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Abstract

Background: Proteins, individual cells, and cell populations denote different levels of an organizational hierarchy,
each of which with its own dynamics. Multi-level modeling is concerned with describing a system at these
different levels and relating their dynamics. Rule-based modeling has increasingly attracted attention due to
enabling a concise and compact description of biochemical systems. In addition, it allows different methods for
model analysis, since more than one semantics can be defined for the same syntax.

Results: Multi-level modeling implies the hierarchical nesting of model entities and explicit support for downward
and upward causation between different levels. Concepts to support multi-level modeling in a rule-based language
are identified. To those belong rule schemata, hierarchical nesting of species, assigning attributes and solutions to
species at each level and preserving content of nested species while applying rules. Further necessities are the
ability to apply rules and flexibly define reaction rate kinetics and constraints on nested species as well as species
that are nested within others. An example model is presented that analyses the interplay of an intracellular control
circuit with states at cell level, its relation to cell division, and connections to intercellular communication within a

dynamics.

population of cells. The example is described in ML-Rules - a rule-based multi-level approach that has been
realized within the plug-in-based modeling and simulation framework JAMES II.

Conclusions: Rule-based languages are a suitable starting point for developing a concise and compact language
for multi-level modeling of cell biological systems. The combination of nesting species, assigning attributes, and
constraining reactions according to these attributes is crucial in achieving the desired expressiveness. Rule
schemata allow a concise and compact description of complex models. As a result, the presented approach
facilitates developing and maintaining multi-level models that, for instance, interrelate intracellular and intercellular

Background

In computational modeling of cell biological processes, a
formal representation, i.e. a model, of the dynamics of the
system under study is the central subject of investigations.
Cell biological models typically focus on the processes of
molecules like proteins and small chemicals. However, in
addition, dynamics at cell level, e.g. proliferation and dif-
ferentiation of stem cells, and cell-cell interaction, influ-
ence these intracellular dynamics as well, just like such
high-level dynamics are influenced by processes at the
molecular level. This hierarchical organization and the
causalities between different levels, i.e. from the lower to
the upper (upward causation) and vice versa (downward
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causation), are universal characteristics of biological sys-
tems [1,2]. Hence, multi-levelness has been identified to
be an important and general principle of systems biology
[3]. Depending on the question that shall be pursued with
the model, capturing processes that happen at different
levels, e.g. proteins, individual cells, and cell populations,
and their interrelations within the model is of relevance
[4]. The question is how can this multi-levelness be sup-
ported by modeling methodologies? We will pursue this
question in the context of rule-based modeling.

Rule-based modeling

In the past years, many different modeling languages
have been introduced to support modelers in their task,
for example [5-8]. The idea is to write down a model not
directly mathematically, like in ordinary differential
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equations (ODEs) or stochastic processes, but in terms of
a tailor-made syntax. A semantics is then provided that
bridges the gap between what is written and the mathe-
matical definition of its computation. A carefully
designed syntax can increase the accessibility of models
for discussion and presentation, especially for domain
experts that are not extensively familiar with modeling
and the underlying mathematical formalism. Formal
modeling languages can also extend the flexibility in the
choice of methods for model analysis, since more than
one semantics can be defined for the same syntax (see
[9-12] for some examples).

Rule-based modeling languages use the notation of
chemical reaction equations (or very similar representa-
tions), which denote a natural choice of syntax to model
cell biological systems. Consider, for example, a simple
reversible process of dimerization as it occurs in many
signaling pathways [13,14]. It can be described by the two
chemical species Monomer and Dimer and the following
reversible reaction, where krand k, are the respective rate
constants for the forward and backward reactions:

k¢
Monomer + Monomer = Dimer

Chemical solutions, i.e. mappings from species to con-
centrations or alternatively to their discrete integer
amounts, describe a model’s state. A formal semantics
can then be defined as mapping of chemical solutions
and reactions to, for example, stochastic processes or
ODEs [11,15].

Many rule-based approaches, for instance [15-17], allow
to describe species with attributes as well as rules with
reactant patterns, i.e. by specifying structured molecules
and rule schemata they allow to model basic reactions as
an alternative to the entire network of all possible chemi-
cal species and reactions. Thus, due to rule schemata,
complexity - in terms of the number of required rules -
can be significantly reduced [18].

Let us illustrate this with the help of a simple example.
Proteins, in particular those involved in signaling path-
ways, often show various sites for binding other mole-
cules. Furthermore, modifications like phosphorylation
or methylation at diverse sites might determine the abil-
ity for binding other molecules and thus influence the
interaction pattern of a protein. Hence, combinatorial
explosion easily leads to very complex network models
with hundreds or even thousands of species and reac-
tions. Consider a system of ten interacting proteins. One
of them is a large scaffolding protein that might reversi-
bly bind each of the other nine proteins at nine distinct
sites. We assume each of the nine binding reactions to be
independent from other bindings. This at first view quite
simple model requires to define 521 (2" + n with n = 9)
molecular species, i.e. distinct combinations of bindings,
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and 4608 reactions. Attributes and rule schemata help to
deal with the system’s complexity by specifying only the
basic molecules and reactions. As the binding reactions
are assumed to be independent from each other, each of
them may be described individually without taking the
state of other binding sites into account. By omitting
such irrelevant information, one rule might then be
translated into multiple basic reactions of a large network
by which the model is kept small and manageable. Hence,
a rule-based modeling language like BioNetGen [11]
allows to model the above system by specifying a set of
only ten molecules and nine reversible rule schemata
instead of 521 molecular species and 4608 reactions. For
a more comprehensive review of rule-based modeling
and its advantages for formal descriptions of signal trans-
duction pathways, we would like to refer to [18].

Summing up, due to schematic rules, the complexity of
a model may be effectively reduced and an intuitive mod-
eling metaphor along the lines of well-known chemical
reaction equations facilitates the process of modeling and
the accessibility of models. Consequently, the number of
rule-based approaches to describe biochemical reactions
has increased during the last years, e.g. [8,11,15,16], and
also an increasing number of publications can be
observed that utilize rule-based languages for concrete
modeling studies, e.g. [19-22].

In this paper, we identify concepts for supporting rule-
based multi-level modeling. We show a realization of
these concepts as part of ML-Rules, a modeling and
simulation approach we developed. Thereby, we start
with concepts that nearly all current state of the art rule-
based approaches support to successively approach con-
cepts that are obviously related to multi-levelness, i.e.
nesting. Thereafter, an example in which intracellular
and intercellular dynamics are combined will illuminate
the role that each of these concepts play in supporting
multi-level modeling. Finally, to complete the results and
discussion part of the paper, related work will be revisited
to discuss which of the identified concepts are already
supported.

Results and Discussion

Overview of Concepts

A very brief introduction to rule-based modeling is already
given in the previous background section. In the following,
we will focus on the concepts we use in our rule-based
multi-level approach (ML-Rules). Their respective role in
supporting multi-level modeling will be shown in the sub-
sequent example model.

For first studies, we base ML-Rules on continuous time
Markov chains (CTMCs). The semantics is discrete popu-
lation-based, i.e. we work with natural copy numbers of
identical species instead of real valued concentrations. The
reason for a stochastic semantics lies in the observation
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that at higher levels of organization (like cells) no longer
abundant numbers will be able to balance fluctuations as
can be often observed at lower levels, e.g. proteins that are
involved in metabolic pathways. And also when looking at
levels further down in the hierarchy, e.g. gene regulatory
processes, stochastic events may play a crucial role due to
low copy numbers of involved species. Hence, stochasticity
is often an essential feature for multi-level modeling of cell
biological systems [23]. However, it should be noted that
stochasticity is not necessarily constrained to CTMCs, as
sometimes at higher levels other than exponential time
delays are required, e.g. normal distributions [24].

Species, attributes, and solutions

The basic building blocks of ML-Rules models are called
species which may represent any object of interest, e.g.
small chemicals, macro-molecules like proteins, or mem-
brane bound cellular compartments. Each species has a
name, e.g. A, and each name has a fixed arity ar e Ny
that specifies the number of attributes of a species. Attri-
butes are not restricted to a finite set of values and they
may be of any kind of numerical value and textual string.
For convention throughout this paper, species names
start with a capital letter and attributes are written in a
bold font type within parentheses behind the name. Par-
entheses are omitted if ar = 0. For example, A, A(1), A
(0,1.67), and A(green,-15, true) are valid examples for a
species A with ar(4) = 0, 1, 2, and 3 respectively. How-
ever, these examples are invalid when two or more of
them are being used within the same model, as the arity
of a species name is fixed and therefore may not vary
between species with identical names, i.e. A in this case.
Each defined combination of attributes is a distinct spe-
cies, i.e. A(1, 1) and A(1, 2) share the same name but are
different species.

A solution is a multiset of species, i.e. can be either a
single species or a composition of multiple sub-solutions.
The ‘+ is the delimiter symbol for composing multiple
solutions and a solution can be also an empty set &. We
write nA with n € N to refer to a solution which is com-
posed of # identical copies of A (u is omitted if n = 1).
For example, [2 A(1) + 4A(2) + B] describes a solution
consisting of three different species with an amount of 2,
4, and 1 respectively.

Reaction rules, rule schemata, and their instantiation
Reaction rules describe the dynamics of a model, i.e.
they define how certain species are removed from or
added to a given solution. When firing, a rule substi-
tutes a reactant solution S by a product solution S The
general syntax follows the notation of chemical reaction
equations and the majority of other rule-based modeling
languages, e.g. [8,9,16,17,25], namely reactants are writ-
ten on the left-hand side and products on the right-
hand side of an intermediate right-headed arrow:
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S— 9.

For simplicity reasons, our syntax only allows for uni-
directional rules. Thus, two complementary rules have
to be defined for modeling reversible reactions. How-
ever, it would be straightforward to extend the syntax to
reversible reaction rules if needed.

Rule schemata are a notational convenience, which
uses variables to bind attributes of reactants. By doing so,
each rule schema may encode for several rule instantia-
tions, i.e. reactions. Let us take a reaction which converts
a species A into another species B. Consider the situation,
that A is an attributed species with an arity ar(A) = 1, but
the attribute is of no interest for its reaction to B. With-
out schematic rules, we would need to specify one rule
for each possible value of the attribute of A, which can be
tedious and error-prone.

Moreover, as we do not fix the set of attribute values,
i.e. the state space might be infinite, it is impossible to
define each potential reaction. Therefore, instead of spe-
cifying rules with the defined reactant species, we define
a reactant pattern by inserting a variable x for the attri-
bute of A:

A(x) — B.

For convention, we write variables in a non-bold font
type and starting with a lower case letter throughout
this paper. Mapping the above rule schema to the solu-
tion [2 A(1) + 4A(2)] evaluates to the following two rule
instantiations:

A(1) - Band A(2) — B.

Besides such very simple variants, rule schemata can be
also defined by employing expressions to specify attri-
butes. For instance, a reactant pattern A(x) + A(2x)
matches every solution where at least two As exist, one of
which attribute’s value is exactly twice the attribute’s
value of the other one. Expressions can be also used to
specify the attribute of the products, e.g. the rule A(x) >
B(2x) applied to a solution [A(2) + B(3)] would lead to [B
(3) + B(4)]. Please note, arbitrary functions can be used
for expressions (see also the section on implementation).

A further reduction in the number of rules can be
achieved by using attributes to represent links between
species, e.g. to model noncovalent bonds within protein
complexes. By doing so, individual subunits of a protein
complex can be preserved instead of specifying numerous
species names, each of which would reflect a different
combination of subunit states and bindings (recall the
scaffold protein example in the background). Entirely new
values can be created with the help of the v-operator:

A(F) + B(F) = (vx)A(x) + B(x).



Maus et al. BMC Systems Biology 2011, 5:166
http://www.biomedcentral.com/1752-0509/5/166

F is a constant that denotes a free binding site and vx
creates a fingerprint-like unique value which does not
already occur in the current model state. It is assigned to
the products on the right hand side of the rule via vari-
able x, i.e. in an instantiation of the rule, x is replaced by
a newly created unique value which serves as identifier
for this particular binding. This method for representing
linkage of species is identical to private channels in the
mi-calculus [6,26] and allows to model molecular com-
plexes similar as can be done with rule-based languages
that have explicit notions of complexation, e.g. [16,17].
Moreover, once created, unique values can be used in a
highly flexible manner, e.g. to describe bonds shared by
more than two binding partners (like hyperedges in a
graph) or across level boundaries (the concept of multiple
levels will be introduced below). Species can also be
marked with an unique indentifier to observe the
dynamics of individual entities.

However, note that the approach also has some draw-
backs compared to explicit notions of molecular bind-
ings: first of all, without profound knowledge or decent
annotation of the model, it might be difficult to find out
whether certain attributes of species represent binding
sites. The approach would also allow to reset just one
species to its unbound state while its former binding
partner remains unchanged. Therefore, the modeler is
responsible for describing a correct model without such
unrealistic dynamics. Furthermore, at least in the current
implementation of ML-Rules, using identifiers for model-
ing links between species may slow down the simulation
as the number of distinct species increases and therefore
matching reactants may take significantly more time (see
section on implementation).

Kinetic rates and constraints
Each reaction rule is assigned a stochastic kinetic
rate r € R§;

s>

The higher the rate of a rule, the more likely the rule
will fire at a time calculated according to this rate. The
kinetic rate can be a simple constant numerical value, for
example, to describe a chemical reaction with constant
speed, i.e. a zeroth-order reaction whose speed is inde-
pendent of the amount of any chemical species. However,
most reaction rules that describe biological systems need
to take the amount of one or more reactant species into
account for specifying correct system dynamics. Probably
in most cases the kinetics of a rule follows the law of
mass action, but in systems biology alternative kinetics, e.
g. Michaelis-Menten kinetics for enzymatic reactions and
Hill functions for describing cooperativity, are also fre-
quently applied [27]. That is why we allow for arbitrary
reaction rates using mathematical expressions. Any kind
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of mathematical expression is allowed that evaluates to a
non-negative numerical value, see also [28].

Species identifier are used to refer to the amount of
species in a given solution. We assign reactant A a spe-
cies identifier a, i.e. A(...)%, which evaluates to the amount
of species A(...) in the solution. Assuming mass action
kinetics, the rate of a first-order reaction A — B with rate
constant k can then be correctly described as follows:

k.
A(x)* =5 B.

The evaluation of its mapping to the solution [2A(1) +
4A(2)] leads to two rule instantiations with different
propensities:

A5 B and A(2) 43 B.

Like in the attributed m-calculus [29] and React(C)
[15], reaction constraints allow for more powerful con-
trol on the dynamics of a model.

For example, we can constrain the preceding rule to
only fire when the amount of A(x) exceeded a certain
threshold value T:

)a if a>T then k.a else 0

A(x B.

If the amount of A(x) in a given solution does not
exceed T, the if-then-else expression evaluates to a
kinetic rate of 0, which determines that the rule will not
fire.

To enhance the readability of rules with such con-
straints, we use an extra notation. Instead of a complex
rate consisting of the expression 1f e then r else 0,
we write the conditional expression e below the arrow
that is assigned the basic kinetic rate r:

if ethenrelse0
—_— s

shsas s
e

The preceding example now looks as follows:

A(x)* 24 B,
a>T

Multi-level rule schemata

The features listed so far are not new. Species with attri-
butes and schematic rules are standard features that can
be found in nearly every rule-based language in the field
of systems biology, e.g. [11,15,16]. The requirement for
modeling biological systems with rate kinetics different
from those following the law of mass action seems to be
also widely accepted nowadays. BIOCHAM [9], LBS [8],
and React(C) [15], for example, support arbitrary reaction
rates. Also recent developments for the BioNetGen lan-
guage now allow to specify user-defined rate law func-
tions, and moreover, modeling of conditional expressions
to support the construction of logical sequences of
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control [30]. All together, they will play a role in support-
ing multi-level modeling.

However, a truly salient feature of multi-level model-
ing are hierarchies. Hierarchical structuring facilitates
modeling of complex biological systems by defining
them in terms of their components and the interactions
that exist between them. Hierarchies help to structure
the knowledge about a given system [31]. In addition,
they allow to describe multiple nested solutions similar
to the multiple separated reaction compartments that
can be found in biological systems, e.g. cells, organelles,
and vesicles.

To address the need for hierarchical model structures,
we introduce the concept of nested species. That means
species may not only be characterized by names and their
attributes, but also by a potentially enclosed solution of
further species. Let us give an example where A, B, C, D,
and E denote different names of species. Solution S con-
sists of two species A and B of which both contain solu-
tions with further species on their own. Species A
consists of a sub-solution S4 = [C + 2 D[Sp]], i.e. a single
atomic species C and a nested species of type D[Sp] with
an amount of two and a sub-solution Sy, = [E]. Equally to
Sp, the sub-solution enclosed by B consists also of spe-
cies with name E, but here with an amount of three: Sp =
[3E]. The whole nested solution can be written as:

S=[A[C+2DI[E]l+BI[3E].

To avoid confusion by too many brackets and to get a
quick visual impression of the nesting, in the following
we will use a graphical representation of nested nodes:

A

B

5]

S = D ||+

+z

Please note that nested species may still have assigned
attributes (see also Figure 1A and 1B). In the textual syn-
tax, attributes and the enclosed solution are embraced by
different kinds of brackets, i.e. A(0)[S4] denotes the exis-
tence of an attribute 0 for the above nested species A.
The graphical syntax is straightforward:

A(0)

D 2 A(0)[C +2D[E]]

+z
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Figure 1 Nested model structure. lllustration of the hierarchical
modeling concept. Different shapes of nodes correspond to
different species names while attributes are color-coded. Stacking of
identical nodes depicts the amount of a certain species. (A)
Graphical representation of a hierarchical model structure via nested
nodes. (B) The same model structure alternatively depicted as a
directed tree graph. Please note that besides atomic species
(triangles and diamonds) also species containing a sub-solution
(squares) might be attributed so that each species at each level
might has its own state. (C) Examples of matching different reactant
patterns within the hierarchical model structure. The rainbow
shadings in the second and third pattern illustrate variable instead
of defined colors, i.e. attributes.

The ability to assign attributes to nested species allows
to equip each hierarchical level with an own state that is
not only determined by the enclosed species. Such high-
level states are of particular interest for multi-level mod-
eling as they allow to describe dynamic behavior similar
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to observations performed at different levels of organiza-
tion. The later example model will illustrate this in
detail.

A nested hierarchical model structure opens the door
for reducing model complexity not only by specifying
rule schemata as described above, i.e. by specifying reac-
tant species with variables instead of defined attribute
values. The number of rules needed may be also
reduced by applying rules to multiple solutions, so that
reactants can be matched at different levels and within
solutions enclosed by different species types (Figure 1C).
However, this has an important consequence for the
semantics. When applying rules to solutions and calculat-
ing the propensity of a reaction, one needs to take the
context of this application into account, which is given
by the amount of species at higher levels (Figure 2). The
propensity of the rule has to be adjusted according to the
whole hierarchy above, as a reaction is more likely to
happen the more solutions exist it could potentially take
place in.

To let different levels of a hierarchical model interact
with each other, a rule may involve nested reactants and/
or products. Such rules look pretty much the same as

Figure 2 Hierarchy-dependent instantiation of rules. Due to
population-based aggregation of species, the propensity (firing rate)
of a rule instantiation is not only determined by the actual rate of a
schematic rule (here the amount of green triangles and blue
diamonds) but it is also context dependent, i.e. it is proportional to
the amount of enclosing species. Therefore, enumeration of rule
instantiations requires to calculate the propensity p dependent on
the whole hierarchy above the matched reactant species. For
example, the propensity of the rightmost matching is proportional
to 2:2:1-2 = 8, where the first two factors correspond to the amount
of triangles and diamonds, the third describes the single enclosing
rectangle, and the last factor corresponds to the amount of the
outermost enclosing species (light blue with round corners).
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rules of flat models do. In principle, also the enumeration
of such rules works similar. For example, the rule

A(1)

describes a reaction from A(0) to A(1) under the condi-
tion that A encloses at least one species C. Please note,
this rule may also match species where A(0) contains
further species in addition to the C (no matter which and
how many), for instance like in the previous example.
However, such a sub-solution gets lost when the rule
fires, as the product species contains just exactly one C.
The same holds true for a potential sub-solution of C;
the reactant pattern matches every species where a C is
part of a sub-solution of A(0), but it says nothing about a
sub-solution of C. Hence, if the reactant species C would
contain further species, they would get lost as well.

To prevent this from happening, we would need to
specify this explicitly, by binding the solution to the
variable x, defining a guard for the reaction, i.e. C € x,
and inserting x into the product:

k-a

— A(1)[C]

(>

A(0)[C]”

A(0)[x1" =5 A(1) [x].

As it is often the case that we want to preserve the rest
of the solution, we provide a specific rule schema for this
case where a variable binds to the entire rest of a solution
(the dashed rectangle in the following example) and can
be used to reinsert this solution on the product side of the
rule. The above rule can be specified now as:

A(1)

o]+

2 A0)[C + 7] £ AQ)[C + 7]

Such bound solutions can be freely reused for defining
the products, i.e. migration, copying, and merging of solu-
tions are easy tasks. The problem of splitting is another
matter, for which specific operations on solutions are
needed, e.g. to split a solution equally into two new solu-
tions. Whereas ML-Rules and its current simulator allow
the use of arbitrary functions on attributes, the application
of functions on solutions is not yet supported. However,
an integration into ML-Rules requires only slight adapta-
tions of the syntax and semantics and is therefore planned
for the near future.

Later, we will provide a more detailed explanation of our
multi-level approach based on a realistic biological system.
With the help of this example, we will also motivate again
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the need for multi-level modeling and illustrate how to
realize upward and downward causation.

Implementation

The modeling and simulation environment for ML-Rules
has been realized within the modeling and simulation fra-
mework JAMES II [32]. Figure 3A gives a very brief over-
view of the JAMES II framework, which consists of a core
and a large set of different plug-ins. For ML-Rules, a set
of new plug-ins has been implemented: an editor that
allows to create and edit ML-Rules models supporting
syntax highlighting (including syntactical and semantical
consistency checks) and a simulator which is based on
the Direct Reaction Method of Gillespie [33] and thus
implements an exact stochastic simulation algorithm
(SSA). In addition, plug-ins for model reading and writ-
ing and for observing the model have been realized (see
also Figure 3B). These are the typical plug-ins that have
to be implemented if a new formalism shall be added to
JAMES II. Other plug-ins can simply be reused, e.g. for
random number generation and event queues. Also plug-
ins for (parallel) optimization, validation, trace analysis,
data storage, etc. can be reused to support the execution
of entire simulation studies [34].

Below we provide a basic description of the simulation
algorithm. Please note that in JAMES II simulation algo-
rithms are not designed as monolithic blocks. By using
plug-ins, alternative sub-algorithms can be easily exploited
and combined. It has been shown that the performance
and suitability of algorithms depend to a large degree on
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the concrete model, that details (i.e. sub-algorithms) mat-
ter, and that a suitable configuration can significantly
speed up simulation [35]. In combination with methods
that help to automatically select and configure simulators
on demand, this type of simulation design supports a high
flexibility for executing multi-level models. Therefore, the
simulator is structured as follows.
Require: S, rules
for ru € rules do
rts <— MatchReactants(ru, S)
rcts < rcts | CreateReactions(ru, rts, S)
end for
for r € rcts do
Yprop <— CalcPropensity(r)
end for
reaction < SSA(rcts)
for reactant € reaction do
RemoveReactant(reactant)
end for
for product € reaction do
PutProduct(product)
end for
MatchReactants selects all matching reactants of the
selected rule schema ru. The next step is to instantiate
the rule schema ru and grouping equivalent rule
instances by calculating the reactions rzcs. Now the pro-
pensity is calculated for each reaction r. Please note, as
now the number of reactants (that apply) is part of the
reaction, calculating the propensity is only dependent on

A

JAMES Il Core

| Experimentation Layer |

l Plug-in request

| Registry |

Management I

Plug-in Types Plug-ins

Formalism

CA, ML-Rules, ...

Figure 3 Architecture of ML-Rules and the JAMES Il framework. (A) Basic overview of the JAMES Il modeling and simulation framework
architecture. The core defines a basic set of plug-in types and plug-ins needed to run experiments and also provides a rich set of tools reusable
in other plug-ins. Also part of the core, the registry is responsible for managing plug-in types and plug-ins, and the experimentation layer carries
out simulation experiments, e.g. simple simulation runs, parameter scans, optimizations and sensitivity analyses. (B) Simplified overview of the
main ML-Rules plug-ins and how they are interconnected. Arrows show flow of data.

ML-Rules
Editor / Model Reader

Transformation

Executable
ML-Rules Model

Simulation Output Trajectories
ML-Rules ML-Rules
Simulator Observer
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r. Also, all information needed is directly available for
each product in r, such as bound attribute values or solu-
tions that are used on the rule’s product side. After that
an SSA is invoked. We have so far integrated the Direct
Reaction Method of Gillespie. The selected reaction is
executed by removing reactants and adding products.

The complexity of MatchReactants for matching a
reactant is O (n + m*) where n denotes the number of
species in the solution, m the number of species in one
context and k the depth of nesting of the reactant. The
complexity of CreateReactions is O(I") where 1 is the
number of reactants of a rule. Some optimizations are
employed, e.g. to restrict the search space for matching
reactants. For example, when evaluating a rule A(4) — B,
all As whose attribute does not equal 4 will not be con-
sidered for matching the reactants of a rule to a solution.
However, most of the simulation efforts still goes into
calculating rts, i.e. matching the rules (coarsely 50% of
the overall calculation). Therefore, current efforts are
dedicated towards developing alternative approaches for
matching, e.g. integrating special index methods. To
avoid time-consuming instantiation of all possible reac-
tions, an alternative kinetic Monte Carlo simulation
approach [30,36,37] based on individual particles rather
than populations of identical species, might also be worth
to explore for simulating ML-Rules models.

With CalcPropensity the propensity of each generated
reaction is calculated using the specified expression and
taking the context of the matched solution into account.
This means that the propensity is adjusted according to
the amount of possible contexts the matched solution is
part of (see previous Section and Figure 2). Based on Java
reflection, currently functions provided by Java can be
used within the expressions. The integration of a library of
own functions as a plug-in will be realized in the future.

Maintaining the consistency of populations when
executing RemoveReactant and PutProduct is a crucial
part during simulation and requires, given the nested spe-
cies, special attention. This means whenever a species s is
removed from a solution S,;, from the overall solution S,
the populations within S need to be updated accordingly.
Sometimes it might not be enough to just decrease the
population value of s in Sy, because by removing s from
Ssub» Ssup becomes a different species which means it needs
to be split from the previous population it was attached to
and needs to be merged with an already existing popula-
tion of that species (see example below). This actually has
to be carried on upwards the hierarchy until no splitting
and merging is needed anymore. The following example
shows splitting and merging. Given a solution:

S =[2A[2B]+ 2A[3B]].
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Removing one B from A[3B], would first lead to a split
of the population of A[3B] and result in the solution

S =[2A[2B]+A[3B]+A[2B]].

where A[2B] has to be merged with the already existing
population of 2A[2B], so the correct solution will be

S=[3A[2B]+A[3B]].

The current simulator proceeds basically as a discrete
event simulator. Therefore, only slight adaptations are
required to support also events that are not distributed
exponentially. This feature is important as many biological
phenomena at higher levels are not necessarily exponen-
tially distributed, as argued in [38]. Also, as multi-level
models operate often at different temporal scales, the cal-
culation effort for simulating these models in a pure dis-
crete event manner might easily become prohibitive.
Therefore, hybrid simulation approaches, e.g. [23,39], shall
be exploited in the future.

With additional file 1 we provide a prototypical demo
software tool comprising a model editor, simulator, a
rudimentary line chart visualization, and simulation data
export. The following examples as well as additional
example models can be loaded and demonstrate the
concrete syntax of ML-Rules. Its source code will be
made available under an open source licence as part of
a following JAMES 1I release at http://www.jamesii.org.

Example model

We would like to motivate and illustrate our multi-level
approach with an abstract multicellular model of the fis-
sion yeast (Schizosaccharomyces pombe) cell division and
mating type switching in dependence of an intracellular
control circuit. This intracellular regulatory network of
interacting proteins in turn depends on the size of the
cell and specific pheromone molecules. To prepare for
mating, fission yeast cells may secrete pheromones that
cause an arrest of the division cycle of cells with opposite
mating type. So, the different parts of the model at multi-
ple levels are highly interconnected and influence each
other in various ways (see Figure 4). In addition, to inves-
tigate the relation between pheromone signaling and the
location of cells, the model comprises also some simple
spatial dynamics that cover pheromone diffusion and cell
displacement from crowded areas.

The presented model illuminates the importance to con-
sider different levels of organization for modeling certain
phenomena in cell biology and shows the previously intro-
duced concepts at work. Particularly the extension of the
model from a single cell to multiple cells illuminates the
benefits of the presented rule-based multi-level approach.
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Figure 4 Schematic description of the example model. The
example model comprises three distinct hierarchical levels. At the
bottom level, interacting proteins describe the inctracellular
dynamics of a fission yeast cell (reactions 1-5). The molecular
species and reactions are similar to those described in [46]. The
intermediate level describes dynamics of entire cell states, i.e. cell
growth (6), cell cycle phase transitions (7-9), and division including
mating type switching (9). In addition, cells may secrete pheromone
molecules (P-factor and M-factor) to the extracellular medium (10).
Various inter-level causalities between the intermediate and the
bottom level influence processes both in an upward (7-9) and
downward causation manner (4,11-12). The top level discretizes the
environment of cells into multiple fictive compartments in order to
study spatial dynamics of pheromone diffusion and displacement of
cells (13-14). Abbreviations used for naming the species in the
model: Y (cyclin), Yp (phosphorylated cyclin), D (cdc2), M, (inactive
MPF), M4 (active MPF), C (fission yeast cell), Fp (P-factor pheromone),
Fis (M-factor pheromone), G (voxel of spatial grid).
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As the model is not intended to be a contribution for
fission yeast science, it may not be sound in each aspect
and may not reflect the current level of knowledge
about this system. Also certain parameters are simply
estimated. However, we payed attention to presenting a
realistic case study that shows how a rule-based multi-
level approach like ML-Rules facilitates modeling of
such systems.

Cell division cycle

The eurkaryotic cell cycle consists of four distinct
phases: Gj, S, Gy, and M. During the first three phases,
a cell is increasing in size and its DNA is replicated. At
the end of the cycle, a cell enters the M phase (mitosis)
and finally divides into two daughter (or sibling) cells.
These major events of the cell division cycle are con-
troled by certain proteins and the underlying regulation
processes in fission yeast have been extensively studied
[40-45].

In our example model, the regulation at protein level is
based on an early model by Tyson [46]. This determinis-
tic continuous model consists of two proteins, cyclin and
cdc2, that form a complex called maturation promoting
factor (MPF) which in turn controls traversion through
the cell cycle. Today, there exist much more detailed
models of this system than the relatively simple Tyson
model, e.g. [43,47-49]. However, the purpose here is not
to provide the most accurate model of yeast cell cycle
control but to show why multi-level modeling is impor-
tant for studying certain aspects of cell division and how
it can be realized. In this sense, the Tyson model is well
suited as it is simple but at the same time captures the
essential dynamics.

Most reactions of this model follow the law of mass
action and we do not discuss each rule in detail here.
Instead, we would like to refer to the supplementary
material where the whole model can be found (additional
file 2). The interesting reactions from our point of view
are the activation of MPF and the subsequent dissocia-
tion of this complex. Activation of inactive MPF, i.e. the
dephosphorylation of its cdc2 subunit, is assumed to be
an autocatalytic process:

@+@l (k+hks(a/Diot))i @

The higher the amount of activated MPF (M), the
higher is the activation rate; D,,, is a model parameter
that denotes the total amount of cdc2.

Tyson identified a region for two parameters (the
rate constants for autocatalytic MPF activation and its
dissociation) where regular cycle oscillations with
bursts of the amount of the inactive and activated
MPF complex can be observed. Although comprising
fluctuations due to the stochastic processes, the intra-
cellular reactions of our example model show similar
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oscillatory behavior (Figure 5A). The period of roughly
30 minutes between two peaks is much shorter than
the mean mass-doubling time of wild type fission yeast
of 116 minutes [50]. To achieve a longer oscillation
period, with increasing cell size, Tyson assumes a dilu-
tion of an enzyme that catalyses the breakage of MPF
into cdc2 and cyclin-P. Therefore, the orginal model
adjusts the rate constant during the cycle so that it is
proportional to exp(-0.693¢/T,), where t is the time
and T, the doubling time of cell size. In comparison to
the amount of intracellular proteins, the size (or the
volume) of a cell is a good example for denoting high-
level information at cellular level. Hence, implicitly
downward causation and the multi-levelness of the sys-
tem are taken into account by the Tyson model.

We want to make these multiple levels and their interre-
lation explicit now. Therefore, we introduce an attributed
species name C that describes the cell and its current
volume, i.e. its size. By doing so, we can adjust the rate of
MPF dissociation inside the cell dynamically and individu-
ally for different cell instances:

c

C(v)
B EIE

Please note, unlike cyclin (Y and Y5), we do not distin-
guish between phosphorylated and unphosphorylated
cdc2 (D). This is a simplification in accordance with the
original model, as the phosphorylation and dephosphor-
ylation reactions of cdc2 are very fast compared to the
others and thus can be neglected. Please further note,
the constraint (¢ > 1) ensures that M, will never be
completely degraded, so that there is at least one mole-
cule of activated MPF at any time. This assumption is
needed as otherwise the above rule of MPF activation is
not able to fire when the amount of M, is zero. Alter-
natively, one could introduce an additional cell attribute
that denotes the current amount of enclosed M, and
serves as high-level information to describe the autoca-
talytic reaction:

(ka/v)a-c
a>1
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The only processes that are still missing for complet-
ing the cell cycle dynamics with varying rates of MPF
dissociation, is the growth of a cell, i.e. its volume
increase over time, and the abrupt reduction of the
volume that mimics cell division. Therefore, we discre-
tize growth in volume to be increased by 1/7,; with a
rate constant kg = 1 per minute, where 7, is the mean
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Figure 5 Cell cycle dynamics of an individual fission yeast cell.
Simulation results of three different cell cycle models. Inactive MPF
is depicted by dark green curves and light green denotes activated
MPEF. (A) Stochastic variant of the cell cycle model presented in [46].
Simulation parameters are similar to the parameters that have been
used to produce Figure 3a in [46], i.e. k3 = 180 min"' and k, = 0.9
min”'. (B) Model includes downward causation by dynamic
adjustment of the MPF dissociation rate due to an increase of the
cell volume. Parameters are equal to those presented for model 1 in
the additional file 2. (C) Multi-level model comprising of downward
and upward causation. MPF dissociation depends on the cell
volume and at the same time, transitions from one cell cycle phase
to another depends on the intracellular amount of active and
inactive MPF. The entire model as well as initial solution and
parameters can be found in additional file 2, model 1.
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doubling time:

Clo) | |Clo+z)
T 6AC> T
S v<2 S

The cell volume here is only a relative value where 1
and 2 denote typical volumes at birth and division
respectively. That is why the above rule for cell growth
is constrained to only fire as long as the volume is
below 2, i.e. the double value of the typical volume at
birth. Consequently, cell division, i.e. halving of the cell’s
volume, happens after the volume exceeded or is equal
to 2:

Please notice that it would be easy to increase the
amount of cells here by putting two cells on the right-
hand side of the rule. Later we extend the model in this
way. However, as the interplay between a high-level
state and processes at lower level is subject of our inter-
est here, we keep the cell number constant and just
mimic cell division by halving the cell volume. At this
stage, the model comprises the intracellular processes
shown in [46] and explicit downward causation where
the state of a cell (its volume) influcences a process at
lower level. However, as Figure 5B depicts, although the
mean oscillation period is longer than before and thus
closer to observed cell cycle durations, now it is highly
variable and still significantly shorter than the mass-
doubling time (7)) of 116 minutes. Moreover, this leads
to nonconformity of active MPA bursts and cell division
times. Hence, to get lifelike oscillatory behavior and to
achieve better accordance between protein peaks and
division time, we need to further extend the model. Let
us therefore take a look on how low-level states influ-
ence dynamics at the cell level, i.e. how intracellular
dynamics trigger high-level events so that the cell tra-
verses through the different cell cycle phases.

The accumulation of inactive MPF, i.e. a complex
where both subunits cyclin and cdc2 are phosphory-
lated, denotes the initiation of DNA synthesis, i.e. inac-
tive MPF controls the transition from G; to S phase.
Therefore, we first equip the cell C with an additional
attribute for the current phase of the cell cycle to model
such transitions. As DNA replication (S phase) takes a
rather constant time for each cell cycle and we are more
interested in the control of the G; and G, checkpoints,
we combine the S and G, phases to a single phase S/G,.
We then define a rule for the G;-to-S/G, transition that
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is constrained to only fire if the amount of M, exceeds a
certain threshold value %

C(v,8G2)
+s )

Similarly, the transition from G, to M phase is
guarded by a threshold tg of the amount of active MPF:

C(v,M)
miie

The last transition of the cell cycle changes the phase
from M back to Gj, and in reality, at the same time the
cell splits into two daughter cells. However, we are still
interested in the interplay between high-level and low-
level states only. Thus, we keep the amount of cells con-
stant but reduce the volume of the cell like we've
already seen above. The division occurs after active
MPF falls below a second threshold value f9 which is
much lower than fg:

C

C(3,G1)
4 3]

In all three cases of phase transitions, the content of
the cell remains the same as the only change governed
by the rules is dedicated to the cell cycle phases. The
rules describe typical examples of upward causation, i.e.
low-level states (the amount of certain protein com-
plexes) determine dynamics at higher levels (the cell).
They also show the necessity for flexible reaction con-
straints to model inter-level causalities.

Now that the model has defined states for the differ-
ent cell cycle phases, we do not have to restrict the cell
to grow in size until its volume has doubled. Instead, we
allow the cell to grow at any time but not during the M
phase:

k’g-C
a<tg

C(v+ 7-,p)
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Simulation results of this multi-level model show that
the mean period of oscillations is now in accordance
with the mass-doubling time T, (Figure 5C). Cell divi-
sion may happen at volumes larger than 2 and conse-
quently the cell cycle may take more time than 7, but
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if so this has implications for the next cycle. Due to the
unusually large volume at birth, MPA activation occurs
relatively fast and thus the following cycle tends to be a
bit shorter than normal. In this way, upward and down-
ward causation regulates both, the cell cycle duration
and cell size homeostasis.

The results emphasize the role of multiple levels and
their inter-relation in studying phenomena like cell divi-
sion. Therefore, ML-Rules provides nesting of species
and rates with arbitrary kinetics based on constraints.
So far the model appears still to be manageable in other
less expressive modeling approaches. However the next
step, i.e. moving from a single cell model to multicellu-
lar dynamics, illuminates the importance to be able to
express multiple levels and their inter-level causalities
explicitly and flexibly.

Cell division and mating type switching

The unicellular fission yeast may undergo sexual repro-
duction when environmental conditions are getting
poor, e.g. when cells are starving. Different mating types
(P and M) exist enforcing fusion of cells of opposite
types only [51]. The product of fusion is a diploid zygote
which rapidly enters a sporulation process. Later, when
the environmental conditions improve, spores germinate
to spawn haploid cells which then undergo normal asex-
ual proliferation again. The mating type of proliferating
cells switches sporadically when a cell divides. This phe-
nomenon is regulated by rather complex mechanisms at
gene level [52-57]. However, rather stable phenomenolo-
gical patterns of switching can be observed [58]. One
important characteristic is that cells do not only show
one of the two different mating types P or M, but can
be also categorized into cells that are able to switch
their type and those that are not (Figure 6A).

Although comprising multiple levels, the example
model so far describes the dynamics of a single cell
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only. In order to model a multicellular system, we
extend the previous cell division rule (cell cycle transi-
tion from M phase to G;) to produce two distinct cells.
At the same time, instead of modeling detailed processes
at genetic level, simple phenomenological alterations of
the cell’s mating type are assigned according to the reg-
ularities depicted in Figure 6A. Therefore, species C is
equipped with two additional attributes:

C(%,G1,t,8)
|
C(v,M,t,U) -

a - | fFeey +
My|+1 51| a<to
AL C(%,G1,t,U)
]+

The above rule describes cell division of an unswitch-
able cell (denoted by the U attribute). The complemen-
tary schema for division of switchable cells looks pretty
much the same and is therefore not shown here. The
only differences affect the last attribute of the reactant (S
instead of U) and the assignment for the mating type of
the unswitchable product cell: the conditional expression
if t = P then M else P is assigned which makes the
rule valid for matching both mating types P and M.

Now that we have introduced multiple instances of
cells (each with potentially own behavior), it becomes
clear that modeling of such systems becomes only viable
due to the ability to specify rule schemata. Otherwise one
would need to specify defined reaction rules for each
potential species, i.e. for each combination of cellular
attributes and intracellular protein amounts. This is
highly impractical for smaller systems with a finite state
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(B) Trajectories of a simulation run with an inital population of 100 unswitchable cells of mating type P. Cells are dying with a rate constant

P/IU
P/S

8 M/U
M/s

60

40 L

SR

20 Ly |
j N e

| | |

00 400 600 800 1000

time [minutes]

cell number

0 2




Maus et al. BMC Systems Biology 2011, 5:166
http://www.biomedcentral.com/1752-0509/5/166

space and impossible for systems like the presented one.
It shows the importance of rule schemata for supporting
multi-level modeling.

The above rule also illustrates the need for binding solu-
tions to variables so that entire solutions can not only be
preserved for the reactant species, but can be treated like
any other variables and thus also be copied and placed
into multiple product species. Unlike the volume of the
dividing cell and similar to the single cell division rule in
the previous section, the cell’s content will not be splitted
and distributed among both daughter cells. The contained
sub-solution will be entirely copied instead, as (according
to the original Tyson model) the total amount of cdc2
protein, i.e. the sum of the amount of species D, M, and
My, is assumed to be constant in each cell. However, by
applying specific functions, it would be also possible to
split a solution according certain constraints. An integra-
tion of such functionality into ML-Rules is planned for the
near future.

Mating type switching ensures that - in the long run -
both types are equally present in a population of cells.
An initial population consisting of only one type of cells
nicely shows distinct time points of the first appearance
of cells that comprise other combinations of mating
type and the ability to switch (Figure 6B). Also the cali-
bration to equally distributed cell types after just a few
division cycles can be observed.

Pheromone secretion and response

Besides the restriction to cells of opposite mating types,
conjugation of fission yeast cells is also regulated by diffu-
sible pheromone molecules [59]. When growing in a nitro-
gen-poor environment, cells are starving and begin to
synthesize mating type specific pheromones that are
secreted to the extracellular medium. The pheromone
secreted by cells of mating type P is called P-factor and
M-type cells produce the M-factor pheromone. Fission
yeast cells of different mating type are able to communi-
cate with each other via pheromone molecules. Sensing of
pheromones released by the opposite type causes several
regulation processes that prepare the cells for mating. One
of the main effects is an arrest of the division cycle at the
G; phase [60]. We would like to extend our cell model by
adding communication via pheromone molecules and the
respective responses so that a G; arrest can be observed.

At first, we add some simple rules for pheromone
secretion and degradation (diffusion out of the system).
For instance, each cell of mating type M produces the
M-factor pheromone Fj;:

C(/U)p7 M) w)
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L
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M-factor molecules may then influence dynamics of
P-type cells in the same solution. Conversely, cells of
mating type P may communicate with M-type cells via
P-factor molecules (Fp). In addition to the M-factor,
cells of type M produce and release a P-factor-specific
protease (Sxa2) which lowers the effect that P-type cells
have on M cells [59,61].

Instead of modeling a detailed pheromone response
signaling cascade including receptor binding, we would
like to simply measure the amount of the respective
molecules and take this information into account for
changing the dynamics of the intracellular control circuit.
As already mentioned, pheromones may cause a G;
arrest of the cell cycle. It has been shown that inhibition
of the cyclin-cdc2 complex is crucial for this process
[60]. Therefore, we introduce a new species My denoting
a repressed MPF complex that prevents inactive MPF
from being activated (see Figure 7A). The reaction rate of
MPF repression is dependent on the amount of extracel-
lular pheromone. The way to describe this is similar to
the cell cycle transition rules, where intracellular protein
amounts are taken into account in an upward causation
manner. However, here we have a downward causation,
as MPF resides at a lower level than the pheromones.
Also different from the previous examples, the inter-level
causation here acts across the boundaries of a nested spe-
cies, i.e. across the cell membrane, and not just between
an attributed species and its enclosed solution:

/
o (H?)ie
C(vaaPaw) I C’(v,p,P,w)

i - o
My +1 5 +:81
L— 1 L _1

In fact the above rule includes two different downward
causalities at the same time. The first one is the amount
of extracellular pheromone, which is included in the rate

ki f?

k% +f3

factor H = describing a Hill type sigmoidal

response curve for MPF repression. The second down-
ward causation is a volume-dependence again. This
reflects the observation that inhibition of MPF activity is
partly lost due to increasing cell size [60], which could,
for instance, be a consequence from a dilution of
involved (but here not regarded) enzymes.

The single-cell simulation experiments given in Figure
7 show how the added reaction rules influence the intra-
cellular processes and by that have an effect on the
dynamics at cell level, i.e. progression through the cell
cycle phases. As pheromone secretion and mating takes
place when nutrition is poor, the mass-doubling time T,
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Figure 7 Pheromone-dependent cell cycle dynamics. (A)
Schematic of MPF repression dependent on the extracellular
amount of pheromone molecules. M-factor molecules (red circles)
have an effect on cells of mating P, while P-factor (blue diamonds)
only influences the intracellular dynamics of M-type cells. P-factor
pheromone is catalytically degraded by Sxa2 which is secreted by
cells of mating type M only. (B) MPF trajectories and cell cycle
phases of a simulation run without pheromones. Mass-doubling
time Ty = 232 min. (C) An extracellular pheromone amount of 200
molecules reveals no significant difference of MPF and cell cycle
dynamics. (D) Large pheromone amount (600 molecules) leads to
MPF repression and subsequent adaptation due to increasing cell
size. Cell cycle length is significantly increased due to an arrest in
the G, phase of the cell cycle.

has been increased to 232 minutes. Without pheromone,
the cell cyle length then increases to roughly 200 min-
utes (Figure 7B). Similar dynamics can be observed with
a low amount of extracellular pheromone (Figure 7C).
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The amount of repressed MPF molecules is not enough
to have a significant effect on MPF activation. This is
different with a higher pheromone concentration. Figure
7D indicates a strong suppression of inactive MPF by
the repressed variant. With increasing cell size (not
shown), repression gets partly lost, i.e. the cell adapts
while it grows and completes the cell cycle finally after
more than 600 minutes. Please notice the dramatically
increased duration of the G; phase while S/G, and M
phase take only slightly more time than without phero-
mone sensing.

Compared with exponential population growth unaf-
fected by any pheromones, multicellular simulations
with interacting cells show significantly reduced cell
numbers, i.e. the mean cell cycle duration is increased
(Figure 8). With increasing pheromone concentrations,
one can also observe larger fractions of cells being in
the G; phase of their cell cycle. After 1000 minutes
nearly half the population of cells is arrested in this
phase. At this time point, the amount of pheromones is
between 400 (P-factor) and 800 (M-factor) molecules.
However, although the P-factor-specific protease Sxa2
lowers the amount of P-factor pheromone and thus low-
ers the effects on M cells, mating type switching ensures
equal distributions of cells with mating types P and M.
Spatial layer
The model so far assumes all cells as well as each
secreted pheromone molecule residing in the same solu-
tion, i.e. there is no distinction between different loca-
tions. This assumption might be appropriate in many
cases. However, especially when it comes to modeling of
multicellular systems comprising of communication
either via direct cell-to-cell interactions or via diffusible
molecules, capturing different species locations might be
important [62]. Therefore, to investigate cell division
and pheromone signaling in an inhomogeneous solution,
we extend the model by some simple spatial dynamics
covering pheromone diffusion and different locations of
cells.

We adopt the idea of the Next Subvolume Method
[63] to add space in a discretized manner. Rules and
reaction rates are responsible to describe reactions
between molecules and their diffusion into another
voxel in the spatial grid. A new attributed species G is
introduced, which represents virtual reaction compart-
ments within a two-dimensional grid. Each voxel G may
comprise a solution of cells and pheromone molecules
with a homogeneous distribution like before, but species
may migrate to adjacent voxels according to certain
rules (see Figure 4 for a schematic description of the
spatial setting).

The initial solution comprises X, X Viax (With x4
Ymax € N) species G, each with a unique combination of
attribute values G(x, y) with x € {1,..., x,,,,,} and y €
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production and response is lacking. (B) Pheromone production and response leads to G arrest and reduced population growth rate.
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{1,..., Ymax}- In this way, a defined relationship between
each species G is specified to represent the spatial coor-
dinates of a two-dimensional grid. Diffusion of mole-
cules can then be described by simply moving the
species from one voxel to an adjacent one. A constraint
comparing the coordinates of two species G guarantees
that migration takes place between neighbored locations
only. The rule schema for diffusion of P-factor phero-
mone in a von Neumann neighborhood looks as follows:

G(z1, 1) G(z1,11)
f T re
Fp |4+ 181 181
L_ 1 -
" oy T
nb(r1,y1,72,y2)
G(’I27y2) G(I27y2)
Y sz

with nb(x1, y1, %, 92) =if (k1 = A1 =2+ 1 Vy;
=y -1) V(=2 Ax; =%y +1Vax =x,-1)) then
true else false.

Like before, the model shall still include diffusion out
of the system, i.e. for particle diffusion the grid shall be
an open system. Therefore, another rule checks whether
a certain voxel is part of the boundary of the grid. If so,
a pheromone molecule is simply removed with a certain
probability:

G(x,y) D-f G(x,y)
! T — T
FP 41 S5 bor (z,y) S

Besides pheromone diffusion, we would like to also
describe different locations of cells. However, instead
of random diffusion we would like to model some sort
of excluded volume effect to avoid that too many cells

occupy a voxel. Therefore, if a location gets crowded,
cells may be pushed to an adjacent less crowded voxel.
In principle, the rule for such a displacement from
crowded areas looks quite similar to rules that describe
diffusion. Constraints guarantee moving under certain
conditions only, e.g. to a neighboring voxel only, and
the kinetic rate depends on the amount of species, i.e.
cells. The main difference is that due to the fact that
cells typically have different attributes and sub-solu-
tions, we can not use a species identifier to get the
total number of cells within a solution. Therefore, an
additional attribute of G is introduced that holds the
current number of cells in each voxel:

G(x1,y1,m1) G(x1,y1,n1 — 1)
C(v,p,t,w) o
'sc | +
L1 k 7l%
14 P
T L | G(z2,y2,m2 + 1)
+ L?l,: nb(r1,y1,22,Y2),
med C(v,p.t,w)
+ o
ok
G($27y27n2) L--!
Y T sy
| I | I

The number of cells is a high-level property of G and
can be used to specify the probability with which a cell
may move to an adjacent location. The rate of the above
rule makes migrations to empty locations more likely
than those to crowded ones. Please notice the assign-
ments of values (n; - 1 and n, + 1) for updating the cur-
rent cell number of each voxel when the rule fires. As
the number of cells may also change due to cell division
and death, the according rules have to be extended such
that they have an extended context where the attribute
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of G can be explicitly manipulated. For example, the cell
division rule for an unswitchable cell looks as follows:

G(z,y,n+1)
C(%,GLt, S)
G(LL‘, Y, TL) T
—¢ s
C(v,M,t,U) —
R LRGN +
MA +:SC: a<tg
[ C(%Gl,t,U)
+isa) My |+ 'so
+ fsa)

An elegant alternative to the above strategy would be
the already discussed concept of applying functions to
solutions, so that the amount of cells in a given solution
can simply be counted. In any case, the examples show
how spatial effects like diffusion and excluded volume
can be modeled in an ad hoc way, although ML-Rules
has been developed without explicit notions of space.
Approaches which are aimed at spatial rule-based mod-
eling explicitly deal with such problems and emphasize
the need for describing spatial phenomena for larger
entities [64,65].

Simulation of population growth within the described
spatial setting reveals that the overall ratio between the
different mating types remains nearly constant over
time. However, local differences in the amount of P and
M type cells can be observed (see additional file 2).

Related work

The aim of this paper has been to identify essential con-
cepts for rule-based multi-level modeling, to present their
realization in ML-Rules, and to show their role based on a
case study. ML-Rules could built on ideas developed in a
rule-based approach for multi-level modeling of ecological
systems [66] where attributes, components of specific
types, and interfaces are assigned to individual entities.
The approach combines hierarchical nesting and the
description of constrained dynamics in terms of rule sche-
mata. ML-Rules shares also central features with the rule-
based formalism React(C), which supports molecules with
attribute values of any type and reaction constraints to
flexibly define reaction rates [15]. Being of arbitrary type,
attributes can also encode solutions and thus hierarchically
nested entities. However, React(C) has no notion of nest-
ing: rules cannot be applied to a solution nested within an
entity. Instead, rules can only be applied to an entity
attributed with a specific solution, i.e. top-down. Consid-
ering that nested hierarchies may be dynamically changed,
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e.g. in models describing vesicles that fuse with mem-
branes, this limits the expressive power of React(C) with
respect to multi-level modeling.

Recently, Oury and Plotkin have presented a stochas-
tic multi-level multiset rewriting language [67], in which
rules can be applied to nested species to support multi-
level modeling in systems biology. However, downward
and upward causation cannot easily be expressed,
because attributes and corresponding constraints on
reactions are not yet supported. However, this is
announced among the next steps to do.

As has been already discussed, ML-Rules does not pro-
vide an explicit notion of linkage, e.g. to describe bonds
within protein complexes. Hierarchical graphs with multi-
ple edge types offer a natural and explicit representation
of such bindings within hierarchical model structures. In
this context, a generalized graph isomorphism and labeling
algorithm like HNauty [68] may be of particular impor-
tance. Although originally developed for the structured
annotation of flat rule-based models, hierarchical graphs
and the HNauty algorithm are promising techniques for
the development of an efficient multi-level approach based
on graph-rewriting rules.

Spatial structuring of models shares general concepts
with multi-level modeling as different levels are defined
by a separation from each other in a broader sense. In
systems biology, the most common representation of
space is realized by simple compartmentalization, i.e. by
separating different chemical solutions from each other
and allowing for basic transport rules to change the
location of molecules, see e.g. BIOCHAM [69] and little
b [70]. More sophisticated capabilities for membrane-
mediated transport and interaction rules are supported
by ¢BNGL [71], an extension of the original BioNetGen
language [11]. Structures and rules in cBNGL are tightly
coupled with the concept of compartments and mem-
branes, e.g. the language distinguishes between three-
dimensional (compartment volume) and two-dimen-
sional (surface, i.e. membrane) compartments.

Other approaches focus on supporting dynamic com-
partment structures. BioAmbients [72], for example,
which is based on the m-calculus [26], supports wrapping
of processes by so called ambients. Both, processes and
ambients, are allowed to enter or exit other ambients and
two ambients are allowed to merge into a single one. Simi-
larly, the biok-calculus [73] also allows to fuse multiple
membranes resulting in a single compartment. It aims at
combining rule-based modeling with dynamic membrane
formalisms like the Brane Calculi [74] and P systems [75].
However, although rooted in the rule-based domain, biox
shows limited expressiveness for modeling biochemical
systems compared to other rule-based languages, e.g. the
k-calculus [7]. Another rule-based formalism with explicit
means for dynamic nested model structures is the
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Calculus of Wrapped Compartments [76,77]. None of
these approaches equips compartments with a state and a
behavior of their own; dynamics at the level of compart-
ments are initiated by the enclosed processes or rules in a
“bottom up” way.

Bigraphs [78] is different from the above formalisms as
there is no distinction between structural and behavioral
elements of a model and thus the approach pursued is
rather similar to ML-Rules. Each node of a bigraph may
be enclosed by another node and may contain further
nodes itself. So, nesting is an inherent property of the
bigraphical components. Equipped with a stochastic
semantics [79], reactive bigraphs have been successfully
applied for modeling cell biological systems. However,
the state of a node is defined by its linkage to other
nodes only. Also the lack of constraints on reactions lim-
its the modeling of inter-level causalities.

Beyond ordinary compartment-like spatial approaches
(to which we would also count ML-Rules, although its
expressiveness widens the applicability for describing
other spatial relationships as well), diverse methods have
been developed for modeling and simulation of more
complex spatial phenomena. Smoldyn, for example, sup-
ports simulation of spatial compartments with diffusing
molecules, membrane interactions, and excluded volume
effects [80]. The latter is also an important feature of
ML-Space, a modeling and simulation approach that sup-
ports hierarchical nesting and combines population-
based reaction-diffusion systems with individual particles
for representing different spatial resolutions [65]. Mere-
dys is another simulator that supports reaction-diffusion
events taking place in multiple compartments. However,
the main feature of Meredys is that molecules and mole-
cular complexes may have realistic shapes in two and
three dimensions [81].

Multi-level models that comprise a wide range of spatial
scales, e.g. from the molecular to tissue or even organ
scale, often need to consider different spatial relationships
at different levels. For example, while at the molecular
level well-stirred compartments or heterogenously distrib-
uted reaction-diffusion systems are appropriate represen-
tations, modeling the dynamics at tissue level might need
to take physical mechanics of interacting cells into
account. The strong diversity in applied methods is one
reason why such multi-scale models typically lack a unify-
ing formal modeling language. Instead, different model
parts are described and interpreted differently. To inte-
grate these different parts efficiently, either monolithic
mixtures of model descriptions and simulators are pro-
grammed from scratch or specialized multi-scale software
platforms are used that have been developed for certain
applications, see e.g. [82-86].

MGS provides integration of explicit descriptions of
space in a generic uniform setting [87,88]. The approach
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combines rule-based modeling with topological collections
to specify which and how model entities may interact with
each other. Various topological collections define different
local relationships of individual entities, e.g. ordinary mul-
tisets or Delaunay triangulation. Although MGS does not
have an inherent notion of nesting, its underlying concepts
allow to describe multi-level models in a versatile manner
and across various spatial scales.

The need to describe systems at different levels has also
been addressed by Petri nets approaches, see e.g. [89-91].
For instance, HORNETS (Higher Order Reference Nets) is
a formalism that allows to have Petri nets as tokens of
Petri nets [91]. However, HORNETS are executed in equi-
distant time steps as they are aimed at modeling software
systems, e.g. workflows, rather than biochemical systems.

Conclusions

Rule-based languages are a suitable starting point for
developing a concise and compact language for multi-
level modeling of cell biological systems. Therefore, a
combination of concepts, part of which are already well
established, can be exploited.

Rule schemata help reducing the size of models and
equally important, add the required flexibility to express
dynamics at different levels in a general manner. Nesting
species, assigning attributes to these species, and con-
straining reactions according to attributes have been
identified as further essential ingredients in supporting
multi-level modeling. Species are described by attributes
and the species they contain. Both of which might con-
strain rules (due to functions and conditional expres-
sions) or be altered by them. Thereby, the boundaries of
levels might be crossed.

How dynamics at different levels can be described in a
rule-based approach has been shown with a model of fis-
sion yeast to analyze the regulations between cell cycle
control, cell division, mating type switching, and cell-cell
communication via diffusible pheromone molecules.

The concepts have been realized in ML-Rules which has
been implemented in JAMES II. The use of a plug-in-
based modeling and simulation framework has allowed a
rapid prototyping of a suitable modeling and simulation
environment for our experiments. However, the current
simulator is a prototype and realizes a purely stochastic
discrete event approach. Although JAMES II offers a
coarse grained parallel execution - e.g. to speed up multi-
ple simulation runs - already the single run execution of a
more complex ML-Rules model, like the presented multi-
cellular fission yeast model, takes a significant amount of
time in the current implementation. This is due to the
expressiveness of ML-Rules which requires specific effort
to keep calculation costs at bay. Thus, the next steps with
respect to implementation will be to look into exploiting
different variants of the SSA algorithm, e.g. the optimized
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direct method, speeding up the matching of reactants, and
exploring the potentials of an alternative Monte Carlo
method as well as hybrid approaches.

From the modeling point of view, the developed con-
cepts shall be put to test in concrete applications that
might be difficult to describe with currently available
modeling approaches. For example, potential application
areas for ML-Rules are various systems where the rela-
tion between intracellular and intercellular dynamics
play a role, e.g. quorum sensing, tumor growth, and
plant root growth. The presented approach appears also
suitable for modeling dynamic processes with multiple
membrane bound compartments, like endocytosis, active
vesicle transport along cytoskeletal filaments, and pro-
cesses at the Golgi apparatus.

Additional material

Additional file 1: ML-Rules demo program The ZIP file comprises a
prototype tool of ML-Rules including a model editor, the simulator, and a
rudimentary line chart visualization of simulation trajectories. Also a user
manual and several example models are part of the tool package. To
start the demo tool, please unzip the file and execute the runjar file.
Java Runtime Environment (Version 6 or higher) is required for execution.

Additional file 2: Example models The PDF file contains descriptions of
the entire example models including initial solutions and parameter
values that have been used for the simulation studies.
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