & [0]lkappaBalpha

20 [OIPIDD & [OJATM-P & [1]PP2A-Bx

21 [OIFHIT & [OJATM-P & [0]Hsp90

22 [0JATM-P & [0]Hsp90 & [1]PP2A-Bx

23 [1]p9%0-P & [OJATM-P & [1]PP2A-Bx

24 [0JATM-P & [1]PP2A-Bx & [2]IKK_complex-P

25 [0JATM-P & [TIMEK-P & [1]PP2A-Bx

26 [0JATM-P & [1]ERK-P & [1]PP2A-Bx

27 [0JATM-P & [1]cytosolic_p50-p65 & [1]PP2A-Bx

28 [0JATM-P & [1Inuclear_p50-p65-P & [1]PP2A-Bx

29 [0JATM-P & [1]TAK1-P & [1]PP2A-Bx

30 [0]Chk2-P & [0]BARD1-BRCA1-P & [1]PP2A-Bx

31 [0JMRN & [0]Hsp90 & [0]Chk2-P

32 [0Hsp90 & [0]Chk2-P & [0]p53-PS15-PS20

33 [0IChk2-P & [1]PP2A-Bx & [0]p53-PS15-PS20

34 [1IMDMX & [0]Hsp90 & [0]Chk2-P

35 [1]JMDM2 & [0]Chk2-P & [0]Hsp90

36 [0JHsp90 & [0]Chk2-P & [1]PP2A-B55

37 [1IPP1 & [0]Chk2-P & [0]Hsp90

38 [1]JMDMX & [0]Chk2-P & [1]PP2A-Bx

39 [1]JMDM2 & [0]Chk2-P & [1]PP2A-Bx

40 [1]PP1 & [0]Chk2-P & [1]PP2A-Bx

41 [0JIMRN & [1IPP2A-Bx & [0]PIDD-RAIDD-caspase2
42 [1Wip1 & [0]PIDD-RAIDD-caspase2 & [Olimportin_alpha-1-beta-1
43 [1Wip1 & [O]claspin-P & [0]PIDD-RAIDD-caspase2
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Table 5 Combinations of constitutive activations and
inactivations putatively leading to carcinogenesis

(Continued)

44 [1Wip1 & [1]Cdc25A & [0]PIDD-RAIDD-caspase2
45 [1Wip1 & [1]1Cdk2 & [0]PIDD-RAIDD-caspase2
46 [11Wip1 & [2]lkappaBalpha & [O]PIDD-RAIDD-caspase2
47 [1PP2A-Bx & [1]PP2A-B55 & [0]PIDD-RAIDD-caspase2
48 [1Wip1 & [1]PP2A-Bx & [0]PIDD-RAIDD-caspase2
49 [OIFHIT & [11PP2A-Bx & [0]BARD1-BRCA1-P

50 [OJMRN & [1]PP2A-Bx & [O]lkappaBalpha

51 [0JMRN & [0]PIDD & [1]PP2A-Bx

52 [0JMRN & [OIFHIT & [0]Hsp90

53 [0JMRN & [0]Hsp90 & [1]PP2A-Bx

54 [0JMRN & [1]p90-P & [1]PP2A-Bx

55  [O]JMRN & [1]PP2A-Bx & [2]IKK_complex-P

56 [0JMRN & [TIMEK-P & [1]PP2A-Bx

57 [OJMRN & [1]ERK-P & [1]PP2A-Bx

58 [0JMRN & [11PP2A-Bx & [1]cytosolic_p50-p65

59 [OJMRN & [1]PP2A-Bx & [1]nuclear_p50-p65-P
60 [OJMRN & [1]TAKI-P & [1]PP2A-Bx

61 [1Wipl & [O]claspin-P & [O]lkappaBalpha

62 [1]Wip]l & [1]Cdc25A & [O]lkappaBalpha

63 [1Wip]1 & [1]1Cdk2 & [O]lkappaBalpha

64 [1IPP2A-Bx & [1]PP2A-B55 & [O]lkappaBalpha

65 [1Wip] & [1]PP2A-Bx & [O]lkappaBalpha

66 [1]Wip]1 & [0]PIDD & [Olimportin_alpha-1-beta-1
67 [11Wip1 & [1nuclear_p50-p65-P & [Olimportin_alpha-1-beta-1
68 [OJFHIT & [0]Hsp90 & [0]p53-PS15-PS20

69 [OIFHIT & [1]PP2A-Bx & [0]p53-PS15-PS20

70 [1Wip1 & [0IPIDD & [O]claspin-P

71 [MWip1 & [0]PIDD & [1]Cdc25A

72 [1Wip1 & [0]PIDD & [11Cdk2

73 [1Wip1 & [0IPIDD & [2]lkappaBalpha

74 [0IPIDD & [1]PP2A-Bx & [1]PP2A-B55

75 [1Wip1 & [0]PIDD & [1]PP2A-Bx

76 [OJFHIT & [1IMDMX & [0]Hsp90

77 [OJFHIT & [1JMDM2 & [0]Hsp90

78 [OIFHIT & [0]Hsp90 & [1]PP2A-B55

79 [11PP1 & [OJFHIT & [0]Hsp90

80 [0Hsp90 & [1]PP2A-Bx & [1]PP2A-B55

81 [OIFHIT & [1TIMDMX & [1]PP2A-Bx

82 [OJFHIT & [1IMDM2 & [1]PP2A-Bx

83 [1]PP1 & [OJFHIT & [1]PP2A-Bx

84  [1Wip1 & [1]p90-P & [O]claspin-P

85 [1]Wipl & [O]claspin-P & [2]IKK_complex-P

86 [1]Wipl & [1JMEK-P & [O]claspin-P
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(Continued)

87 [1]Wip1 & [1]ERK-P & [O]claspin-P

88 [1]Wip1 & [O]claspin-P & [1]cytosolic_p50-p65
89 [1Wip1 & [Olclaspin-P & [1]nuclear_p50-p65-P
90 [1Wip1 & [1]p90-P & [11Cdc25A

91 [Wipl  &[1]Cdk2 & [1]p90-P

92 [1]1p90-P & [1]PP2A-Bx & [1]PP2A-B55

93 [1Wipl & [1]p90-P & [11PP2A-Bx

94  [1Wip1 & [1]1Cdc25A & [2]IKK_complex-P

95 [1Wip1 & [1]Cdk2 & [21IKK_complex-P

96 [1]PP2A-Bx & [1]PP2A-B55 & [2]IKK_complex-P

97  [1Wip1 & [1]PP2A-Bx & [2]IKK_complex-P

98 [1]Wip1 & [1IMEK-P & [1]Cdc25A

99 [1]Wip1 & [1]ERK-P & [1]Cdc25A

100 [1]Wip1 & [1]1Cdc25A & [1]cytosolic_p50-p65
101 [1Wip1 & [1]Cdc25A & [1nuclear_p50-p65-P
102 [1]Wip1 & [1]Cdk2 & [1JMEK-P

103 [1]Wip1 & [1]Cdk2 & [1]JERK-P

104 [1Wip1 & [11Cdk2 & [1]cytosolic_p50-p65
105 [1Wip1 & [1]Cdk2 & [1nuclear_p50-p65-P
106 [1JMEK-P & [1]PP2A-Bx & [1]PP2A-B55

107 [1]Wip1 & [TIMEK-P & [11PP2A-Bx

108 [1JERK-P & [1]PP2A-Bx & [1]PP2A-B55

109 [1]Wip1 & [1]JERK-P & [1]PP2A-Bx

110 [1Wip1 & [2]lkappaBalpha & [1]cytosolic_p50-p65
111 [MWip1 & [2]lkappaBalpha & [1nuclear_p50-p65-P
112 [1]PP2A-Bx & [1]PP2A-B55 & [1]cytosolic_p50-p65
113 [1Wip1 & [1]PP2A-Bx & [1]cytosolic_p50-p65
114 [1IPP2A-Bx & [1]PP2A-B55 & [1nuclear_p50-p65-P
115 [M1JTAK1-P & [1]PP2A-Bx & [1]PP2A-B55

116 [1]Wip1 & [1]PP2A-Bx & [1Inuclear_p50-p65-P
117 [MWip1 & [1]TAK1-P & [1]PP2A-Bx

at level ‘1’; [2]: constitutively active at level 2. Among
the results are inactivities of the known or suspected
tumour suppressors ATM, the MRN complex subunit
Nbsl, fragile histidin triad gene (FHIT), p53, BRCA1, as
well as Chk2, and activities of the known oncogene
MDM2 [66,67]. In 21 combinations, the NF-kB dimer p50-
p65 was found to be constitutively active, as frequently
observed in tumours [68]. Carcinogenesis might also be
promoted by constitutive active IkBa or the IKK complex
(e.g. sets 2, 13). Alternatively, constitutive active IkBa or
the IKK complex may promote carcinogenesis in combin-
ation with other molecules (e.g. sets 110, 6). To our know-
ledge, most of the putative carcinogenic mutations we
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found have not been implicated in tumorigenesis previ-
ously. This gap of knowledge could be explained by ‘low
penetrance genes’ assumed to confer cancer susceptibility
or resistance [66,69,70]. These were proposed to act in
combination in a dosage-dependent manner to incremen-
tally determine cancer predisposition. A major obstacle to
their identification is the vast number of possible combina-
tions of mutations to be tackled experimentally [66,71].
However, our results may provide a valuable preselection
for follow-up experiments.

It is important to note that the identified mutations
might cause cell death by mitotic catastrophy only in re-
sponse to severe DNA damage, as it is induced in cancer
therapies. In contrast, in response to low levels of DNA
damage, which is compatible with cell survival, the
defects might promote tumorigenesis by enabling uncon-
trolled proliferation. Such limited DNA damage is caused
permanently by cellular insults, like reactive oxygen spe-
cies generated in metabolic processes [3].

Conclusions

We presented a comprehensive logical model of the DDR
including the dynamics of p53 and NF-«kB regulation in
human epithelial tumours. The large scale of the model
and the implementation of posttranslational protein modi-
fications allowed us to account for extensive crosstalk
among signal transduction pathways. Our analyses enligh-
tened the dynamics of the DDR and functional conse-
quences of defects underlying cancerogenesis, but also
hereditary genetic diseases. We identified candidate target
proteins suitable for sensitization of epithelial tumours
with different mutations to chemo- and radiotherapy, thus,
our predicted target proteins provide a basis for follow up
studies to demonstrate their therapeutic usefulness. Over-
all, the results reflect an approach to facilitate a holistic
view on the DDR in health and disease. An important aim
of further work is the inclusion of more quantitative data
into the model. This would allow to recapitulate observa-
tions that lower levels of DNA damage predominantly in-
duce temporary cell cycle arrest and DNA repair, whereas
higher levels of DNA damage mainly cause apoptosis.

Methods

Data mining

For network assembly we screened the relevant literature
through NCBI/PubMed. Large amounts of published ex-
perimental data were evaluated and only high quality
data on causal relationships in human epithelial cells
were used for modelling. By epithelial cells we refer to
either epithelial cell lines in the sense of the American
Type Culture Collection [72] or ex vivo epithelial cells.
Information on intracellular localization of proteins was
retrieved from [73] unless provided in the analyzed
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publications. Information on oncogenes and tumour
suppressors were retrieved from [67,74].

Interaction graph and discrete logical model

Some structural analyses were based on the represen-
tation of the structure underlying the studied model as
a directed graph (interaction graph). Such a graph
[17,75] consists of a set of nodes representing regula-
tory components (e.g. proteins, DNA damaging agents,
ions), which are connected by arcs representing causal
relationships. Signals are propagated from the start
node to the end node of an arc. Activations are repre-
sented by arrows, whereas inhibitions are symbolized
by T-shaped arcs. Each node is associated with a
discrete logical state variable, which denotes the activ-
ity level of the corresponding regulatory component.
The logical model is represented by a list of logical
functions defining the target values of a component
depending on the activity values of its regulators
[18,76]. For combining logical variables in the logical
functions we use a special notation of Boolean opera-
tors known as ‘sum of products’. Thereby we require
the operators AND, OR, and NOT for describing any
logical relationship [77]. Interactions are described by
AND connections of (potentially negated) nodes. Each
AND connection describes a sufficient condition for
the activity of the target component. Additionally, a
component may be activated by several distinct signal-
ling events independently. This is expressed by a logical
OR-connection.

The implementation of the ‘sum of products’ notation
allows the representation of the logical model as a lo-
gical interaction hypergraph [17,78]. In the logical inter-
action hypergraph, interactions are represented by
hyperarcs. In principle, hyperarcs can connect an arbi-
trary number of start nodes (regulating components)
with an arbitrary number of end notes (regulated com-
ponents). This distinguishes hyerarcs from arcs, which
connect only one start node with one end node. Hyper-
arcs therefore allow the representation of logical AND-
connections between nodes. In our network, each hyper-
arc points into only one end node. Additionally, a
species may be activated by several distinct signalling
events independently. Distinct hyperarcs pointing into
the same end node represent logical OR connections.
For simplicity, we also refer to hyperarcs if an interaction
has only one start node. The logical interaction hyper-
graph was constructed using the software CellDesigner 4.2
[79] and subsequently exported to the MATLAB (The
MathWorks, Natick, MA, USA) package CellNetAnalyzer
7.0 [80] for analyses (Additional file 2). In CellNetAnalyzer,
the interaction graph underlying a given logical inter-
action hypergraph can be generated by splitting each
hyperarc into its constituent arcs [80].
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Structural analyses

Based on the interaction graph the dependency matrix
was calculated in CellNetAnalyzer. This matrix reveals
functional interdependencies between each pair of spe-
cies, e.g., it reveals whether a species i is a strong activa-
tor (i.e., there are only positive paths, and no species in
these paths is regulated by a negative FL), a weak activa-
tor (ie., there are only positive paths, and at least one
species in these paths is regulated by a negative FL), a
strong inhibitor (i.e., there are only negative paths, and
no species in these paths is regulated by a negative FL),
a weak inhibitor (i.e., there are only negative paths, and
at least one species in these paths is regulated by a nega-
tive FL), or an ambivalent factor (i.e, positive and nega-
tive paths to the selected species exist) for another
species j. This feature facilitates qualitative predictions
of the effects of perturbations or knockout experiments
[17,80].

FFLs and FLs were identified with the JAVA applica-
tion MAVisto V 2.7.0 [81] on the basis of the interaction
graph underlying the logical model (Additional file 2).
Negative FLs are a necessary condition for stable oscilla-
tions or homeostasis, whereas positive FLs are necessary
for multistability [50,82]. The appearance of such dy-
namical behaviours further requires the loop to be func-
tional. The functionality context of a feedback loop is
defined as a set of constraints on the values of the exter-
nal regulators of that loop [83]. The functionality con-
text of each feedback loop in the logical model was
identified on the basis of the logical model with the
JAVA tool GINsim 2.4 alpha [84].

By computing logical steady states (LSS) of the logical
network upon definition of a time scale value with Cell-
NetAnalyzer [17] we studied the qualitative effects of in-
put stimuli on downstream signalling events and on the
outputs. The qualitative effects of loss of function muta-
tions and inhibitions were studied by computing LSS
after setting the activity levels of the relevant protein to
‘0’. Correspondingly, for studying the qualitative effects
of constitutive activities, the activity level of the relevant
protein was set to its highest possible value (1’ or ‘2,
respectively).

The calculation of LSS also provides the basis for calcu-
lations of minimal intervention sets with CellNetAnalyzer
on the basis of the logical model [80,85]. These are min-
imal sets of regulatory components that are to be removed
(by knockout, knockdown or inhibition) or to be added
(by activation) to achieve a certain intervention goal. The
maximum cardinality (maximum number of interventions
allowed) of minimal intervention sets was set to 3.

Dynamical analyses
Given a logical model and starting from an initial state
of the network, consecutive states of the network can be
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computed. This is done by updating the activities of all
components according to the logical functions. The
computed dynamical behaviour of the network can be
depicted in a state transition graph [84,86]. Each node in
this graph represents a state of the network, i.e. a vector
with its vector components representing the activity
levels of all network components. The nodes are con-
nected by arcs denoting possible state transitions. Usu-
ally, the reaction rates of the model interactions are
unknown. Then, there are two basic strategies for dy-
namical analyses: synchronous and asynchronous updat-
ing [55]. In the first case, all activity levels are updated
simultaneously. As each state can have at most one suc-
cessor, the calculation of the state transition graph is
quite simple, making it feasible even for large networks.
Synchronous updating is based on the assumption that
all components make a transition at the same time. This
is unrealistic and can result in spurious dynamic behav-
ior [87]. The second, more common strategy is to up-
date only the activity level of one component at a time.
The resulting state transition graph captures all possible
state transitions, but is bigger than in the synchronous
case. Accordingly, the state transition graph is more
complex to model and analyse. We therefore restricted
the computation of the state transition graph by apply-
ing an updating scheme with priority classes [88]. State
transitions increasing a components activity are distin-
guished from state transitions decreasing its activity and
were associated to priority classes with different ranks.
The ranks were assigned to the priority classes according
to the temporal order of interactions in vivo. At any
state of the network, among all concurrent state transi-
tions, only those of the class with the highest rank are
triggered. As the temporal order of transitions belonging
to the same priority class is unknown, we chose an asyn-
chronous updating scheme for transitions belonging to
the same class. Since the state space of a discrete logical
network is finite, the system finally enters a LSS or a
cycle of recurring states, called cyclic attractor [18]. Cyc-
lic attractors are classified into simple loops and com-
plex loops [55]. The former are cycles of network states
such that each state can have exactly one successor state,
whereas the latter are composed of overlapping simple
loops. Dynamical analyses of the logical model were per-
formed with GINsim.

Network reduction

Dynamical analyses of large networks can be very challen-
ging since the size of the state transition graph increases
exponentially with network size. We therefore reduced
the full model prior to dynamical analyses by removing
components in iterative steps. In each of these steps, a
component is removed by linking its regulators directly to
its target components. Accordingly, the logical functions
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are properly rewritten. For instance, the cascade,
MEK-P — ERK-P — p90-P’ can be reduced by remov-
ing the component ERK-P. This results in a reduced cas-
cade, in which MEK-P activates p90-P directly. In the
course of the model reduction, a FL can be reduced at most
to its minimal form, an autoregulation. Autoregulated is a
component that can either activate or inhibit itself. In the
interaction graph autoregulation is indicated by a self loop,
i.e, an arc with the start node and the end node represent-
ing the same component. By exclusion of autoregulated
components from the reduction process, loss of feedback
loops and attractors was avoided [54]. Model reduction
was performed with GINsim.

Model validation
The model was validated on the basis of published ex-

perimental studies.

Additional files

Additional file 1: Table S1: Logical functions of the model, Table S2:
Logical steady states of the full model variants, Table S3: Excluded
targets from search for putative therapeutic targets

(see Table 3 of the main text), Table S4: Excluded targets from search for
molecular defects putatively contributing to carcinogenesis (see Table 5
of the main text).

Additional file 2: The CellDesigner file corresponding to the logical
interaction hypergraph shown in Figure 1, the logical network in
the CellNetAnalyzer and GINsim formats and the interaction graph
in MAVisto format.
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