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Abstract

Background: The availability of temporal measurements on biological experiments has significantly promoted
research areas in systems biology. To gain insight into the interaction and regulation of biological systems,
mathematical frameworks such as ordinary differential equations have been widely applied to model biological
pathways and interpret the temporal data. Hill equations are the preferred formats to represent the reaction rate in
differential equation frameworks, due to their simple structures and their capabilities for easy fitting to saturated
experimental measurements. However, Hill equations are highly nonlinearly parameterized functions, and
parameters in these functions cannot be measured easily. Additionally, because of its high nonlinearity, adaptive
parameter estimation algorithms developed for linear parameterized differential equations cannot be applied.
Therefore, parameter estimation in nonlinearly parameterized differential equation models for biological pathways
is both challenging and rewarding. In this study, we propose a Bayesian parameter estimation algorithm to
estimate parameters in nonlinear mathematical models for biological pathways using time series data.

Results: We used the Runge-Kutta method to transform differential equations to difference equations assuming a
known structure of the differential equations. This transformation allowed us to generate predictions dependent on
previous states and to apply a Bayesian approach, namely, the Markov chain Monte Carlo (MCMC) method. We
applied this approach to the biological pathways involved in the left ventricle (LV) response to myocardial
infarction (MI) and verified our algorithm by estimating two parameters in a Hill equation embedded in the
nonlinear model. We further evaluated our estimation performance with different parameter settings and signal to
noise ratios. Our results demonstrated the effectiveness of the algorithm for both linearly and nonlinearly
parameterized dynamic systems.

Conclusions: Our proposed Bayesian algorithm successfully estimated parameters in nonlinear mathematical
models for biological pathways. This method can be further extended to high order systems and thus provides a
useful tool to analyze biological dynamics and extract information using temporal data.

Background
In the past decade, there has been a rapid development in
systems biology approaches driven by high-throughput
data characterizing regulations of genetic networks, inter-
actions among proteins, and reactions in metabolic path-
ways. These data usually provide a specific scenario of a
biological system which may be compared with an

alternative system, for instance, expression levels of bio-
markers associated with a disease pattern versus healthy
controls. Extending the snapshot-type data to condensed
data in a time sequence, which is more suitable for profil-
ing the temporal dynamics, provides insights into the
functions and underlying regulating mechanisms of the
biological system. To gain these insights, mathematical
representations of biological systems established with
temporal data are highly desirable.
Establishment of proper mathematical representations

requires identification of a suitable model with an
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adequate framework and structure to determine the
parameters in the framework. For the structure identifi-
cation of a model, extensive research has been carried
out and mathematical models have been developed to
represent the instantaneous rate of a process as an
explicit function of all the state variables x Î Rn that
have a direct influence on the process. In these repre-
sentations, the rate of change in each variable xi, is
determined by the difference between influx and efflux
of the variable (equation 1) and each flux vi is approxi-
mated by a product of power-law functions as shown in
equation 2:

ẋ = vinfux − vefflux (1)

vi(x) = γi

n∏
j=1

x
ρij

j , (2)

where gi represents the rate constant and rij repre-
sents the kinetic order of vi with respect to xj [1-3].
These approximations have been widely applied to mod-
eling and analysis of biochemical systems for allowing
computational simulation of dynamics and parameter
estimation for unknown gi and rij. However, the repre-
sentations have a low range of accuracy when saturation
and cooperativity are represented. To address the reac-
tion rate of enzyme-catalyzed reactions with cooperativ-
ity and saturation, a preferred mathematical function is
the Hill equation which is described as:

vi =
VuHi

K + uHi
(3)

where V denotes the maximal rate, ui denotes the
reaction factor, K represents the saturation constant,
and H denotes the Hill coefficient. The Hill coefficient
H corresponds to the number of binding sites in the
molecule that catalyzes the process [4]. Though there is
some disagreement regarding how accurate it is to
determine the Hill coefficient H by the number of bind-
ing sites [5], H is generally assumed to be a known con-
stant that can be estimated from experimental data.
However, it remains problematic to determine the para-
meters of V and K.
For linearly parameterized systems, the least squares
method generally gives the optimal estimate of para-
meters. In addition to the least square approach, an
adaptive estimation algorithm serves as a powerful tool
to estimate the unknown parameters in ordinary differ-
ential equations (ODE) [6-9][10]. For nonlinearly para-
meterized dynamics, Cao and colleagues have studied
the conditions for parameter convergence if the nonli-
nearly parameterized function satisfies the Lipschitz
condition [11]. Qu and colleagues have proposed an

adaptive control algorithm for a nonlinearly parameter-
ized system with specific input/control in lieu of requir-
ing the Lipschitz condition with respect to parameters
[12]. However, a Hill equation in an ODE does not
satisfy Lipschitz condition with respect to the parameter
K and, generally, it is difficult to apply a continuous
control determined by estimated parameters and states
of biological systems due to the lack of real time mea-
surements. While estimating the parameters of the Hill
equation in ODEs provides accurate prediction of the
reactions, it is very difficult to incorporate the continu-
ous evaluation of the states that is needed to better
understand the regulation of the biological system.
Additionally, it is even more challenging when there is
sparse experimental data in discrete time sequences, as
is often the case.
Bayesian approaches have been widely used for

machine learning, adaptive filters, information theory,
and pattern recognition [13-16][17][18]. Specifically,
Markov chain Monte Carlo (MCMC) methods have
demonstrated to be a powerful inference tool for com-
plex systems raised in behavioral science and computa-
tional biology [19,20][21]. MCMC gains its popularity
due to its easy implementation, ability to generate statis-
tically samples from a target high dimensional distribu-
tion, good inference performance, and convenience for
statistical analysis of results. Therefore, it is very promis-
ing to apply MCMC methods to estimate parameters in
nonlinearly parameterized dynamics.
The aim of this study is to estimate the unknown

parameters θ using a Bayesian approach in nonlinear
ODEs representing a biological system as equation (4):

ẋ = f (θ , x(t), u(t), t), x(t0)) = x0
y(t) = g(x(t))) + ε(t)

(4)

In this representation, x Î Rn denotes the system’s
state variables, for instance, the concentrations of bio-
chemical factors, and x0 is the initial state, f(·) is a set of
nonlinear functions describing the dynamical property
of the biological systems, u(t) Î Rl is the systems input
denoting concentrations of stimuli, and θ Î Rp are para-
meters that characterize dynamic reactions, y Î Rn

represents the observed data subject to a Gaussian white
noise ε(t) ~ N(0,s2), g(·) represents a measurement func-
tion and atypical format will be an identical matrix. We
assume we have discrete time series of y(t), and u(t) and
all parameters in θ are positive.
We applied our Bayesian algorithm to estimate

unknown parameters in the biological pathways
involved in the left ventricle (LV) response to myocar-
dial infarction, which involves inflammatory and fibro-
tic components typical of a wound healing response.
Macrophages begin to infiltrate the LV at day 3 post-
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MI and are stimulated by interleukin-10 (IL-10) to
release transforming growth factor b (TGF-b). In turn,
TGF-b stimulates fibroblasts to secrete extracellular
matrix components that are necessary for an adequate
scar to form. Estimates of the parameters were close to
their true value with considerably small estimatiom
errors, particularly with regards to small noise
variances.

Methods
The mathematical models represented as ODEs gener-
ally lead to continuous solutions, while real observed
data are typically discrete in the time domain. To bridge
the gap between our mathematical model and the real
experimental data, and to predict future samples with
available observational data, we first transformed the
ODE presentation to difference equations.

Transformation of differential equations to difference
equations
With known parameters θ, solutions of equation (4) can
be approximated with the fourth-order Runge-Kutta
method as follows:

xi+1 = xi +
h
6
(k1 + 2k2 + 2k3 + k4)

k1 = f (θ , xi, vi, ti)

k2 = f (θ , xi +
k1
2
, u(ti +

h

2
), ti +

h

2
)

k3 = f (θ , xi +
k2
2
, u(ti +

h
2
), ti +

h
2
)

k4 = f (θ , xi + k3, u(ti + h), ti + h)

(5)

where ti, i = 0,1,,2,... denotes different sampling time
points and h denotes a constant interval between ti and
ti+1. Thus, the next step of xi+1 is determined by present
value xi and the weighted average of 4 incremental.
Without loss of generality, the measurement function g
(·) is an identical matrix, i.e. yi = xi if there is no mea-
surement noise. The predicted output ys at ti+1 can be
obtained with all available yi, ui, and replacement of θ
with estimated parameters θ̂ as:

ysi+1 = yi +
h
6
(k1 + 2k2 + 2k3 + k4) (6)

Estimations of parameter θ can be obtained by apply-
ing a Bayesian approach as follows.

Estimation of parameters using a Bayesian approach
The goal of estimating θ using a Bayesian method is to
obtain the posterior distribution p(θ|y), which represents
our knowledge about the unknown parameters based on
the experimental data y, and it can be expressed as:

p(θ |y) = p(y|θ)p(θ)
∫ p(y|θ)p(θ)dθ

where p(θ) is the prior distribution representing our
knowledge about the parameter θ prior to observing the
experimental data y, p(y|θ) is the likelihood function
denoting how likely it is to observe the experimental
data set given an estimated θ. Based on the posterior
distribution, the unknown parameters θ can be esti-
mated by the minimum mean square error (MMSE) or
the maximum a posteriori (MAP) criterions, which esti-
mate θ by the mean or the mode of the posterior distri-
bution p(y|θ), respectively.
However, since the function f(θ, xi, ui, ti) is highly

nonlinear, the close form expression of p(y|θ) cannot be
obtained analytically, hence neither the Bayesian esti-
mates. We resort to the numerical solutions using
MCMC and specifically, the Metropolis-Hasting (M-H)
algorithm. The MH algorithm provides a scheme for
generating random samples from the desired posterior
distribution, even though its close form is not available.
These random samples can be used with ease to approx-
imate the posterior distribution and calculate various
estimates of the unknowns.
The MH algorithm is an iterative algorithm and the

steps of the proposed algorithm for model (5) at the
(i+1)th iteration can be summarized as the following:

1) Given the parameter sample θi obtained in the ith

iteration;
2) Draw θ⋆ from the proposal distribution q(θ⋆|θi) as
a proposed sample;
3) Calculate the ratio:

α =
p(y|θ �)p(θ �)

p(y|θ i)p(θ i)

q(θ i|θ �)

q(θ�|θ i)

4) Draw a random sample U[0,1] and assign the (i
+1)th sample as:

θ i+1 = { θ� U ≤ λ

θ i otherwise

where l = min{1,a}.
With the assumption that all parameters are positive,

the proposal distribution to generate θ⋆ is chosen as a
Gamma distribution expressed as:

Gamma(θ ; η,β) =
1

βη�(η)
θη−1e

− θ
β (10)

Accordingly, the proposal distributions q(θ⋆|θi) and q
(θi|θ⋆) can be written as:

q(θ�|θ i) ∼ Gamma(θ �; η1,β1θ
i) ∼ 1

(β1θ
i)

η1
�(η1)

θ �η1−1e
− θ�

β1θ
i (11)
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and:

q(θ i|θ�) ∼ Gamma(θ i; η1,β1θ
�) ∼ 1

(β1θ
�)η1�(η1)

θ iη1−1e
− θ i

β1θ
� (12)

The second fraction in equation (8) becomes:

q(θ i|θ �)

q(θ�|θ i)
= (

θ i

θ � )
2η1−1e

1
β1

( θ �

θ i − θ i

θ� ) (13)

In a real application, there are unavoidable statistical
and model noise, which is modeled in this case by the i.
i.d. Gaussian distribution with the unknown noise var-
iance s2. Therefore, in equation (8), p(y|θ) is the mar-
ginal likelihood by integrating the noise variance s2

from the complete likelihood function p(y|θ,s2), i.e.,

p(y|θ) =
∫

p(y|θ , σ 2)p(σ 2)dσ 2 (14)

where p(s2) is the prior distribution taken to be the
conjugate Inverse Gamma (IG) distribution (IG(h2, b2))
as:

p(σ 2) ∼ IG(η2,β2) ∼ β
η2
2

�(η2)
(σ 2)−η2−1e(−

β2
σ 2 ) (15)

and p(y|θ, s) is the product of a series of independent
Gaussian distributions. Both of them have the form
p(yi|θ , σ 2) ∼ N(yi − ysi , σ

2), where y is the experimental
data and ys can be computed using the classical Runge-
Kutta method as shown in equation (6). In this relation,
given the total number of the observations being m, the
integration (14) can be expressed as:

p(y|θ) =
∫

(2π)−
m
2 (σ 2)

−m
2

m∏
i=1

e
−
(ysi − yi)

2σ 2 β
η2
2

�(η2)
(σ 2)

−η2−1
e
−

β2

σ 2 dσ 2. (16)

With the definition of model error as
M.E. =

∑m
i=1 (y

s
i − yi)

2, we can have

m∏
i=1

e
−
(ysi − yi)

2σ 2 = e
−

∑m
i=1 (y

s
i − yi)

2

2σ 2 = e
−
M.E.
2σ 2 (17)

Now, define new shape and scale factors of the IG
function by η2 = η3

2 &β2 = β3
2 and substitute them in

equation (16), we obtain the following equation

P(y|θ) =
∫

(2π)−
m
2 (σ 2)

−m
2 e

−
M.E2

2σ 2

(
β3

2

) η3
2

�
(η3

2

) (σ 2)
− η3

2 −1
e−

β2
2σ 2 dσ 2

= (2π)−
m
2

(
β3

2

) η3
2

�
(η3

2

)
∫

(σ 2)
−
m + η3

2
−1

e
−

M.E+β3
2

σ 2 dσ 2

(18)

Define n′ = m+η3
2 , β ′ = M.E.+g3

2
&s2 = τ then the integral

in equation can be rewritten as:

∫
(σ 2)

−m+η3
2 −1

e
−

M.E+β3
2

σ 2 dσ 2 =
∫

τ−η′−1e−
β ′
τ dτ =

�(η′)
(β ′)η

′ ,
(19)

which is the integral of an IG-type function. There-
fore, the expression of the marginal likelihood function
can be expressed as:

p(y|θ) =

(
β3

2

)η3

2

(2π)

m
2

�
(m + η3

2

)

�
(η3

2

) (
M.E. + β3

2
)−

m+η3
2

(20)

Substituting equations (13) and (20) into equation (8)
results in:

α =
p(y|θ �)p(θ �)

p(y|θ i)p(θ i)

q(θ i|θ �)

q(θ�|θ i)

i.e.

α = (
M.E.� + 2β2

M.E.i + 2β2
)−

m+2η2
2

p(θ �)

p(θ i)
(
θ i

θ � )
2η1−1e

1
β1

( θ �

θ i − θ i

θ� ) (21)

The above proposed MH algorithm will be run for
many iterations until convergence and the samples
obtained after convergence are considered samples from
the posterior distribution p(θ|y). The span of iterations
until convergence is referred to as the burn-in period.
Suppose that N converged samples are collected after
the burn-in. Then the Bayesian MMSE estimate can be
calculated as the mean of the N samples. The confi-
dence of the estimation can be also evaluated with these
samples.

Results
A first order ODE equation was employed in this study
to estimate the unknown parameters in a nonlinear
mathematical model. This ODE was originally estab-
lished to describe temporal profiles of TGF-b post-MI.
After MI, the major sources of TGF-b include activated
macrophages and fibroblasts. IL-10 stimulates macro-
phages to secrete TGF-b and its stimulation effect can
be approximated as a Hill equation. Since we are initi-
ally interested in the macrophage related function at the
early stage and will incorporate the effect of fibroblasts
at the later stage, we established the mathematical
model as follows:

ẋ(t) = −ax(t) +
Vu(t)2

K + u(t)2
Mφ(t) (22)

Where x denotes the concentration of TGF-b, Mj

denotes the macrophage cell density, u(t) denotes the
concentration of IL-10 post-MI, parameter a denotes

Ghasemi et al. BMC Systems Biology 2011, 5(Suppl 3):S9
http://www.biomedcentral.com/1752-0509/5/S3/S9

Page 4 of 10



the degradation rate of TGF-b, the maximum activation
rate of macrophages by IL-10 and the secretion rate of
macrophages for TGF-b are combined together and
denoted as the maximum reaction rate as V, and the
saturation rate for macrophage activation is denoted as
K. The temporal profiles of IL-10 and macrophage infil-
tration post-MI are determined by the published experi-
mental results in C57 mice [21,21,21,21]. In our
computational simulation, parameter a = 15 is calcu-
lated by the half-life data [21], x0 = 0.21 is the concen-
tration of TGF-b measured in healthy adult mice before
MI. Both V and K are the unknown parameters to be
estimated.
A stationary Markov chain was generated by following

the proposed MH algorithm. Only samples after the
burn-in are retained. Since no prior information about
the parameters is available, a flat gamma distribution is
chosen for the prior distribution of θ. The values of scale
parameter for both linear and nonlinear parameter (V
and K respectively) is 2 (h = 2); for the shape parameter
(b), two different values were chosen for linear and non-
linear parameters. This is due to the different range of
values that each of them is covering. So for the linear
parameter as V Î [0.01, 10], a shape parameter of b = 4
is selected. On the other hand, when K Î [1 1000], a
proper parameter factor would be b = 2000. The pro-
posed distribution for p(θ⋆|θi) and q(θi;|θ⋆) follows the
Gamma distribution defined by the same parameters as
mentioned earlier (equations 11& 12). The variance of
the additive noises follows an Inverse-Gamma distribu-
tion defined by parameters h2 = 2, and b2 = 10, which
are chosen to model the non-informative prior knowl-
edge about the variance. All simulations were run for
2000 iterations and the first 1500 were considered burn-
in and removed. The 500 samples after the burn-in of
each run were averaged as an MMSE estimate.
We have simulated three situations: 1) Estimate para-

meter V with known parameter K; this allows us to eval-
uate the performance of linear parameterized system
using the Bayesian approach. 2) Estimate parameter K
given a known V; this allows us to evaluate the perfor-
mance of estimating a single parameter in nonlinearly
parameterized dynamics. 3) Estimate both V and K
using the proposed Bayesian approach. To mimic the
real experimental data, we sampled our computed state
at 500 time points. The temporal profiles of macrophage
cell density, IL-10 concentrations, TGF-b concentra-
tions, and sampled TGF-b (500 samples over 20 days) in
the time sequence were shown in Figure 1.

Estimate parameters in linear parameterized system
In a Hill-equation, the parameter V is linearly parame-
terized. In the first set of our simulations, we set K = 2
and estimate the parameter V with the temporal data.

The nominal value of V is 5, and the estimated V using
MCMC ranges from 4.9247 to 5.0045. The performance
of the estimation algorithm can also be evaluated by
examining the mean squared error (RMSE) of V with
respect to the variance s2 of the noises as shown in Fig-
ure 2. RMSE of V increases monotonically as variance
s2 increases but remains in a very small region. RMSE
of V was calculated as 0.017 while the variance s was
increased to 1, suggesting that the estimate of V remains
accurate when signal to noise ratio gets lower. This per-
formance demonstrated that MCMC worked very well
for linearly parameterized dynamics.
At the same time, the performance of MCMC was

compared with least square algorithm. As parameter V
to be estimated is a linear parameter, this comparison
will give us a good idea about the performance of
MCMC. It is expected that the least square gives the
best results in estimating the linear parameter with the
presence of noise which is shown in Figure 2. There
exist large differences between the least square and
MCMC algorithms when the variance of noise (s2) is
small. As the variance of noise increases, the error dif-
ference decreases. However it should be mentioned that
the outliers in MCMC estimation is significantly more
than least square. Same as MCMC estimation, the nom-
inal value of V is 5, and the estimated V using least
square ranges from 4.9308 to 5.0561.

Estimate parameters in nonlinearly parameterized
dynamics
To verify our algorithm for nonlinearly parameterized
dynamics, we estimated parameter K assuming V avail-
able and parameters V and K when both are unknown.
When a nominal value of K is set as 5000, we ran 6

groups of simulations according to 6 different parameter
settings for V (V = 0.01,0.1, 0.5, 1, 5 and 10). Output of
each group was subject to white noises with different
variances ranging from s2 = 0 to s2 = 10. We repeated
such simulation at K = 1, 10, 50, 100, 500, 1000, 5000 &
10000, respectively, and showed our RMSE error of esti-
mated values of V subject to different variances while V
= 1 and V = 10 in Table 1. To illustrate the accuracy of
the estimation, we also depicted the RMSE of estimated
K with different setting of V and variances in Figure 3.
Our results demonstrated that the estimated parameter
error with the proposed algorithm decreases by increas-
ing the values of V. It was also shown that by increasing
the value of K, the parameter can be estimated with less
error.
In case that both V and K are unknown, we also ran

twenty different settings of the parameters and verified
the error of the estimation. We verified the cases while
the true value of K was 5000 and 10000, and true value
of V was 0.01, 0.1, 0.5, 1, 5, and 10, and while the true
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value of V was set as 1 and 10, and true value of K was
set as 1, 10, 50, 100, 500, 1000, 5000 and 10000. Again,
our algorithm generated estimates close to the nominal
values and the RMSE of different parameter V when K
= 5000 was shown in Figure 4(A), RMSE of different
parameter V while K = 10000 were shown in Figure 4
(B), RMSE of different parameter K while V = 1 was
shown in Figure 4(C), and RMSE of different parameter
K while V = 10 was shown in Figure 4(D), respectively.
It can be seen from our results in Figure (4A and 4B)
that the error of estimated parameter decreases when
the values of V increased. It was also demonstrated that
when K increases, a better estimation of this parameter
can be achieved. It can be seen in Figure (4C and 4D)
that when parameter K increases, K can be estimated
with less error for any particular value of linear para-
meter V. There is not a huge difference between the
RMSE of the estimated parameter when increasing V

from 1 to 10. In general, RMSE of parameters increased
as variances of the noises increased, and RMSE of para-
meter K was greater than RMSE of parameter V.

Discussion
This study is the first investigation to estimate unknown
parameters in nonlinearly parameterized biological
dynamics using MCMC algorithm. We have applied a
Bayesian approach to estimate two unknown parameters
in an ODE model describing the temporal profiles of
TGF-b in the post-MI setting. Our computational
results have demonstrated the effectiveness of the Baye-
sian approach for parameter estimation in a nonlinear
model for biological pathways. As such, this study pro-
vides a valid estimation approach for nonlinear
dynamics of biological pathways. The most important
contributions of this study are listed as follows: 1) The
new proposed method bridges the gap between the

Figure 1 Temporal profiles of macrophage numbers, IL-10 concentrations, and TGF-b concentrations post myocardial infarction
establish the nonlinear dynamic patterns of the MI response. A: Temporal profile of macrophage infiltration (cell numbers/mm2) post
myocardial infarction reconstructed from experimental data in C57 mice [21]. B: Temporal profile of IL-10 concentrations (pg/ml) post myocardial
infarction reconstructed from experimental data in C57 mice [19,20]. C: Temporal profile of TGF-b computed based on the nonlinear dynamics
equation (24). D: Sampled TGF-b profile in part C to represent the sparse experimental data on TGF-b concentrations.
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Figure 2 Performance evaluation for linear parameter estimation. A: Root mean square error of parameter V given parameter K = 2 was
plotted while variance of the noise increased from 0.01 to 100 with both MCMC and least square. The true value of V was set as 5. Root mean
square error monotonically increased as variance increased. The root mean square error was calculated as 0.0331 and 0.0256 as variance of noise
increased to 100 for MCMC and least square, respectively. This demonstrated that the linear parameter estimation performed within the
recommended range. B: the boxplot for the estimation of V were shown for both least square and MCMC methods as the noise variances
increased from 0 to 100. The number of outliers is significantly higher for MCMC comparing to least square.
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sparse observational data and the need for continuous
signals embedded in mathematical models. Therefore,
parameters estimated on the basis of experimental data
have clear biological meaning in the mathematical mod-
els. 2) The introduction of additive noises and measure-
ment functions reflect real scenarios in biological
experiments, therefore, giving more confidence to the
parameter estimation real world in applications. 3) A
new MCMC algorithm is proposed to estimate para-
meters in general nonlinearly-parameterized dynamics.
Our results demonstrated good performance in estimat-
ing two parameters of an ODE with a Hill equation.
Together, this new method will have widespread applic-
ability to many biological systems, not limited to investi-
gations on cardiovascular disease.

In this study, our key task is defined as parameter esti-
mation for a nonlinearly parameterized mathematical
model for biological pathways. As there exist different
representations of mathematical models such as linear-
ized models and power law functions, it is possible to
approximate nonlinearly parameterized dynamics by lin-
early parameterized dynamics [21], which would signifi-
cantly reduce the difficulty for parameter estimation.
However, it is worth noting that transformations to a
linearized model and power law modelonly guarantee 1)
the transformed models are identical to the original Hill
representation at the operating point u0; and 2) the
transformed model have the identical first-order deriva-
tives at the operating point u0 as the original Hill repre-
sentations. Therefore, both linear and power low

Figure 3 Performance evaluation for nonlinearly parameterized situation with known V. Root mean square error of parameter K (A: K =
5000, and B: K = 10000) was plotted with respect to different noise variances ranging from 0.01 to 10 and different values of V. Colors of the
curves denote different parameter settings of parameter V. (Blue: V = 0.01, Red: V = 0.1, Green V = 0.5, Cyan: V = 1, Magenta: V = 5, and Black: V
= 10).

Table 1 Estimated values of parameter K subject to different noise variances

Estimated value of K

Parameter
V

True value of
K

s2= 0 s2 = 0.1 s2= 0.5 s2 = 1 s2 = 10

V = 1 K = 1 0.895860924 1.198924271 2.060871616 2.392641064 2.2417669

V = 1 K = 10 9.942624719 9.417099524 5.18899955 3.041348517 2.3984733

V = 1 K = 50 49.84538377 50.3653591 49.79822957 48.21724047 17.612567

V = 1 K = 100 99.57735594 100.5475019 98.86122817 95.19722428 35.651171

V = 1 K = 500 499.7813772 498.9833568 495.3510638 501.8771493 450.50892

V = 1 K = 1000 999.2728579 997.8776983 995.7044492 988.870943 891.65597

V = 10 K = 1 0.970450637 1.006078611 1.094535769 1.282321201 2.1026316

V = 10 K = 10 9.975237184 9.997279446 9.847326837 9.531280999 5.3013845

V = 10 K = 50 50.05571987 49.87267536 49.91859144 50.0966008 49.055078

V = 10 K = 100 99.87386748 99.92057687 100.6109818 99.56079265 97.374093

V = 10 K = 500 500.0809047 499.7714225 499.802065 500.2063382 497.87452

V = 10 K = 1000 999.5597507 999.5670495 1000.211577 1001.028307 996.15873

Parameter V was set to 1 and 10, respectively
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approximations hold locally in a small vicinity of the
operating point u0. When the variable, u, in Hill repre-
sentation has large variations, in reality, these transfor-
mations may lead to huge modeling errors. Though
these transformations will greatly reduce the complexity
of parameter estimation, they cannot provide accurate
estimation. This emphasizes the necessity of parameter
estimation in nonlinearly parameterized dynamics
directly and our proposed MCMC algorithm is a
response to this need.
While we illustrated the effectiveness of the algorithm

with a first order ODE model, the algorithm can be
expanded to estimate more parameters with higher
order ODE models for more complicated systems. In
that case, convergence of the estimates and convergence
speed of the algorithm should be further studied. Addi-
tionally, the measurement function we used in this
study is an identical matrix, this identical matrix can be
relaxed by an observable function where all states x can
be reconstructed by the output y.

In this study, we proposed flat Gamma distributions as
the proposal distributions in the MH algorithm.
Although they lead to implementations with relatively
slow convergence of Markov chains, the algorithm can
still produce very robust estimation results. Selection of
better proposal distributions that will lead to faster con-
vergence, thus more efficient implementation of the
algorithm will be a focus of our future study. In addi-
tion, we employed real experimental data in this study
to estimate the effects of IL-10 on TGF-b concentra-
tions in left ventricle post-MI and our measurement
equation includes additive noises to simulate the real
biological systems. However, we are well aware that the
structure of the model is simplified and there exist mod-
eling errors embedded in the structure of the mathema-
tical model. These modeling errors will likely lead to
estimation errors of the parameters. We can minimize
the modeling error with the accumulation of more bio-
logical knowledge. Though it is beyond the scope of the
current paper, further investigation on modeling

Figure 4 Performance evaluation for nonlinearly parameterized situation with unknown V and K. Root mean square error of parameter K
was plotted with respect to different noise variances ranging from 0.01 to 1 and different values of V in A and B. (A: true value of K = 5000, and
B: True value of K = 10000). In subfigures A and B, colors of the curves denote different parameter settings of parameter V (Blue: V = 0.01, Red: V
= 0.1, Green V = 0.5, Cyan: V = 1, Magenta: V = 5, Black: V = 10). Root mean square error of parameter V was plotted with respect to different
noise variances ranging from 0.01 to 1 and different values of K in C and D (C: true value of V = 1, and B: True value of V = 10). In subfigures C
and D, colors of the curves denote different parameter settings of parameter K (Blue: K = 1, Red: K = 10, Green K = 50, Cyan: K = 100, Magenta K
= 500, Black K = 1000, Dark Green K = 5000, Brown K = 10000).
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structure using real in vivo experimental results has
been planned for our future research.

Conclusions
In conclusion, we have proposed an algorithm which
combines the transformation from ODEs to difference
expressions and a Bayesian algorithm to estimate multi-
ple parameters in a nonlinear mathematical model for
biological systems using discrete observational experi-
mental data. Estimates of the parameters were close to
their true values with considerably small estimation
errors, particularly with regard to small noise variances.
This proposed estimation algorithm provides a powerful
tool to analyze time series data and better understand
the interactions among biological pathways.
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