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Abstract

Background: Bacterial nitrogen fixation is the biological process by which atmospheric nitrogen is uptaken by
bacteroids located in plant root nodules and converted into ammonium through the enzymatic activity of
nitrogenase. In practice, this biological process serves as a natural form of fertilization and its optimization has
significant implications in sustainable agricultural programs. Currently, the advent of high-throughput technology
supplies with valuable data that contribute to understanding the metabolic activity during bacterial nitrogen
fixation. This undertaking is not trivial, and the development of computational methods useful in accomplishing an
integrative, descriptive and predictive framework is a crucial issue to decoding the principles that regulated the
metabolic activity of this biological process.

Results: In this work we present a systems biology description of the metabolic activity in bacterial nitrogen
fixation. This was accomplished by an integrative analysis involving high-throughput data and constraint-based
modeling to characterize the metabolic activity in Rhizobium etli bacteroids located at the root nodules of
Phaseolus vulgaris (bean plant). Proteome and transcriptome technologies led us to identify 415 proteins and 689
up-regulated genes that orchestrate this biological process. Taking into account these data, we: 1) extended the
metabolic reconstruction reported for R. etli; 2) simulated the metabolic activity during symbiotic nitrogen fixation;
and 3) evaluated the in silico results in terms of bacteria phenotype. Notably, constraint-based modeling simulated
nitrogen fixation activity in such a way that 76.83% of the enzymes and 69.48% of the genes were experimentally
justified. Finally, to further assess the predictive scope of the computational model, gene deletion analysis was
carried out on nine metabolic enzymes. Our model concluded that an altered metabolic activity on these enzymes
induced different effects in nitrogen fixation, all of these in qualitative agreement with observations made in R. etli
and other Rhizobiaceas.

Conclusions: In this work we present a genome scale study of the metabolic activity in bacterial nitrogen fixation.
This approach leads us to construct a computational model that serves as a guide for 1) integrating high-
throughput data, 2) describing and predicting metabolic activity, and 3) designing experiments to explore the
genotype-phenotype relationship in bacterial nitrogen fixation.
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Background

Biological nitrogen fixation carried out by Rhizobiaceas
represents nearly 70 percent of the entire nitrogen
transformation required for maintaining life in our bio-
sphere. Simultaneously, nitrogen fixation driven by these
bacteria constitutes an appealing and natural strategy
for developing sustainable agricultural programs due to
its cost-effectiveness in crop improvement and its more
environmentally friendly effects in comparison to those
produced by chemical fertilizers [1]. Based on these fun-
damental and practical issues, the study of bacterial
nitrogen fixation is one active line of research that in
the post-genomic era demands new paradigms capable
of surveying in a systematic fashion the metabolic orga-
nization by which this process occurs in nature.

At a molecular level, symbiotic nitrogen fixation arises
as a consequence of the coordinated action of a variety
of genes, proteins and metabolites that in turn activate
signal transduction cascades and transcriptional factors
inside bacteroids. At the end of the day, the conse-
quences are the activation and repression of certain
metabolic pathways whose end products are required
for counteracting the microenvironmental conditions
prevailing inside nodules [2-4]. The advent of high-
throughput technologies has fostered the genome scale
analysis for bacterial nitrogen fixation, and the output
data constitute valuable material in deciphering their
metabolic organization at different biological layers
[5,6]. Although some significant results have been
achieved in interpreting the high-throughput data, their
overwhelming numbers and heterogeneous composition
represent a challenge for inferring biological knowledge
in a coherent and systematic fashion. This challenge is,
indeed, a central issue in systems biology, and its solu-
tion demands integrative efforts among genome scale
data, physiological knowledge and computational model-
ing [7-11].

With the purpose of contributing to this integrative
challenge, in this paper we present a systems biology
description in bacterial nitrogen fixation. In particular, it
integrates high-throughput technology and flux balance
analysis in order to explore the metabolic activity of
Rhizobium etli bacteroids while they fix nitrogen in
symbiotic association with Phaseolus vulgaris (common
bean plant) [11]. To survey the bacterial phenotype and
sketch the genetic and metabolic profile during nitrogen
fixation, transcriptome and proteome technologies were
carried out for R. etli bacteroids selected at 18 days after
inoculation with root plants of P. vulgaris (see details in
experimental procedure and methods). We selected this
interval of time based on experimental knowledge that
has indicated it as an average for maximum enzymatic
activity of nitrogenase in R etli bacteroids. To identify
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those genes with a significant role in nitrogen fixation,
we accomplished a comparative analysis between the
gene expression profile at the nitrogen fixation stage
and under free-living conditions in R etli, this last con-
dition mainly defined by succinate and ammonia as car-
bon and nitrogen sources, respectively (see methods).
Simultaneously, the protein profile inside bacteroids was
obtained, also at 18 days after plant inoculation. A set of
genes with significant participation in bacterial nitrogen
fixation was defined by combining those genes differen-
tially expressed in the two physiological conditions—free
life and nitrogen fixation— and those codifying for the
proteins detected inside bacteroids. This same set of
genes served as our benchmark for extending the meta-
bolic reconstruction for R. etli metabolism (i{OR363) and
evaluating the consistency of the metabolic capacities
inferred by the in silico analysis [8]. To assess the pre-
dictive scope of the model, we qualitatively compared
the metabolic activity predicted by constraint-based
modeling against that which was deduced from the
high-throughput data obtained for R etli. Overall, our
study represents a significant effort toward the recon-
struction of a systems biology platform for studying
metabolic activity in bacterial nitrogen fixation. It is
characterized by its capacity to integrate and describe
high-throughput data and predict the metabolic
mechanism underlying bacterial nitrogen fixation.

Results

High-throughput technology to guide the Metabolic
Reconstruction

To characterize the gene expression during nitrogen
fixation in R.etli, we compared each gene’s activity in
the free-living condition and in bacteroids driving nitro-
gen fixation selected at 18 days after inoculation with P.
vulgaris. Data from microarray experiments were stored
at the data depository GEO (http://www.ncbi.nlm.nih.
gov/geo/) with access numbers GPL10081 for R. etli
platform and GSE21638 for free life and symbiosis data.
Even though a variety of sophisticated regulatory
mechanisms may occur at diverse levels of biological
organization [12], we have assumed that those genes
with a significant over-expression indicate functional
mechanisms for accomplishing nitrogen fixation. Under
this criteria, we identified 689 genes (approximately 11%
of the R etli genome) whose transcriptional activity sig-
nificantly increases during the biological process. To
survey the role that these genes have in supporting
nitrogen fixation, we classified them in accordance to
the functional categories defined for Rhizobiaceas
[13,14], see panel (A) in Figure 1 and Additional File 1.
As expected, the majority of the nif and fix genes in
bacteroids and other genes required for translation
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Figure 1 Schematical view of data from high-throughput technology and constraint-based modeling. (A) Functional distribution of up
regulated genes in bacteroids. (B) Functional categories of proteome data. (C) Number of up regulated genes and proteins-coding genes
identified by transcriptomics and proteomics. Overlapping region represents the number of genes that were identified by both technologies. (D)
Topological properties of the metabolic reconstruction for Retli (IOR450). At the top from left to right: stoichiometric matrix and connectivity
distribution (in log-log scale). At the bottom, metabolic pairs and its corresponding number of shared reactions (in log-log scale). (E) Figure in
left side depicts the number of enzymes (genes) that were: 1) identified in silico but nor experimentally,(blue); 2) detected by both
experimentally and in silico (green); and 3) experimentally detected but not observed in silico (red) along the 22 pathways listed in (F). Blue
regions in right pies represent the overall percentage of genes and enzymes that simultaneously appear in silico and in high-throughput data.
(F) A set of 22 metabolic pathways were used to assess the agreement between in silico and experimental results. Figure at left shows the
activity of gluconeogenesis that emerged from the Flux Balance Analysis (FBA).
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initiation, elongation, and termination were up-regulated
inside nodules. Furthermore, our data suggest that the
expression of genes forming part of translation initia-
tion, elongation and termination machinery was not
absent although it was significantly reduced in the
nodule bacteria, a common observation reported in Bra-
dyrhizobium japonicum, Sinorhizobium meliloti and
Mesorhizobium loti bacteroids [15-17]. In accordance
with the induction of cell-division inhibitor protein
minD, a significant number of housekeeping genes
down-regulate their expression at nitrogen fixation

stages, and from microarray data we concluded that a
slower rate of general metabolism, see Additional File 1.

To give a broader view of the biological activity inside
the bacteroid, proteome analysis was conducted for R.
etli bacteroids similarly recollected from nodules
selected at 18 days after inoculation in root plants of P.
vulgaris [18], see experimental procedure and methods.
In total, proteome studies led us to identify and charac-
terize 415 spot proteins in the bacteroids that suggested
the expression of 293 genes during nitrogen fixation, see
Figure 1 (B) and Additional File 2.
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Both technologies—transcriptome and proteome—con-
tributed to supply a broader biological landscape regard-
ing bacterial nitrogen fixation. However, it is necessary
to be aware of some differences in the experimental
design underlying both technologies in order to inte-
grate and interpret this data in a coherent fashion.
While microarray technology resulted from a compara-
tive analysis of two physiological conditions (free life
and nitrogen fixation stages), proteome data identified
the most abundant proteins present exclusively during
nitrogen fixation stages. As Figure 1 (C) and Additional
File 3 show, a scarce overlapping between the genes
identified by both data sets is observed due to the
experimental distinctness inherent in each technology.
Thus, in order to identify those genes and enzymes with
a relevant role in bacteroid metabolism and, in turn,
form a set of genes that serve as a benchmark for compu-
tational assessment, we followed an integrative, rather
than, selective strategy. Taking into account both sources
of data, we hypothesized that up-regulated genes identi-
fied by microarray data and those genes that codify for
the identified proteins potentially reveal those genes with
a major role in nitrogen fixation. Under this assumption,
both technologies led us to integrate a total of 948 genes
that have a role in supporting bacterial nitrogen fixation,
see Figure 1 and Additional File 1 and 2.

Functional classification of this set of genes ranged
from enzymes participating in central metabolism and
amino acid production to those maintaining specific
pathways of nitrogen fixation such as glycogen and
poly-B-hydroxybutyrate (PHB) biosynthesis. In addition,
we identified enzymes participating in catabolism and
anabolism of amino acids, chemotaxis, ribosome compo-
sition, RNA polymerase, DNA replication, nucleotide
repairs, secretion systems and fatty acids metabolism.
Moreover, a significant number of proteins participating
as transporters reflects the intense metabolic crosstalk
between plant and bacteroid; for instance, proteins par-
ticipating in transport of small molecules, such as car-
bon, hydrogen, phosphate and sugar, fall under this
classification, see panels (A) and (B) in Figure 1. We
also identified proteins participating in the regulatory
mechanism in nitrogen fixation, two components sys-
tems, transport and cell surface structure, energy trans-
fer, cellular protection, and the transport and synthesis
of polysaccharides. An extended discussion of the func-
tional analysis that emerged from both technologies and
its implication at a metabolic level can be reviewed in
the Additional File 4.

Expanding Rhizobium etli metabolic reconstruction and
selecting pathways for its experimental assessment

The data generated by high-throughput technology con-
stitutes a cornerstone in moving toward a descriptive
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analysis of nitrogen fixation. Despite the fact that this
top-down scheme represents a valuable contribution to
monitoring cell activity at a genome scale, complemen-
tary descriptions are required to integrate these data
and survey how genetic perturbations affect nitrogen
fixation in a systematic and quantitative fashion (bot-
tom-up scheme). Among these quantitative schemes,
constraint-based modeling is an appropriate formalism
for exploring the cellular metabolic activity and guiding
experiments to improve cellular behavior in a rational,
coherent and optimal fashion [7,8,19,20]. In order to
construct a bottom-up scheme for bacterial nitrogen
fixation, our strategy consisted of three steps: 1) meta-
bolic reconstruction for R. etli; 2) in silico modeling of
nitrogen fixation, and 3) a cyclic assessment of compu-
tational predictions and experimental results.

In terms of metabolic reconstruction, proteome and
transcriptome data were used to elaborate on the pre-
vious report for R. etli [8], thereby making some meta-
bolic improvements and including new metabolic
pathways absent in the previous version. To visually
identify these metabolic reactions, we proceeded to
represent the set of genes identified by high-throughput
data and those from iOR363 reconstruction into each
metabolic pathways defined in KEGG database. A com-
parative analysis among each pathway led us to visualize
and highlight their differences. Consistent with the pre-
vious metabolic reconstruction, certain reactions were
identified in the experimental set of data, while others
led us to postulate the activity of new metabolic path-
ways that were absent in the previous reconstruction
[8]. Specifically, high-throughput data strongly indicated
the biological activity of fatty acid metabolism, and we
therefore included this pathway in the metabolic recon-
struction, see supplementary material. Overall, a set of
405 reactions and 450 genes made up the new metabolic
reconstruction for R. etli (i0R450) with which in silico
simulations and analysis were carried out. Topological
properties that emerged from the updated metabolic
reconstruction are shown in Figure 1 (D).

To evaluate the concordance between the metabolic
activity predicted in silico and that interpreted from
high-throughput technology, we selected 22 KEGG
metabolic pathways [21] that had the highest number of
genes experimentally detected by high-throughput data
see Figure 1 (F). According to the KEGG database, these
22 metabolic pathways contain 311 genes for R. etli of
which 76.7% were included in the metabolic reconstruc-
tion i{OR450. This set of genes and their corresponding
enzymes constituted the central core for evaluating the
coherence between in silico predictions and high-
throughput data interpretations. Even though in silico
assessment relies on the activity of 22 metabolic path-
ways, in silico analysis of nitrogen fixation took into
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account all the reactions included in the metabolic
reconstruction. This latter procedure will be valuable
especially for exploring and predicting the metabolic
role that additional pathways have on nitrogen fixation.

Constraint-based modeling: evaluating the descriptive
and predictive capacities of the metabolic reconstruction
Constraint-based modeling is useful for predicting the
metabolic phenotype in microorganisms surviving in
specific environmental conditions and/or subject to
genetic perturbations [7,22]. With the purpose of evalu-
ating the phenotype capacities of the metabolic recon-
struction, flux balance analysis (FBA) was carried out
for R. etli by imposing physical and chemical constraints
to each metabolic reaction and using an objective func-
tion that mimics symbiotic nitrogen fixation [8], see
method section. As a result of this analysis, a set of
enzymes and genes with a significant role in nitrogen
fixation was identified in silico as those that underlie the
metabolic fluxes obtained from FBA. To quantify the
agreement of experimental and computational interpre-
tations, we defined a consistency coefficient representing
the fraction of genes (n9¢"*) or enzymes (7°"¥") pre-
dicted active by FBA and detected by high-throughput
technology, see methods section. This parameter ranges
from O to 1, with 1 representing the highest and 0 the
lowest consistency between the genes (or enzymes)
detected from high-throughput technology and pre-
dicted in silico. To evaluate the numerical value of these
parameters and estimate the coherence between model-
ing outputs and high-throughput data during nitrogen
fixation, an early metabolic simulation on i{OR450 was
carried out using the objective function originally sug-
gested in a previous work, Z“™ [8], i.e.

ZPix _ glycogen|c] + lys|[c] + phb][c]+
+ala[e] + asp[c| + nh4[c]

where glycogen, lysine, poly-hydroxybutyrate, alanine,
aspartate and ammonium are denoted as glycogen|c], lys
[c], phb[c], alale], asple] and nh4[e], respectively. All
these metabolites are required to support an effective
symbiotic nitrogen fixation [8], and their spatial location
is indicated by [c] and [e] for cytoplasm and external
compound. As a result of this simulation, we obtained a
consistency coefficient of n"* = 0.6835 for genes and
nF#mes — 0,702 for enzymes. Notably, this numerical
value implied that 68.35% of the genes and 70.2% of the
enzymes predicted in silico were consistently identified
by high-throughput technology. To evaluate the statisti-
cal significance of this correlation, a hypergeometric test
was applied in each case. In terms of enzymes, the coef-
ficient reflected that of 74 enzymes predicted in silico,
52 were identified by high-throughput data. Meanwhile,
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the gene consistency coefficient indicated that of 237
expressed genes, 162 were identified experimentally. In
both cases we concluded that these correlations were
statistically significant: p-value = 8.59 x 107° and p-
value = 4.9 x 10°°* for genes and enzymes, respectively.

Improving predictability capacity of constraint-based
modeling

These results encouraged us to proceed with an analysis
of the in silico metabolic phenotype during nitrogen
fixation, yet some improvements are desirable for ensur-
ing a model with coherent interpretations and accurate
predictions. To raise the qualitative agreement between
top-down (high-throughput data) and bottom-up (in
silico modeling) schemes, we therefore explored the pos-
sibility of finding an expanded objective function whose
in silico phenotype improves the protein consistency
coefficient . To avoid this procedure from becoming a
simple computational artifact without a biological foun-
dation, we limited the search to those metabolites
whose significant role in the bacterial nitrogen fixation
were subject to strong experimental evidence. Thus,
guided by a review in the literature, two metabolites
were included in the objective function: L-valine and L-
histidine both with a biologically meaningful role in
nitrogen fixation. Supporting this assumption, mutagen-
esis made on the biosynthesis of branched chain amino
acids, such as L-valine, has been shown to be defective
in the initiation of nodule formation on host legumes
[23]. In addition, we found evidence that L-kistidine is a
central compound participating in the mechanisms for
regulating nitrogen fixation [12], and we noted that its
inclusion in the objective function increased the agree-
ment with high-throughput data. We therefore con-
structed a new objective function to mimic metabolic
activity during nitrogen fixation in bacteria, it now inte-
grated by

7' = glycogen|c| + his[c] + lys[c] + phb[c]+
+val[c] + ala[e] + asp[c] + nh4[c]

where boldface letters indicate those metabolites that
were added to the previous objective function. Taking
into account this implementation and simulating the
flux distribution through FBA as described above, we
obtained the following results during nitrogen fixation:
NS = 0.6948 and N = 0.7683, see Figure 1(E).
In terms of enzyme activity this numeric value indicates
that of the 82 metabolic reactions predicted in silico, 63
of them were consistently justified by high-throughput
data (p-val = 3.05 x10°°*). Meanwhile the gene consis-
tency coefficient indicated that of 249 expressed genes,
173 were identified by high-throughput data (p-value =
4.9 x10°%).
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Given this improvement, a detailed comparison
between computational predictions and high-throughput
data of the 22 metabolic pathways defined in Figure 1
(E) led us to distinguish three possible cases: the pre-
sence of 1) genes (enzymes) that were predicted in silico
but not detected experimentally, 2) genes (enzymes) that
were consistently observed in both schemes, and 3)
genes (enzymes) that were experimentally detected but
not predicted in silico, see Figure 1 (E). As explained in
the methods section, 1 is related to the fraction of
genes (enzymes) that were consistently observed in both
schemes and constitutes the backbone of our modeling
assessment. However, the biological explanation for the
discrepancies described above (in cases 1 and 3) requires
feedback assessment between modeling and experi-
ments. For instance, these discrepancies could be
reflecting the presence of post-transcriptional and post-
translational regulation during nitrogen fixation and the
design of proper experiments will be fundamental to
discarding or accepting this hypothesis.

Discussion

A coherent description between in silico modeling and
high-throughput data is a primary goal for exploring the
fundamental principles governing metabolism in Rhizo-
biaceas and predicting their phenotype behavior during
nitrogen fixation. In this work we present a systems
biology framework capable of exploring the metabolic
activity of R. etli during nitrogen fixation in symbiosis
with P. vulgaris. In particular, we present a genome
scale model that integrates high-throughput data for
describing, simulating and guiding experiments dealing
with metabolic activity in bacterial nitrogen fixation. An
important issue in constraint-based optimization analy-
sis is the presence of alternate optimal fluxes, in other
words the presence of a set of reactions—or flux distri-
butions—that produce the same quantitative objective
function. As a consequence of these alternate fluxes, the
metabolic output of one pathway can be substituted by
others such that macroscopic phenotype remains con-
stant. Therefore, the distinction of the reactions with
and without a range of variability is essential to guess
the metabolic activity supporting biological phenotype.
Hence, in order to characterize the core metabolic activ-
ity and compare our in silico metabolic interpretations
with those emerged from high-throughput data, we car-
ried out flux variability analysis (FVA) [24]. With the
purpose to identify those reactions that represent the
central core of metabolic activity along the set of alter-
nate solutions, we limited our analysis to those reactions
with a range of variability equivalent to zero. This set
was such that the minimum and maximum flux variabil-
ity for each reaction were equivalent and constituted
our cornerstone for guiding the metabolic activity
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during the biological process. As depicted in Figure 2,
the output of this analysis led us to identify some key
reactions participating in some metabolic pathways
required for sustaining bacterial nitrogen fixation. FVA
was carried out with COBRA Toolbox [25]. As a conse-
quence of this study, some concluding remarks immedi-
ately follow.

Citric acid cycle

Constraint-based modeling suggested that the TCA
cycle is activated during nitrogen fixation by dicarboxy-
lates which constitute the main carbon source in bacter-
oids [26], see Additional File 5 panel (B) in
supplementary material. Consistent with this finding,
eight proteins participating in the TCA cycle were
detected in the R. etli bacteroid by proteome technology
(FumC, FumB, LpdAch, SucB, SucA, SucC, Mdh and
AcnA). To further assess this agreement, we applied
gene deletion analysis to explore to what extend the
deletion of some enzymes can qualitatively influence the
activity of bacterial nitrogen fixation and if the predicted
behavior is biologically coherent with knowledge
reported in Rhizobiaceas, see method section. Thus, in
silico gene deletion analysis accomplished on the meta-
bolic reconstruction leads us to conclude that the aconi-
tase hydratase (AcnA) mutant in R. etli is not lethal in
nitrogen fixation. Despite the fact that this result has
not been experimentally proven in R. etli, it has been
validated in other Rhizobiaceas [27]. Furthermore,
although isocitrate dehydrogenase (Icd) was not detected
by high-throughput technology, in silico icd mutants in
R. etli suggest a reduced phenotype on nitrogen fixation.
This result is qualitatively in agreement with the fact
that icd mutants on S. meliloti are symbiotically ineffec-
tive [28]. Similarly, constraint-based modeling concludes
that a reduction of enzymatic activity in pyruvate dehy-
drogenase (PDH) induces a significant reduction in sym-
biotic nitrogen fixation but does not impair it as occurs
in the case of S. meliloti bacteroids [29], see Figure 3
(B). This finding suggests that the role of PDH in the
production of acetyl-coenzyme A can be replaced by
alternative pathways in R. etli bacteroids [5]. The experi-
mental assessment of this hypothesis for R. et/i metabo-
lisms is a central issue to explore in the future.

Glycolysis, gluconeogenesis and pentose phosphate
pathways

A common metabolic trait for some Rhizobiaceas is the
intense activity of gluconeogenesis pathway [3]. In
agreement with this finding, a significant number of glu-
coneogenic and glycolytic enzymes were identified by
high-throughput technology, and constraint-based mod-
eling consistently concluded that gluconeogenesis path-
way was actively participating in nitrogen fixation.
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Figure 2 Flux Variability Analysis (FVA). In panel (A) we depict
the numerical participation of reactions with null variability along
seven metabolic pathways included in the metabolic reconstruction.
Reactions with null variability were defined as those whose upper
and lower limit are equivalent. A fraction of reactions belonging to
this classification are shown in (B). The set of reactions obtained by
FVA are shown in (C). Here we have used the following
abbreviations: PGM (phosphoglucomutase), FBA (fructose-
bisphosphate aldolase), TPI (triose-phosphate isomerase), RPI (ribose-
5-phosphate isomerase), PUNP1 (purine-nucleoside phosphorylase
(Adenosine)), PUNP2 (purine-nucleoside phosphorylase
(Deoxyadenosine)), PPCK(phosphoenolpyruvate carboxykinase), PHPB
(acetoacetyl-CoA reductase), PHBS (PHB synthase), PGMT
(phosphoglucomutase), PGl (glucose-6-phosphate isomerase), PDH
(pyruvate dehydrogenase), PC (pyruvate carboxylase), NP1_r
(nucleotide phosphatase), INSCR (inositol catabolic reactions
(lumped)), INS2D (inositol 2-dehydrogenase), GUAPRTr (guanine
phosphoribosyltransferase), GLGC (glucose-1-phosphate
adenylyltransferase), GLCS1 (glycogen synthase (ADPGIc)), GAPD
(glyceraldehyde-3-phosphate dehydrogenase), G6PDH2(glucose 6-
phosphate dehydrogenase), FBP (fructose-bisphosphatase), ENO
(enolase), EDD (6-phosphogluconate dehydratase), EDA (2-dehydro-
3-deoxy-phosphogluconate aldolase), CS (citrate synthase), ACONTa
(aconitase (half-reaction A, Citrate hydro-lyase)), ACONTb (aconitase
(half-reaction B, Isocitrate hydro-lyase)), NIT (nitrogenase), NH3t
(ammonia reversible transport), NH3e (Ammonium dissociation,
extracellular), N2tr (Nitrogen exchange, diffusion) and MMSAD3
(methylmalonate-semialdehyde dehydrogenase (malonic
semialdehyde)).
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Multiple isoforms of PEP carboxykinase (pckA) were
detected by proteome technology, see Additional File 2,
mirroring their pivotal role in nitrogen fixation and bac-
teroid differentiation. Thus, R. etli CE3 pckA mutant
produces few nodules into which the infection threads
do not appear to penetrate [30]. In qualitative agree-
ment with this report, in silico mutation suggests that
pckA is an essential gene for accomplishing nitrogen
fixation in R. etli, see Figure 3.

In addition, 6-phosphogluconolactonase (pgl), glucose
6-phosphate dehydrogenase (Zwf1), its chromosomal
homolog (designated by zwf2) and one transaldolase
(Tal) were detected by proteome, supplying evidence
that pentose phosphate pathways can be actively partici-
pating in nitrogen fixation. Consistent with this finding,
in fast-growing Rhizobiaceas, there is evidence that pen-
tose phosphate and Entner-Doudoroff pathways work in
coordinate action as the probable major routes for the
metabolism of sugars [31].

As mentioned before, some glycolytic genes were
identified by high-throughput data: two triosephosphate
isomerases (TpiAch and TpiAf), one glyceraldehyde 3-
phosphate dehydrogenase (Gap), one pyruvate kinase II
(PykA), one 2-phosphoglycerate dehydratase (enolase),
phosphoglycerate mutase (pgm), and the bisphosphate
aldolase (fbaB), see Additional File 1 and 2. Further-
more, there is experimental evidence that the genetic
silence of fbaB in R. etli causes the development of
sparse, empty nodules on root beans [30]. Consistent
with this fact, computational gene deletion analysis car-
ried out with this gene confirms that fbaB has a crucial
role in supporting the metabolism of bacterial nitrogen
fixation [30], see Figure 3(B). Even though these findings
were not enough to postulate an active glycolytic cycle,
they may suggest the metabolism of sugar intermediates
via other pathways. For example, the presence of a spe-
cific transporter for glycerol-3-phosphate (ugpAchl,
induced 3.88-fold by microarray analysis) indicates that
this may be an important source for generating glycoly-
tic intermediates. Similarly, the expression of 6-phos-
phogluconate dehydrogenase (Gnd) suggests the
presence of an active pentose pathway, which is another
potential channel for the metabolism of glycolytic
intermediates.

Myo-inositol catabolic pathway

Myo-inositol is one of the most abundant compounds in
the soybean nodule, and accordingly, high-throughput
technology successfully detected the presence of myo-
inositol 2-dehydrogenase proteins (IdhA and IolB)
encoding a myo-inositol protein in catabolism [32]. In
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Aconitase hidratase(acndy) Proteome Nitrogen Fixation (=) B.. japonicum [32]
Isocitrate dehydrogenase (idh) Proteome + transcriptome Nitrogen Fixation () 5. melilotd [33]
Pyruvate dehydrogenase (pdh) Transcriptore Nitrogen Fixation {-) S. meliloti [49)
Glycolysis, gluconeogenesis
And pentose phosphate pathway
PEP cazboxykinase (pcké) Proteome Nitrogen Fixation (-) R..etli [34)
Biphosphate aldolase (fbaB) Transcriptomne Nitzogen Fixation (-) R.etli [34]
Myo-inositol carabolic pathway
Myo-inositol 2-dehydrogenase (idhA) Proteome Nitrogen Fixation (-) S. Fredii 36]
Mpyo-inositol catabolism 10lB Proteome Nitrogen Fixation (-) S. Fredi [31]
Poly-b-hydroxybutyrate (PHB)
Poly-beta-hydroxybutyrate polymerase
(phbe) Transcriptoma Nitrogen Fixation (+) R..etli [37]
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NifH, tuf D and suf K. Transcriptore + Proteome Nitrogen Fixation {-) R. etli [13]
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Figure 3 In silico assessment of gene knockout and phenotype variations on bacterial nitrogen fixation. Panel (A) summarizes the
benchmarks used to evaluate the in silico description of nitrogen fixation. Black and blue letter in first column indicates the silenced enzyme its
corresponding metabolic pathway respectively. Second column indicates the technology by which the enzymes were identified in this study. Third
column indicates the Rhizobiacea used to compare in silico prediction. Forth and fifth columns represent the computational phenotype and the
reference supporting the computational result. Sign (+), ( =) and (-) respectively denotes an increment, invariance and decrement in nitrogen fixation
when mutation were accomplished. The in silico phenotype effect carried out by aconitase hydratase (ACONTa), isocitrate dehydrogenase (ICDHx),
pyruvate dehydrogenase (PDH), phosphoenolpyruvate carboxykinase (PPCK), biphosphate aldolase (FBA), nitrogenase (NIT) and CTP-synthase (CTPS2) are
summarized in left side of panel B. The robustness analysis accomplished for inositol catabolic reaction (INSCT) is shown in panel B.

agreement with this fact, computational analysis of the
metabolism in R. etli suggests that a decrease of myo-
inositol inside the nodule can reduce its capacity to fix
nitrogen, see Figure 3(B). This result supports the
hypothesis that the presence of myo-inositol in the
nodule is essential for growth and maturation of the
bacteroid and its metabolic inhibition can lead to both a
nonfunctional bacteroid and the reduction of nitrogen-
fixation activity [32].

Poly-B-hydroxybutyrate and glycogen accumulation

While most of the bacteroid carbon supplied by the
plant is channeled into energy production to fuel nitro-
gen reduction, in certain types of nodules some carbon

is diverted by the bacteroids into the production of
intracellular storage polymers composed of either glyco-
gen or poly-B-hydroxybutyrate (PHB). Our simulations
produced PHB, and consistent with our predictions,
high-throughput analysis led us to identify the presence
of three components related to its metabolic pathway:
the polymerase PhbC (poly-beta hydroxybutyrate poly-
merase protein), a putative polyhydroxybutyrate depoly-
merase protein (detected by transcriptoma, see
Additional File 1) and the acetyl-CoA acetyltransferase
(beta-ketothiolase, phbAch) detected by proteome. Other
reports confirm that metabolic fluxes in PHB and glyco-
gen pathways are such that inhibition of one results in
accumulation of the other, a property that was
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consistently observed by in silico modeling [8,33,34].
The precise role of PHB and glycogen during infection,
nodulation, and nitrogen fixation and the factors that
induce their accumulation are not yet determined.
Future experiments dealing with these pathways are
necessary to elucidate their role in bacterial nitrogen
fixation.

Nitrogen Fixation

To ensure the proper production of the ammonium
required to establish an optimal bacterial-plant symbio-
sis, constraint-based modeling concludes that central
genes involved in nitrogen fixation (nif and fix genes)
are required for an optimal activity. Consistent with this
fact, NifH, NifD and NifK were identified in proteome
data and detected up-regulated in transcriptome analy-
sis. In addition, an up-regulated gene expression was
observed for nifE (nitrogenase reductase iron-molibde-
num cofactor synthesis truncated protein), nifN (nitro-
genase reductase iron-molibdenum cofactor synthesis
protein), nifX (iron-molibdenum cofactor processing
protein) and nifB (FeMo cofactor biosynthesis).

In R. etli, the iscN gene (Fe-S cofactor nitrogenase
synthesis protein) is co-transcribed with nift and nifS,
and in conjunction, these genes were significantly up-
regulated in bacteroids in comparison to bacteria under
free-life condition (10.82, 3.92 and 1.99-fold, respec-
tively). Furthermore, the iscN mutant in R. etli showed a
significant reduction in nitrogen fixation [35]. Consis-
tent with this report, in silico gene deletion analysis of
those genes codifying for nitrogenase mostly reduces
nitrogen fixation, see Figure 3.

Amino acid metabolism and transport

A previous report suggests that Rhizobiaceas require the
availability of 20 amino acids to establish an effective
symbiosis with legumes [36]. Some amino acids are
synthesized by Rhizobiaceas whereas the remaining are
supplied by the host plant, a condition that appears to
be plant-type specific. High-throughput analysis led us
to identify certain proteins required for the synthesis of
arginine, tyrosine, tryptophan, phenylalanine and lysine,
the latter participating in the objective function defined
in constraint-based modeling. On the other side, from
the ABC-transporter proteins founded in nodule bac-
teria, thirteen were involved in amino acid transport, it
strongly suggests that the uptake of amino acid is of
particular importance in nitrogen fixation. The general
amino acid ABC-transporter protein for Aap] (substrate
binding protein) was detected by proteome analysis: the
aap] gene is part of the aapJQMP operon that exists in
many Rhizobiaceas and has been described in detail in
R. leguminosarum [37]. BraCl and braC2, of the
branched-chain amino acid ABC transporter, were
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detected in bacteroid by proteome and transcriptome
technologies (2.85 fold). In R. leguminosarum braDEFG
is required for alanine, histidine, leucine and arginine
uptake [38] (two of which form part of the objective
function associated with the metabolism of nitrogen
fixation in our in silico model). Alternately, in R. legumi-
nosarum, braC mutants are effective in alanine uptake
(but are lacking in the uptake of the other three amino
acids) [38]. Phenotype behavior for braC mutants has
not been studied in R. etli, but there is evidence that
braD and braH mutants were found to be deficient in
glutamine uptake and respiration but proficient in nodu-
lation and nitrogen fixation [30].

Nucleotides metabolism

Purine and pyrimidine pathways are important during
the nodulation processes given that most purine or
pyrimidine auxotrophs in Rhizobiaceas are ineffective
in symbiotic nitrogen fixation because they elicit
pseudo-nodules devoid of infection threads [39]. Thus,
for instance, the purB and purH gened in Mesorhizo-
biumi loti are involved in infection thread formation
and nodule development in Lotus japonicus [40]. In
addition, purB and purH mutants exhibited purine
auxotrophy and nodulation deficiency in L. japonicus
[40]. As Figure 2(A) and Additional File 5 panel (C)
shows in the supplementary material, constraint-based
modeling concludes that some enzymes in purine and
pyrimidine pathways are actively participating in reach-
ing an optimal symbiotic nitrogen fixation. Supporting
this finding, several key enzymes were identified in
bacteroids by proteome technology. Among them, we
identified: phosphoribosylamine-glycine ligase protein
(PurD), adenylosuccinate lyase protein (PurB), phos-
phoribosylformylglycinamidine synthetase protein
(PurL), adenylosuccinate synthetase protein (PurA),
IMP cyclohydrolase/phospho-ribosylaminoimidazole-
carboxami-deformyltransferase protein (PurH), adeny-
late kinase (ATP-AMP transphosphorylase, Adk) and
nucleoside-diphosphate-kinase protein (Ndk).

In the presence of adenine, only the purH mutant
induced nodule formation, and the purB mutant pro-
duced few infection threads, suggesting that 5-aminoi-
midazole-4-carboxamide ribonucleotide biosynthesis
catalyzed by PurB is required for the establishment of
symbiosis. In addition, purL mutants in S. fredii HH103
strain does not grow in minimal medium unless the cul-
ture is supplemented with thiamin and adenine or an
intermediate of purine biosynthesis [41]. Furthermore,
gene expression of purCI, phosphoribosylaminoimida-
zole-succinocarboxamide (SAICAR) synthetase protein,
purlch (formyltetrahydrofolate deformylase protein),
gmk2 (guanylate kinase (GMP kinase protein) and pyrE
(orotate phosphoribosyltransferase protein) were up-
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regulated inside bacteroids between 2.3 to 6.35 fold. In
S. meliloti, nodule development in the case of pyrE/pyrF
mutants did not reach the extent observed in the paren-
tal strain. These results suggest that some of the inter-
mediates and/or enzymes of the pyrimidine biosynthetic
pathway play a key role in bacteroid transformation and
nodule development [42], information that should be
taken into account for constructing an improved objec-
tive function and ensuring a proper computational
description in future analysis.

Fatty acids metabolisms

According to high-throughput data, metabolism of fatty
acid can play a significant role in bacterial nitrogen fixa-
tion, this being in contrast to the drastic reduction of
lipid biosynthesis observed in B. japonicum [43]. Thus, a
variety of fab genes and proteins participating in fatty
acid biosynthesis were detected by both methodologies
(proteome and transcriptome). For instance, we detected
by proteome the MccB subunit of methylcrotonyl-CoA
carboxylase protein, acyl-CoA thiolase protein (FadA),
enoyl-CoA hydratase protein (FadB1), enoyl-[acyl-car-
rier-protein] reductase (NADH) protein (FabI2) and S-
malonyltransferase protein (FadD); and by transcriptome
fadB2 was induced 3.09-fold. As these findings suggest,
fatty acid metabolism could play an important role in
bacteroid metabolism given that it can supply a variety
of precursors such as components of the rhizobial mem-
brane, lipopolysaccharides and coenzymes required in
signal transduction. As opposed to the process in other
Rhizobiaceas where fatty acids can be supplied by the
host plant [43], we supply experimental evidence that
bacteroids of R. etli synthesize and metabolize their fatty
acids. The assessment of this hypothesis and the biologi-
cal implications on bacterial nitrogen fixation constitute
an avenue to experimentally verify in the future.

Conclusions

In this study we present a systemic metabolic descrip-
tion of bacterial nitrogen fixation carried out by R. etli
in symbiosis with P. vulgaris, at present the most com-
plete study made in Rhizobiaceas. Collectively, high-
throughput data suggest the following significant clues:
1) R. etli bacteroids are capable of synthesizing several
amino acids through integrated carbon and nitrogen
metabolisms. In addition, we observe the participation
of some minor metabolic pathways such as myo-inosi-
tol catabolic pathway, degradation and synthesis of
poly-b-hydroxybutyrate and glycogen. 2) Gene expres-
sion in bacteroids suggests the presence of a specia-
lized transport system for sugars, proteins and ions. 3)
An antioxidant defense mechanism based on peroxire-
doxine, regulated by nifA, prevails during nitrogen
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fixation, as opposed to in free-living condition, where
the mechanism is rooted in catalases [44]. 4) R. etli
over-expresses genes and enzymes required in fatty
acid and nucleic acid metabolism, contrary to other
studies in bacteroids. Finally, 5) this study contributes
a computational model that serves as a useful frame-
work for integrating data, designing experiments and
predicting the phenotype during bacterial nitrogen
fixation, see Figure 3.

This systemic and integrative approach constitutes a
valuable effort toward a systems biology description of
the metabolism in bacterial nitrogen fixation; however,
to increase our understanding and predictive accuracy
some issues should be addressed in the future. Thus,
particular attention should be directed toward those
enzymes that were predicted metabolically active in
silico but were not detected experimentally, and conver-
sely, those enzymes that were detected experimentally
but not in silico, see Figure 1(E). We expect that the
study of these differences will be fundamental in postu-
lating, verifying and uncovering mechanisms of regula-
tion, while simultaneously confirming or improving
hypotheses derived through in silico predictions.

Notably, even though the simulations have been car-
ried out without a detailed numerical description of the
coefficients ¢; in the objective function—see methods
section—we have shown that the in silico model is cap-
able of qualitatively predicting the activity of classic
metabolic pathways and successfully describing some
phenotype behavior in bacterial nitrogen fixation. Even
though this represents a significant advance toward a
systems biology description of bacterial nitrogen fixa-
tion, some improvements should be addressed in future.
For instance, additional metabolites with a biological
role in nitrogen fixation should be considered in order
to obtain a more proper objective function that contri-
butes to uncovering the role that less known metabolic
pathways, such as nucleotides and fatty acid metabo-
lisms, have on this biological process. As described here,
these improvements will be guided by high-throughput
data and the cyclic crosstalk between model and theory,
a needed step in integrating, interpreting and generating
biological hypotheses in a more accurate fashion.

Overall our study contributes to establishing the bases
toward a systems biology platform capable of integrating
high-throughput technology and computational simula-
tion of bacterial nitrogen fixation. In particular, we envi-
sion that this metabolic reconstruction for R. etli
(iOR450) will contribute to the rational design of opti-
mal experiments that help us understand biological
principles and identify those molecular mechanisms in
order to improve this biological process, all this from a
systems biology perspective.
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Methods

Bacterial strains, growth conditions

The bacterial strain used was R. etli CFN42 wild type
[11]. Culture media and growth conditions for R. etli,
and plant experiments were accomplished as previously
described in reference [45].

Plant experiments

Three-day-old Phaseolus vulgaris cv. Negro Jamapa
seedlings were inoculated with R. et/li CFN42 strains as
previously described by Peralta et al. [46]. After 18 days
post-inoculation (dpi), nodules were picked out from
the roots, immediately frozen in liquid nitrogen and
stored at -70°C until further use. Bacteria were isolated
from nodules and their identities verified by their anti-
biotic resistances.

RNA isolation and microarray hybridization

Microarray experiments were carried out using three
independently isolated RNA preparations from indepen-
dent cultures and set of plants. Approximately 3 g of
nodules were immersed in liquid nitrogen and macer-
ated. Total RNA was isolated by acid hot-phenol extrac-
tion as described previously by de Vries et al [47]. For
microaerobic free-living conditions, 50 ml of bacterial
cell cultures were collected and total RNA isolated using
a RNeasy Mini Kit (QIAGEN, Hilden, Germany). RNA
concentration was determined by measuring the absor-
bance at 260 nm. The integrity of RNA was determined
by running samples on a 1.3% agarose gel. 10 ug of
RNA was differentially labeled with Cy3-dCTP and Cy5-
dCTP using a CyScribe First-Strand cDNA labeling kit
(Amersham Biosciences). Pairs of Cy3- and Cy5-labeled
cDNA samples were mixed and hybridized to a Rhizo-
bium_etli_CFN42_6051_v1.0 DNA microarray as
described by Hegde et al. [48,49]. After washing, the
arrays were scanned using a pixel size of 10 um with a
Scan Array Lite microarray scanner (Perkin-Elmer, Bos-
ton, MA). Three biological replicates with one dye swap
were performed. We used real-time quantitative PCR to
provide an independent analysis of gene expression for
selected genes. Primer sequences and additional experi-
mental protocols are reported in the supplementary
material section.

DNA microarray analysis

Spot detection, mean signals, mean local background
intensities, image segmentation, and signal quantifica-
tion were determined for the microarray images using
the Array-Pro Analyzer 4.0 software (Media Cybernetics,
L.P). Statistical treatment of microarray data was
accomplished with bioconductors software (http://
www.bioconductor.org/). Specifically, microarray
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normalization was carried out by applying the maN-
ormMain function in the marray library. MA-plots
before and after normalization are depicted in Addi-
tional File 5. Having normalized the gene expressions
in the three experimental replicates, differentially
expressed genes were identified by the following proce-
dure. First, we calculate the average log-ration for each
gene obtained from the three experimental replicates.
Then, we obtained the standardized z-score of the log-
ratio associated to each gene. The set of genes differ-
entially expressed during nitrogen fixation was selected
as those genes with a z-score higher than 1.65, see
Additional File 5. The complete dataset used in the
transcriptome analysis can be downloaded from GEO
(http://www.ncbi.nlm.nih.gov/geo) with accession num-
bers: GPL10081 for Rhizobium etli platform and
GSE21638 for free-life and symbiosis data.

Verification by RT-PCR

We used real-time quantitative PCR to provide an inde-
pendent assessment of gene expression for selected
genes. The cDNA used for microarrays or freshly pre-
pared cDNA was used as a template for Real-time PCR.
Primer sequences used were as follows: fabI2-
RECHO000938f (5'-GTA TTG CCA AGG CCA TTC
AT-3’), fabI2-RECH000938r (5-CCC ACA GTT TTT
CGA CGT TT-3") for the fabl2 gene. idhA-
RECHO003170f (5-TTT CTT CAT GAC CCG CTA CA-
3), idhA-RECHO003170r (5-TTG ATC AGC TTG CCT
TCC TT-3’) for the idhA gene. ppK-RECH001491f (5'-
TCC TGG CAC TGA ACA CTC TG-3), ppK-
RECHO001491r (5-GAG AAG GAA CTG GAC CAC
CA- 3) for the ppK gene. hisD-RECH000581f 5’GAT
CTG AAG CAA GCC ATT CC 3, hisD-RECH000581r
(5-ACA TAA TCG CCG ATG ACC TC-3’) for the
hisD gene. nifH-REPD00202f (5-CCT CGG GCA GAA
GAT CCT GA-3’), nifH-REPD00202r (5-CAT CGC
CGA GCA CGT CAT AG-3) for the nifH gene. fixA-
REPD00224f (5-ACA TCA ATG GGC GCG AGA TT-
3"), fixA-REPD00224r (5-TGT CGA TCT GCT CCG
CCT TT-3’) for the fixA gene. cpxP2-REPD00252f (5'-
TCC GTG CCA TTT CAA AGA CC-3’), cpxP2-
REPD00252f (5'-CCG CCA AAT GAG AAG ATT GC-
3’) for the cpxP2 gene. hisC-RE1SP0000233f (5'- CGA
TGG CGA GAC AGC TAA AT-3), hisC-
RE1SP0000233r (5-ATC ATC GCA ACG CTA TCT
CC-3’) for the hisCd gene. Each reaction contained 12.5
pl SYBR green PCR mastermix (Applied Biosystems),
3.5 ul H,O, forward and reverse primers in a volume of
5 ul, and template in a volume of 4 pl. PCR reactions
were run with the ABI Prism 7700 sequence detection
system (Applied Biosystems) using the following steps:
50°C for 2 min, 95°C for 10 min, followed by 40 cycles
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of 95°C for 15 s and 60°C for 1 min. The dissociation
protocol was 95°C for 15 s, 60°C for 20 s, followed by
ramp from 60°C to 95°C for 20 min. The transcript of
the histidinol phosphate aminotransferase protein
(hisCd) was used as an internal (unregulated) reference
for relative quantification. This gene was selected as a
reference because its expression is constitutive in all
tested conditions (free live and symbiosis). Results of
RT-PCR in real time were analyzed using the AACT
method [49] and the data was presented like relative
expression. All reactions were done by triplicate.

Proteomics experiments

Bacteroids purification, protein extraction and two
dimensional gel electrophoresis were done as pre-
viously described in [44]. Briefly, bacteroids were
purified from root nodules by centrifugation through
self-generated Percoll gradients. Bacteroid proteins
were obtained by sonication at 24 kHz 1 min ON/1
min OFF for 5 cycles at 4°C in a Vibra Cell (Sonics,
USA) in the presence of a protease inhibitor (Com-
plete tablets, Roche Diagnostics GmbH, Mannheim,
Germany). To further limit proteolysis, protein isola-
tion was performed using phenol extraction. Two
dimensional gel electrophoresis (2D-PAGE), was per-
formed like previously described. Gels were stained
with Coomasie Blue G-250, scanned with PDI image
analysis system, and analyzed with PD-Quest soft-
ware (Bio-Rad Laboratories, Inc, Hercules, CA.).
Selected spots from preparative 2-D gels were
excised, digested and the proteins were identified by
PMF MALDI-TOF using a Bruker Daltonics Auto-
flex, following the same methodology mentioned in
[44]. The experiments were performed three times.
Selected spots from Coomassie stained preparative
2-D gels were excised and processing automatically
using the Proteineer SP spot picker and DP digestion
robots (Bruker Daltonics, Billerica MA). Mass spec-
tra were obtained using a Bruker Daltonics Autoflex
(Bruker Daltonics Bellerica, Mass. USA) operated in
the delayed extraction and reflectron mode. Spectra
was externally calibrated using a peptide calibration
standard (Bruker Daltonics 206095). Peak lists of the
tryptic peptide masses were generated using FlexA-
nalysis1.2vSD1Patch2 (Bruker Daltonics). The search
engine MASCOT server 2.0 was used to compare

fingerprints against Rhizobium etli CFN42,
NC_007761.1, pA, NC_007762.1, pB, NC_007763.1,
pC, NC_007764.1, pD, NC_004041.2, PpE,

NC_007765.1, pF, NC_007766.1 with the following
parameters: one missed cleavage allowed, carbamido-
methyl cysteine as the fixed modification and oxida-
tion of methionine as the variable modification. We
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accepted those proteins with scores greater than 50
and a p < 0.05. Proteome data associated with this
manuscript can be downloaded from http://Proteo-
meCommons.org Tranche using the following hash:
BY/eCcVjwTWN1+m+2Arv]0QVnesGx5Ekgd4wUOA-
SACfm/ueNI17YI3iLf4xz0lnGsepV5LkpMWOQOrZt-
JYEXINpQKIBcCAAAAAAAABJA = =

High-throughput technology and its use for extending
metabolic reconstruction and simulating nitrogen fixation
With the purpose of establishing an integrative
description between modeling and experimental data,
we extended the metabolic reconstruction for R. etli by
including those reactions whose enzyme activity were
supported by high-throughput data. Thus, the fatty
acids metabolism was included in the metabolic recon-
struction, and some metabolic improvements were
made along the network. Additional File 6 enlist the
main abbreviations used along this paper. Additional
File 7 in supplementary material contains a detailed
description of the reactions included in this new meta-
bolic version (iOR450). Overall, the updated metabolic
reconstruction for R.etli consists of 377 metabolites
and 450 genes codifying for enzymes participating in
405 metabolic reactions. The gene-protein reaction
association for the entire metabolic reconstruction,
lower and upper bounds and reversibility information
associated to each reaction are shown in Additional
File 7.

Constraint-based modeling

Metabolic flux distribution supporting nitrogen fixa-
tion in Rhizobium etli was predicted in silico by con-
straint-based modeling [8]. Briefly, simulations were
carried out assuming a steady-state condition for
metabolic fluxes and by constructing a mathematical
function that mimics nitrogen fixation. This objective
function, Z™, consists of certain key compounds
required for sustaining nitrogen fixation and others
required for mimicking the physiological conditions
prevailing in the boundaries of the nodules. Thus,
objective function was mathematically written as a lin-
ear combination of these metabolites (X;) and their
contribution to nitrogen fixation was weighted by
coefficients (c;), which for simplicity’s sake were all
selected as a unit. With the purpose of obtaining a
computational profile of metabolic fluxes, we assumed
that the metabolic state of the bacteroid during nitro-
gen fixation is one that optimizes the objective func-
tion, Z™. This latter issue was solved by taking into
account linear programming and considering that the
fluxes are constrained by their enzymatic and thermo-
dynamic capacities,
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max |:ZFix = Zci ~Xi:|

i=1
such that

ZSi,j~vj =0

—aj < v < pf;

i=1,2...m
j=12...n

where S;; represents the entries of the stoichiometric
matrix, v; is the metabolic flux of the j-t& reaction and
o; and f3; account for thermodynamic and enzymatic
constraints, see Additional File 7. Linear programming
was carried out using the Tomlab optimization package
called from COBRA toolbox in Matlab [25].

External metabolites considered for flux balance analysis
In order to explore the phenotype capacities of the bac-
teria metabolism, we included in the reconstruction cer-
tain exchange and sink reactions for limiting our
metabolic modeling and representing the microenviron-
mental conditions in the plant nodules. In general, these
can be classified as one of two categories. Class I includes
those metabolites that can be exchanged between the
bacteroid membrane and the plant environment. Among
them, we included carbon dioxide (CO,), water (H,O),
oxygen (O,), malate (mal-L) and glutamate (glu-L). In
addition, exchange reactions for nitrogen (n2), alanine
(ala-L), aspartate (asp-L), succinate and ammonium
(NHy4) were included in the reconstruction for represent-
ing their possible bidirectional exchange from plant to
bacteroids. On the other hand, metabolites in class II
include those that contribute to the defining of internal
frontiers in the bacteroids. Importantly, these sink reac-
tions were included as a representation of metabolites
originating from metabolic processes currently absent in
the metabolic reconstruction. Thus, phosphate (pi), myo-
inositol (inost), L-histidinol phosphate (hisp), palmitoyl-
CoA (pmtcoa), dodecanoyl-CoA (dodecoa), decanoyl-
CoA (decoa), octanoyl-CoA (otcoa) and hydrogen (h) fall
in this classification.

Definition of consistency coefficient

To assess the agreement between in silico predictions and
interpretations suggested by high-throughput data, we
defined a consistency coefficient, n°¢"*, that quantifies
the fraction of genes that were predicted upregulated in
silico and simultaneously detected or induced by pro-
teome or transcriptome technologies. Simultaneously, we
defined a consistency coefficient that quantifies the frac-
tion of proteins enzymatically active that were predicted
by constraint-base modeling and confirmed by high-
throughput technology, n*"%”**. To proceed with this
evaluation, we denoted Ejkegg(G ikegg) as the set of
enzymes (genes) that form the j-th metabolic pathways in
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KEGG database, with j-th ranging from 1 to 22. Similarly,
the set of enzymes (genes) that integrates the i-th meta-
bolic pathway in the reconstruction and the set of
enzymes detected by high-throughput data are denoted
by E’rec(Gree) and E’ (G ), respectively. Finally,
the sets of enzymes and genes obtained from constraint-
based modeling were denoted by E Jivtoder a0d G iptoder-
More specifically, E”;y1oqer and G/ ;p104e1 Sets were defined
as those enzymes and genes participating in the active
fluxes obtained from flux balance analysis. In order to
evaluate and create a proper framework for comparison
between in silico predictions and high-throughput data,
we defined the consistency coefficient as the fraction of
enzymes (genes) that were actively predicted in silico and
were identified by high-throughput technology. This can
be summed up in the following equations:

Jj j
GiModel m GHT

NGene = ;
G]
iModel
j j
nE _ EiModel m EHT
nzyme Ej
iModel

Both ratios range from zero to one and constitute our
central parameter to assess and quantify the degree of
coherence between constraint-based modeling and
experimental data.

In silico gene deletion analysis

Computational gene deletion analysis was used to quan-
tify the effects that gene silencing has in supporting bac-
terial nitrogen fixation. Thus, once the gene to be
switched off was selected, we identified its gene-protein
reaction association and selected as zero its upper and
lower bound in flux activity. Having made this adjust-
ment, we applied flux balance analysis and obtained the
new resulting objective function. In order to quantify
the participation of this metabolic reaction in bacterial
nitrogen fixation, we calculated the percentage of
reduced activity of the mutated strain in comparison to
the wild type, see Figure 3.

Additional material

Additional file 1: Microarray Data Analysis. This table shows those
genes that were over expressed during bacteroid activity in nitrogen
fixation.

Additional file 2: Proteome Data. By using mass spectrometry, we
identified a set of proteins during bacterial nitrogen fixation for R. etli. In
each row, we named the protein and presented some of the parameter
utilized for concluding the protein identify.

Additional file 3: Intersect between proteome and transcriptome.
Genes that were simultaneously identified by proteome and
transcriptome technologies.
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Additional file 4: This file contains an extended descriptive analysis
deduced from the genes identified by proteome and transcriptome
data.

Additional file 5: (A) MA plot and representation of Metabolic
activity. In this figure we show the MA-plot obtained from microarray
data and a selected representation of the metabolic activity predicted by
FBA in some metabolic pathways: (B) TCA cycle, (C) purine and
pyrimidine metabolism.

Additional file 6: Abbreviations. This file enlists the main abbreviations
used along the paper.

Additional file 7: Metabolic Reconstruction for Rhizobium etli. This
table depicts the gene-protein-reaction association for Rhizobium etli
metabolic reconstruction, iOR450. Overall the reconstruction contains 450
genes codifying for a set of enzymes participating in 405 metabolic
reactions and 377 metabolites.
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