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Abstract

Background: Chromohalobacter salexigens (formerly Halomonas elongata DSM 3043) is a halophilic extremophile
with a very broad salinity range and is used as a model organism to elucidate prokaryotic osmoadaptation due to
its strong euryhaline phenotype.

Results: C. salexigens DSM 3043's metabolism was reconstructed based on genomic, biochemical and physiological
information via a non-automated but iterative process. This manually-curated reconstruction accounts for 584
genes, 1386 reactions, and 1411 metabolites. By using flux balance analysis, the model was extensively validated
against literature data on the C. salexigens phenotypic features, the transport and use of different substrates for
growth as well as against experimental observations on the uptake and accumulation of industrially important
organic osmolytes, ectoine, betaine, and its precursor choline, which play important roles in the adaptive response
to osmotic stress.

Conclusions: This work presents the first comprehensive genome-scale metabolic model of a halophilic bacterium.
Being a useful guide for identification and filling of knowledge gaps, the reconstructed metabolic network /OA584
will accelerate the research on halophilic bacteria towards application of systems biology approaches and design

of metabolic engineering strategies.

Background
Extreme environments, generally characterized by
abnormal temperature, pH, pressure, salinity, toxicity
and radiation levels, are inhabited by various organisms
- extremophiles - that are specifically adapted to these
particular conditions. Studies on these microorganisms
has led to the development of important molecular biol-
ogy techniques such as polymerase chain reaction (PCR)
[1,2] and hence further research has been largely stimu-
lated by the industry’s interest on the fact that the survi-
val mechanisms of these microorganisms could be
transformed into valuable applications ranging from
wastewater treatment to the diagnosis of infectious and
genetic diseases [3].

Halophilic microorganisms are extremophiles that are
able to survive high osmolarity in hypersaline conditions
either by maintenance of high salinity in their cytoplasm
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or by intracellular accumulation of osmoprotectants
such as ectoine and betaine [4]. C. salexigens is a halo-
philic Gammaproteobacterium of the family Halomona-
daceae with a versatile metabolism allowing not only
fast growth on a large variety of simple carbon com-
pounds as its sole carbon and energy source but also
resistance to saturated and aromatic hydrocarbons and
heavy metals [5,6]. C. salexigens with the ability to grow
over a wide range of salinities [0.5-4 M NaCl] has been
the most euryhaline of the bacteria [7] and to under-
stand the osmoregulatory mechanisms in halophilic bac-
teria, it has been used as a model organism [5,7-9].
Moreover, C. salexigens has also many promising bio-
technological applications as a source of compatible
solutes, salt-tolerant and recombinant enzymes, biosur-
factants and exopolysaccharides [10].

Genome sequence of extremophiles, such as sulphate-
reducing archaeon Archaeaglobus fulgidus [11], halophi-
lic archaeon Halobacterium species NRC-1 [12] and
acidophilic bacterium Acidithiobacillus ferrooxidans [13]
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have been reported earlier. Since the publication of the
genome of C. salexigens DSM 3043 [14] the biological
knowledge about this strain has significantly increased
and various methods that allow the genomic analysis
and genetic manipulation have been developed [15,16].
On the other hand, systematic analysis of its metabolic
and biotechnological capacities have not been performed
yet. This is, at some level, due to the lack of an in silico
comprehensive metabolic model that enables the inte-
gration of canonical experimental data in a coherent
fashion.

Metabolic reconstruction is non-automated and iterative
decision-making process through which the genes,
enzymes, reactions and metabolites that participate in the
metabolic activity of a biological system are identified,
categorized and interconnected to form a network [17].
The reconstruction process has been reviewed concep-
tually in literature [17-22] and, recently, a standard operat-
ing protocol giving a detailed overview of the necessary
data and steps has been published [23]. To date, genome-
scale metabolic reconstructions for more than 50 organ-
isms have been published and this number is expected to
increase rapidly. Therefore, the need for developing auto-
mated, or at least semi-automated, ways to reconstruct
metabolic networks is growing. A limited number of soft-
ware tools, such as Pathway tools [24], metaSHARK [25],
Simpheny (Genomatica), which aim at assisting and facili-
tating the reconstruction process are available. However,
recent reviews [18,26] highlight current problems with
genome annotations and databases, which make
automated reconstructions challenging and thus they
require manual evaluation. Genome-scale metabolic
reconstructions have been successfully applied to several
organisms across eukaryotic (e.g., Saccharomyces cerevisiae
[21,27-29], human [30], Arabidopsis thaliana [31]), pro-
karyotic (e.g., Escherichia coli [32-34], Bacillus subtilis
[35], Helicobacter pylori [36,37], Lactococcus lactis [38],
Staphylococcus aureus [39,40), Clostridium acetobutylicum
[41], Pseudomonas putida [42], Pseudomonas aeruginosa
[43], Geobacter metallireducens [44], Corynebacterium
glutamicum [45]), and archaeal (e.g., Methansoarcina bar-
keri [46], Halobacterium salinarum [47] species). Being a
useful guide for identification and filling of knowledge
gaps, these metabolic networks have been used toward
simulation of the cellular behavior under different genetic
and physiological conditions, contextualization of high-
throughput data, directing hypothesis driven discovery,
interrogation of multi-species relationships and topological
analysis (See [17] for an extensive review).

Here, a genome-scale reconstruction of C. salexigens
DSM 3043’s metabolism was established based on geno-
mic, biochemical and physiological information. Being
the first comprehensive metabolic model of a halophilic
bacterium, it was labeled as iOA584 following the
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naming convention proposed by [33]. The predictive
potential of the model was validated not only against
literature data on the in vivo C. salexigens phenotypic
features, the transport and use of different substrates
but also against experimental observations on the cho-
line - betaine and ectoine synthesis pathways which are
important parts of the osmoadaptation mechanism.

Methods

Genome Annotation

The complete genome sequence of C. salexigens DSM
3043 has been assembled in 2005 by the Joint Genome
Institute [14] and gene annotations are available online
at the web-sites of Computational Biology at ORNL [48]
and Joint Genome Institute [14], which represent
computational platforms enabling the corresponding
enzymes in addition to gene catalog. C. salexigens DSM
3043 genome size is 3.696 Mb with 3352 candidate
protein-encoding gene models.

Reconstruction Process

For the reconstruction of a genome-scale metabolic net-
work of the halophilic bacterium C. salexigens DSM 3043,
a non-automated but iterative decision-making process is
designed based on the conceptual reviews [18,19,22] and
published protocol [23]. In the first stage, a draft recon-
struction was built from gene-annotation data [48,49]
coupled with information from online databases, which
link genes to functional categories and help bridge the
genotype-phenotype gap. For the association of the
enzymes to the biochemical reactions, biochemical infor-
mation databases KEGG [50], BiGG [51], ExPASy [52],
BioCyc [53] and BRENDA [54], which provide compre-
hensive information on enzymes and biochemical reac-
tions, were employed to extract metabolic reactions, their
stoichiometry and thermodynamic constraints (i.e. reversi-
bility). As a result of the first stage, an initial catalog of
gene-enzyme-reaction associations was prepared. In the
second stage, the draft reconstruction was refined semi-
automatically through gap analysis. Using the draft catalog,
the stoichiometric matrix, the reaction and metabolite
adjacency matrices [55] were constructed, metabolic maps
were drawn and topological analysis [56,57] was per-
formed. Analysis of the preliminary version of the network
indicated the occurrence of metabolites not connected
with the overall metabolic network, i.e. the presence of
dead-end metabolites. The resulting shortage was
overcome mostly by manually searching biochemical
information databases [50-54] and carrying out a compre-
hensive literature survey on metabolisms of C. salexigens
[5-9,16,58,59]. In the last stage, the biomass formation and
transport reactions, which describe the intra- and extracel-
lular exchange of metabolites, were added to the metabolic
network predominantly based on the experimental
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evidence on phenotypic characterization of the strain
[5-9,16,58,59]. The reconstructed metabolic network was
automatically converted into a mathematical model that
could be analyzed through constraint-based approaches,
and was validated through comparison of model predic-
tions with phenotypic data.

Constraint-based Modeling

The interconnectivity of metabolites in a biochemical
reaction network can be represented by a set of equations
defining the stoichiometric conversion of substrates into
products [60]. The reconstructed metabolic network was
represented by a stoichiometric matrix, S (m x n) where
m is the number of metabolites and # is the number of
reactions. The corresponding entry in the stoichiometric
matrix, S, represents the stoichiometric coefficient for
the participation of the i metabolite in the j'™ reaction.
A constraint-based optimization framework, Flux Balance
Analysis (FBA) [61,62], was then recruited to solve the
linear programming problem under steady-state criteria
represented by the equation () where v is a vector of reac-
tion fluxes. Since the optimization problem belongs to an
under-determined system, there exist multiple solutions.
To find a particular solution for reaction fluxes, the cellu-
lar objective of producing the maximum amount of bio-
mass constituents was optimized [63]. The employment
of optimal growth assumption has allowed successful cal-
culation of phenotypic behaviour in FBA of reconstructed
metabolic models of several microorganisms [34-36,38,
40-42,46,47], suggesting that their metabolic networks
have evolved for the optimization of the specific growth
rate under several carbon source limiting conditions.
Constraints need to be imposed on the system in the
form of inequality () where o and B are the lower and
upper limits placed on each reaction flux, respectively.
The constraint-based optimization problem was solved
using MATLAB 7.4 (The Mathworks, Inc.).

Biomass Formulation

No thorough biomass composition has been published
for C. salexigens. The use of a generic biomass formation
reaction in FBA simulations was previously tried and led
to successful predictions [34,39,64]. Hence, based on the
experimental evidences on genome similarity [7],
phylogenetic classification and results from the compara-
tive analysis of the C. salexigens metabolic network with
other published reconstructed networks [27,34,35,39,
42,43,46,47], the relative production of metabolites
required for growth was taken from the published com-
position of E. coli iAF1260 [34].

Flux Variability Analysis
The flux variabily analysis was performed [65] to
observe the alternate optimal flux distributions. Briefly,
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the optimal value of the objective function was calcu-
lated by FBA simulation; then, with the objective func-
tion fixed at the optimal value, for each reaction the
maximum and minimum possible fluxes were computed.
The two values calculated for each reaction characterize
its variability.

Results And Discussion

Metabolic Reconstruction Process

Based on the conceptual reviews [19,18,22] and
published protocol [23], a non-automated but iterative
three-stage process was designed to reconstruct a gen-
ome-scale metabolic network of the halophilic bacter-
ium C. salexigens DSM 3043.

In the first stage, a draft catalog of gene-enzyme-reac-
tion associations was prepared via coupling genome
annotation data [48,49] with biochemical information
databases [50-54]. The genome annotation resources for
C. salexigens [48,49] not only include genetic informa-
tion such as genome position, coding region, locus tag,
gene product function, but also represent assignments
of gene products to PRIAM categories, COG functional
groups, KEGG orthologies and pathways, and Enzyme
Commission (EC) numbers. All these information were
assembled and analyzed manually to identify candidate
metabolic functions. In the first step, the pathway data-
bases, namely KEGG [50] and BiGG [51], were systema-
tically searched for the associations of the metabolic
reactions to the enzymes. At this step, KEGG pathway
assignments and EC numbers, which represent a hier-
archical classification of enzymatic reactions and are
commonly utilized as identifiers of enzymes in the ana-
lysis of complete genomes, played important role in
bridging the genomic repertoire of gene models to the
chemical repertoire of metabolic pathways. However,
several EC numbers were assigned to signaling or regu-
latory proteins, whose functions are not normally con-
sidered in metabolic reconstructions. For instance,
Csal2070 gene was assigned for a repressor protein LexI
(EC 3.4.21.88) functioning in SOS regulation. Therefore,
these assignments were carefully checked and not
included in the draft reconstruction. Another important
point to be emphasized is the incompleteness of path-
way databases. Although very high percentages (66.6%)
of the enzymes were associated with the reactions, there
were missing reactions that were not represented in
these databases. In the second step, enzyme information
databases, namely ExPASy [52], BioCyc [53] and
BRENDA [54] were explored to include the missing
reactions to the model. Since EC numbers were known
from previously obtained gene-annotation data, enzymes
could be connected with accurate metabolic reactions.
For example, the reactions for carbonyl reductase (EC
1.1.1.184), malate synthase (EC 2.3.3.9) and creatinase
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(EC 3.5.3.3) were obtained from ExPASy, BRENDA and
BioCyc databases, respectively. The outcome of the first
stage was an initial catalog of gene-enzyme-reaction
associations.

Second stage comprised of semi-automatically refine-
ments of the draft reconstruction through gap analysis.
Using the draft catalog of gene-enzyme-reaction associa-
tions, the stoichiometric matrix, the reaction and meta-
bolite adjacency matrices were constructed, metabolic
maps were drawn and topological analysis was per-
formed [55,56] Analysis of the preliminary version of
the network indicated the occurance of metabolites not
connected with the overall metabolic network, i.e. the
presence of dead-end metabolites. Their presence might
be due to a misassignment of a gene function or to
missing reactions linking these metabolites with the
overall network. The resulting shortage was overcome
mostly by manually searching other biochemical infor-
mation databases, namely ExPASy [52], BioCyc [53] and
BRENDA [54]. In addition for these enzyme-reaction
associations, the required information was obtained
from literature. For instance, in the utilization pathway
of tagatose, tagatose-6-phosphate kinase reaction (EC
2.7.1.144) was present in the model; but, an essential
intermediate step, i.e. the formation reaction of tagatose
6-phosphate from tagatose, was missing in the model.
Subsequently, tagatose kinase reaction (EC 2.7.1.101)
was included to the model. In some cases, gap analysis
indicated the lack of numerous steps in several path-
ways. For example, in arabinose metabolism 5 additional
metabolic reactions (EC 1.1.1.46, EC 3.1.1.15, EC
4.2.1.25, EC 4.2.1.43 and EC 1.2.1.26) were required to
link dead-end metabolites to the metabolic model. At
this stage, stoichiometrically unbalanced reactions were
also checked. Normally, there are two common errors
causing unbalanced reactions [23]: Missing proton and/
or water, or when the stoichiometric coefficient of at
least one metabolite is wrong. All the metabolic reac-
tions were tested for mass and charge balancing and
several reactions required corrections. For example, in
the reaction catalyzed by glucokinase (EC 2.7.1.2,
Csal0935), which was obtained from KEGG [50], a pro-
ton was missing.

In the last stage, the reconstructed metabolic network
was automatically converted into a mathematical model
that could be analyzed through constraint-based
approaches, and was validated through comparison of
model predictions with phenotypic data. The biomass
formation and transport reactions, which describe the
intra- and extracellular exchange of metabolites, were
added to the metabolic network predominantly based on
the experimental evidence [5-9,16,58,59] on phenotypic
characterization of the strain and then FBA simulations
on various carbon sources were performed to verify the
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model. For example, uptake of macro nutrients (e.g.,
amino acids, sucrose, glucose), secretion of by-products
(e.g., lactate, ammonia, betaine), and exchange of free
compounds (water, carbon dioxide, oxygen) were added
since they represent essential cellular inputs and out-
puts. The metabolic model was updated iteratively using
the above procedure until the in silico phenotypic char-
acterizations were completely represented by the simula-
tion results.

Characteristics of the Reconstructed Metabolic Network of
C. salexigens

The reconstruction process resulted in a metabolic net-
work that consisted of 1387 metabolic reactions including
biomass reaction and 1411 metabolites (Additional File 1).
The model is composed of 876 enzymatic reactions, 510
transport reactions; 920 intracellular and 491 extracellular
metabolites and throughout the reconstruction process,
584 protein-encoding gene models have been assigned to
the metabolic reactions (Table 1). For 97.7% of all enzy-
matic reactions, a corresponding gene-enzyme-reaction
association has been assigned in the model.

A large amount of enzymes, which were included by
the metabolic model, were monofunctional (80.65%)
whereas the rest were multifunctional accepting several
different substrates. Therefore, the published genome
for their corresponding genes were carefully checked
during reconstruction process in order not to lead to
false gene-enzyme-reaction associations in the recon-
structed genome-scale metabolic model.

The enzymes included in i{OA584 were divided into 12
main categories based on their functional roles
(Figure 1A). The transport category was found to be the
subsystem with the highest number of enzymes (40%),
highlighting the importance of cellular transport for C.
salexigens. Most of the transport reactions were
included into the network based on physiological data
and the abundance of transport reactions agrees well
with the experimental findings that this organism has an
excellent adaptation to osmotic stress [8] and is able to

Table 1 Network characteristics of the reconstructed
metabolic network of C. salexigens

Protein-encoding gene models 584
Metabolites 1411
Intracellular metabolites 920
Extracellular metabolites 491
Reactions 1386
Enzymatic reactions 876
Transport fluxes 510
Reactions with protein-encoding gene model assignments 886
Enzymatic reactions 856
Transport fluxes 30
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Figure 1 Characteristics of the reconstructed metabolic network iOA584. A: Distribution of the 12 main metabolic pathways in iOA584. B:
Comparison of the distribution of enzyme classes in C. salexigens, E. coli and S. cerevisiae.
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utilize various carbon sources as sole energy source.
However, the high number of transport reactions with no
gene assignment (94% of transport reactions) in C. salexi-
gens points to the fact that further work is needed to
characterize the mechanisms and genetic machinery
involved in the transport of molecules in halophilic bac-
teria. For example, although the halophilic bacterium is
known to be able to utilize various carbon sources as sole
energy source, only 4 genes (Csal0010, Csalll44,
Csal0500, and Csal1728) were associated with sugar
transport mechanisms in the annotated genome of C.
salexigens [38]. In addition, only one of them (Csal0010)
has been associated with an enzyme (EC.2.7.8.20) in Bio-
Cyc [53]. Deciphering the transport phenomena in halo-
philic bacteria is an important issue, since understanding
the osmoprotectant uptake mechanisms in natural envir-
onments is a key point in achieving an efficient osmoa-
daptation. Therefore, for further studies, a detailed
biophysical classification of the 342 candidate gene mod-
els related to the transport mechanism was presented
(See Additional File 2 for the complete list of genes and
their annotations).

Moreover, C. salexigens is known for its capability to
utilize many amino acids as a carbon and nitrogen
source [5,6,59]. The presence of high number of
enzymes (13%) in the amino acid metabolism is in
agreement with the fact that the de novo synthesis path-
ways for all 20 amino acids are present in C. salexigens’
genome [14,48]. To validate in silico amino acid utiliza-
tion as a carbon and nitrogen source, FBA simulations
were carried out and growth on all of the 20 amino
acids were obtained. For instance, at a specific uptake

rate (1 mmol/gDW/h) of isoleucine, growth rate was
calculated as 0.129 h™'. Additionally, glycan biosynthesis
and metabolism; and biosynthesis of secondary metabo-
lites have the lowest number of enzymes (1%).

Throughout the reconstruction process, 584 protein-
encoding gene models have been assigned to the metabolic
reactions. The distribution of the ratios of number of reac-
tions per number of gene models in each enzyme class
[27,32] was investigated in the reconstructed model
iOA584 (Figure 1B). In the metabolic network of C. salexi-
gens, hydrolases (EC 3) were positioned primarily, followed
by transferases (EC 2), ligases (EC 6), oxidoreductases
(EC 1), lyases (EC 4), and isomerases (EC 5). Hence ligases
and transferases were less substrate specific than the other
enzyme classes in C. salexigens, as in the case of E. coli
[32], whereas in S. cerevisiae isomerases and transferases
were found to be the least substrate-specific enzyme
classes [27].

Related species of the same domain share a substantial
amount of conserved reactions for essential biological
processes [66-68]. The metabolic network iOA584 was
also compared with previous metabolic models from dif-
ferent domains [27,34,35,39,42,43,46,47] to identify the
conserved reactions in iOA584. As expected, highest
number of metabolic reactions were shared by E. coli
(iAF1260) with 320 reactions, P. aeruginosa (iMO1056)
with 309 reactions and P. putida (iJ]N746) with 282
reactions. Number of shared metabolic reactions for S.
cerevisiae, S. aureus N315, B. subtilis, and H.salinarium
were obtained as 274, 265, 260, and 221, respectively;
while C. salexigens and M. barkeri association indicated
the lowest number with 205 metabolic reactions.
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The distribution of the reactions for C. salexigens,
E. coli and the eukaryote S. cerevisiae (Figure 2A) indi-
cated an interior set of 228 reactions in all of the three
metabolic models with the following pathway distribu-
tion; 95 from amino acid, 53 from carbohydrate, 52
from metabolism of cofactors and vitamins, 43 from
nucleotide, 27 from energy and 18 from lipid metabo-
lism. A number of reactions were found to be involved
in more than one pathway such as reactions catalyzed
by alcohol dehydrogenase (ADH) enzymes (EC 1.1.1.1)
that can be found in carbohydrate, lipid and amino acid
metabolisms in agreement with literature [69]. 37.3% of
the total reactions were unique to C. salexigens iOA584
most of which were from amino acid (38 reactions)
metabolism followed by carbohydrate metabolism (31
reactions). Comparison of the distribution of metabolic
reactions for C. salexigens, P. putida and P. aeruginosa
(Figure 2B) showed a higher interior set with 250 reac-
tions as expected, since species of the same domain
share a substantial amount of conserved reactions for
essential biological processes [68]. A similiar pathway
distribution was observed whereas most of the reactions
were involved in amino acid, carbohydrate metabolism
and lipid metabolism with 118, 89 and 57 reactions,
respectively.

Capabilities of the metabolic network - Phenotypic
characterization in silico

One of the major requirements for a reconstructed net-
work is its compatibility with the physiology of the
organism which in turn is highly essential when using
the model in understanding the diverse mechanisms of
the organism. In the present study, in silico phenotypic
characterization constitutes an essential step of the
reconstruction process. At the last stage of the recon-
struction process, FBA simulations were performed with
various growth media to test for incapabilities of the

A B
C saiexigens € sctexigens

S. corevisie E.cof Py Y
Figure 2 Comparison of the reconstructed metabolic network
with previous metabolic models from different domains. A: The
distribution of reactions in C. salexigens, E. coli and S. cerevisae
B: The distribution of reactions in C. salexigens,P. putida and
P.aeruginosa
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model in representing the phenotypic features in litera-
ture [5-9,16,58,59] (Table 2). For example, the metabolic
model i{OA584 was not able to utilize galactitol, taga-
tose, xylose, erythritol, arabinose, malonate, propionate
and glycerate due to the absence of several exchange
and enzymatic reactions. These shortages were resolved
via manual searching of biochemical information data-
bases [52-54] and by addition of 13 reactions (EC
1.1.1.16, EC 1.1.1.175, EC 1.1.1.46, EC 1.2.1.15, EC
1.2.1.26, EC 3.1.1.15, EC 2.7.1.101, EC 2.7.1.27, EC
2.7.2.15, EC 4.2.1.25, EC 4.2.1.43, rxn978 and rxn1314)
into the network. The metabolic network was updated
until the complete in silico phenotypic characterization
was achieved.

The resultant metabolic model i{OA584 has the ability
to verify reported C. salexigens phenotypic features
[5-9,16,58,59] through in silico FBA simulations. C.sale-
xigens is able to grow aerobically and has ability for
anaerobic respiration with nitrate. This microorganism
is catalase and citrate positive, oxidase negative. Nitrate
can be reduced to nitrite in contrast nitrite cannot be
reduced [5,6,59]. The in silico aerobic and anerobic
growth simulations were performed with biomass as the
objective function at a specific glucose uptake rate of 3
mmol/gDW/h and for anaerobic respiration with 1
mmol/gDW/h nitrate as an electron acceptor instead of
O,. The growth rates were determined as 0.1934 h™" and
0.0645 h™* for aerobic and anaerobic conditions, respec-
tively. As such, catalase, citrate, urease activities and
nitrate reduction simulations were also consistent with
literature data (Table 2). Acetoin, indole, lysine decar-
boxylase, ornithine decarboxylase and phenylalanine
deaminase could not be produced by C. salexigens
iOA584 as also reported in vivo [6]. Literature data on
the transport and use of 59 different substrates were
also verified in silico by fixing the externally transport
reaction of fluxes (3-10 mmol/gDW/h) and investigating
the associated utilization reaction fluxes and objective
function biomass flux to assess a positive growth. For
example, 1 mmol/gDW/h uptakes of fructose and
sucrose resulted in growth rates of 0.1290 h™' and
0.0646 h!, respectively.

Additionally, the FBA simulations were performed in
order to validate experimental growth rate values with
glucose as the only carbon source in chemically defined
media which were reported [70]. Experimental and in
silico growth fluxes for batch cultivation of C. salexigens
at varying glucose uptake rates ( 3.193 - 3.751 mmol/
gDW/h) were illustrated in Figure 3. Whereas a higher
growth rate was predicted for 3.193 mmol/gDW/h,
simulations were in significant agreement with the
experimental data with as low as 1.5 to 2.5% errors for
the other glucose concentrations (3.307, 3.478 and 3.751
mmol/gDW/h).
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Table 2 In silico predictions of the phenotypic features
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Phenotype (in vivo/in Related Enzymes Related Reactions
silico)

Catalase activity (+/4) Catalase (1.11.1.6) rxn87

Citrate activity (+/+4) citrate synthase (2.3.3.1) rxn328

Urease activity (+/4) Urease (3.5.1.5) xn610

Nitrate reduction (+/4) Nitrate reductase rxn216-rxn218

(1.7.994)

Substrate (in vivo/in Transport Reactions Utilization Reactions
silico)

Acetate (+/4) xn964 rxn527, rxn559, rxn817

Adonitol (-/-) - -

Glycine Betaine (+/+4) xn1112, xn1113 xn136, rxn137, rxn243

Butyrate (/) - -

Caprylate (-/-) - -

Cellobiose (-/) - -

Choline (+/+) rxn1004, rxn1005 rxn83, rxn107, rxn580

Citrate (+/+) xn1007 rxn328, rxn702, rxn726, rxn727

Creatine (-/-) - -

D-fructose (+/4) xn1079, rxn1080 rxn62, rxn337, rxn433, rxn781

D-galactose (+/4) rxn1091 xn53

D-glucose (+/+) rxn877, rxn881, rxn882 1Xn82, rxn422

DL-glycerate (+/4) xn1114 rxn64

DL-o- (/) - -

aminobutyrate

D-mannitol (+/+4) ~xn1173 rxn33, rxn62

D-mannose (+/+) xn1161 rxn33, rxn781

D-melibiose (/) - -

D-raffinose (/) - -

D-ribose (+/4) xn1274 rxn418

D-sorbitol (+/+4) rxn1284 rxn17

L-tartrate (+/+) xn1312 rxn729

D-trehalose (+/+) rxn1327, rxn1328 rxn562

Dulcitol (+/4) xn1101 rxn53

(galactitol)

D-xylose (+/+) rxn1385 rxn22

Erythritol (+/4) rxn1060 rxn427

Ethanol (+/+) rxn1065 rxn2

Fumarate (+/+) xn1081 rxn155, rxn156, r~xn158 - rxn162, rxn720, rxn753 - rxn755

Galactosamine (/- - -

Gluconolactone (-/-) - -

Glutamate (+/4) xn1109 rxn763, rxn854

Glycerol (+/+) ~xn1116 rxn1, rxn429

Glycine (+/+) xn1118 rxn182, rxn183, rxn257, rxn258, rxn605, rxn695, rxn802, rxn848, rxn859

Inulin (/- - -

Lactate (/- - -

L-alanine (/) - -

L-arabinose (+/4) xn978 rxn52

L-arginine (+/+) rxn979 xn275, rxn616, rxn661, rxn753, rxn807

L-asparagine (+/+) rxn981 rxn597

L-fucose (/- - -

L-glutamine (+/+) xn1103 xn175, rxn184, rxn389, rxn699, rxn806, rxn863, rxn868 - rxn872

L-lysine (+/4) xn1153 rxn104, rxn814

L-methionine (-/-) - -

L-ornithine (+/4) xn1209 xn267, rxn268, rxn750

L-proline (+/+) rxn1248 rxn195, rxn803
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Table 2 In silico predictions of the phenotypic features (Continued)

L-rhamnose (-/-) -
L-serine (+/+) xn1290
L-threonine (-/-) -
L-valine (-/-) -
Malate (+/+) rxn1155
Malonate (+/4) xn1156
Maltose (+/+) xn1157
Meso-inositol (+/4) xn1170
Oxalate (/=) -
Propionate (+/+4) rxn1249
Putrescine (/) -
Sarcosine (/) -
Succinate (+/+) rxn1305
Sucrose (+/+) rxn883, rxn884, rxn885
Tagatose (+/+) xn1314
o-lactose (/) -

rxn37, rxn256, rxn257, rxn297, rxn298, rxn514 - rxn520, rxn721, rxn722, rxn751,

xn799, rxn800

rxn46, rxnd7, rxn84, rxn85, rxn720
xn122
rxn587
xn96
rxn433

xn97, rxn98, rxn156, xn159, rixn160, rxn163, rxn700, rxn841
rxn337
rxn39, rxn439

Since the flux distribution of overall network map
might be useful in investigating and improving FBA ana-
lysis, Omics Viewers Tool of BioCyc [53] was used to
illustrate in silico flux distribution in C. salexigens meta-
bolic pathways. Reaction flux data and gene information
were provided for Omics Viewer to generate overall
diagram colorized with flux data. The details of the con-
nectivity aspects of the reconstructed metabolic network
(Additional File 3), the overall map of the reconstructed
network and its detailed batch images obtained were
also supplemented (Additional File 4).

Case study on osmoadaptation

Generally, halophiles can adapt to the saline environ-
ment by either intracellular accumulation of salts, or
exclusion of salts and production or accumulation of

experimental growth fluxes

-
minsilico growth fluxes

Growth fkux (1/h)

3.478
3.751

Glucose (mmol/gDW/h)

Figure 3 Experimental and in silico growth fluxes for batch
cultivation of C.salexigens when glucose uptake rate was
varying between 3.193 - 3.751 mmol/gDW/h.

different classes of organic solutes (osmoprotectants)
[71,72]. C. salexigens has been used comprehensively as
a model organism in osmoadaptation studies due to its
ability to grow over a wide range of salinities [6-8].
Osmoadaptation in C. salexigens is mainly achieved by
de novo synthesis of two compatible solutes, namely
ectoine and hydroxyectoine, which are of industrial and
biological interest due to their biostabilizing properties.
In addition, when these solutes are provided externally,
C. salexigens accumulates other osmoprotectants such
as choline and glycine betaine. Besides the betaine
exchange that is common in bacteria, the rarely encoun-
tered betaine biosynthesis pathway from choline has
been characterized in C. salexigens to some extend at
the biochemical level [5,8,59,73,74]. Further research on
the genes and metabolic pathways responsible for the
biosynthesis of compatible solutes will not only find
numerous applications in biomedicine, agriculture, food
and fermentation industries but also expand our knowl-
edge on the prokaryotic adaptation mechanisms to
abiotic stresses like high salinity [72].

Via integration of data from in vitro metabolic and
genetic analyses, in further studies, the presented gen-
ome scale model iOA584 could be used to elucidate
osmoadaptation mechanisms and to design strategies
(i.e. optimizing culture media, genetical engineering of
the microorganism) for optimum production of compa-
tible solutes such as ectoine, which has industrial appli-
cations for cosmetics and dermopharmacy and is widely
used in stabilizing enzymes for molecular biology.

Here, C. salexigens iOA584 was used to simulate the
experimental observations on osmoadaptation of C. sale-
xigens, in order to demonstrate that the model could be
used for further studies in understanding the metabolic
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pathways behind osmoadaptation and to design or
improve the adaptation mechanisms in extromophiles.

In C. salexigens, the osmoprotectant betaine is synthe-
sized from its precursor choline in two steps (Figure 4).
In the first step, choline is converted into betaine alde-
hyde by membrane-bound choline dehydrogenase (EC
1.1.99.1, Csal1514) or by a ferredoxin-dependent choline
monooxygenase (EC 1.14.15.7, Csal2455). Then, betaine
aldehyde dehydrogenase (EC 1.2.1.8, Csal1515) catalyzes
the conversion of betaine aldehyde to betaine in the sec-
ond step. Previously, Canovas and coworkers (1998)
have investigated the transport of choline and its con-
version to the osmoprotectant compound glycine
betaine in C. salexigens. They reported that the growth
of C. salexigens (with glucose as the sole carbon source)
was stimulated by the presence of choline and that the
presence of betaine had an inhibitory effect on the intra-
cellular oxidation of choline.

For validation of the model’s predictive potential, in
silico model simulations of the choline - betaine pathway
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of the osmoadaptation mechanism were compared with
these experimental observations [5,7-9,59]. FBA simula-
tions were performed with biomass as the objective
function and 1 to 3 mmol/gDW/h glucose uptake rate
(Figure 4). Via restriction of uptake of exogeneous cho-
line to various values between 1 to 2 mmol/gDW/h,
monotonic increase in the biomass flux (from 0.065 to
0.129 h™') and in betaine production flux (from 0.45 to
0.89 mmol/gDW/h) were observed; hence stimulation of
growth by the presence of choline was predicted, which
is in agreement with the reported experimental observa-
tions [58]. It is known that the resulting solution of FBA
especially when applied to genome scale models is nor-
mally not unique [65]. Therefore, the flux variability ana-
lysis was performed to observe the alternate optimal flux
distributions in FBA simulations. Results showed that the
fluxes are in general not affected since the range of vari-
abilities for each flux were lower than 0.1%.

Due to the high industrial and biological importance
of ectoine, current studies are focussed on the
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elucidation of its biosynthesis mechanism which in turn is
essential for the improved production of this compatible
solute. Ectoine is synthesized by C. salexigens in core
osmoadaptation mechanism via ectABC genes (74). Its
biosynthesis is a branch of the synthesis pathway for the
aspartate family of amino acids (Figure 5). The aspartate is
converted into aspartate-f-semialdehyde (ASA) via aspar-
tate kinase (EC 2.7.2.4, Csal0626) and aspartate-semialde-
hyde dehydrogenase (EC 1.2.1.11, Csal2450), which is
further converted to L-2,4-diaminobutyrate (DA) by dia-
minobutyrate-2-oxoglutarate transaminase (EC 2.6.1.76,
Csal1877) requiring glutamate and by diaminobutyrate—
pyruvate transaminase (EC 2.6.1.46, Csal1877) in the pre-
sence of alanine. L-2,4-diaminobutyrate is acetylated by
DA acetyltransferase (EC 2.3.1.178, Csal1876) to Ny-
acetyl-L-2,4-diaminobutyrate (NADA), which is the sub-
strate of ectoine synthase (EC 4.2.1.108, Csal1878).

To simulate metabolic model in the view of ectoine
synthesis, the required conditions were implemented
and the resulting flux values were investigated. To
demonstrate high-level ectoine production when the
other external osmoprotectants are not accessible, as
stated by Vargas and co-workers (2008); under the
absence of exogenous osmoprotectants (i.e. choline and
betaine uptake as well as choline oxidation fluxes were
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constrained to zero), FBA simulations were performed
for 3-10 mmol/gDW/h glucose uptake rates. Ectoine
production increased from 1.4975 up to 4.9722 mmol/
gDW/h with a yield within a range of 49 - 50% mmol
ectoine/mmol glucose with concomitant increase in bio-
mass (0.1934 to 0.642 h™') demonstrating the high level
ectoine production when glucose was the only carbon
source. In addition, Fallet and coworkers (2010)
reported batch cultivation data for ectoine production
with glucose as the sole carbon source. The performed
FBA simulations with 1.5 mmol/gDW/h glucose uptake
resulted in an ectoine production rate of 0.75 mmol/
gDW/h, which was comparable with the reported
experimental result of 0.72 mmol/gDW/h [70].
Comprehensive analysis of the ectoine biosynthesis
(Figure 5) revealed the importance of aspartate, gluta-
mate and alanine in directing fluxes through ectoine
synthesis pathway. Moreover, key enzymes of the path-
way (i.e. aspartate kinase, diaminobutyrate-2-oxoglutarate
transaminase, diaminobutyrate—pyruvate transaminase
and DA acetyltransferase) link the pathway to the central
metabolism. In FBA simulations, the presence of gluta-
mate and alanine in the medium significantly affected
both growth and ectoine production. For instance, con-
straining the glucose and NaCl uptake rates at 1 mmol/
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gDW/h and 1.1 mmol/gDW/h, respectively; the presence
of alanine in the medium was simulated by an uptake
rate of 1.2 mmol/gDW/h and the growth was stimulated
by 9.01% (from 0.0710 to 0.0774 h™), whereas the ectoine
production was improved 9.08% (from 0.5497 to 0.5996
mmol/gDW/h).

Conclusions

A non-automated but iterative decision-making process
was employed in order to reconstruct the first compre-
hensive genome-scale metabolic model of a halophilic
bacterium, C. salexigens DSM 3043. The in silico model
was able not only to represent the potential of the net-
work in terms of phenotypic characterization but also to
predict metabolic fluxes during osmoadaptation, both of
which were consistent with the experimental observa-
tions. The reconstructed model will accelarate the
research on halophilic bacteria towards application of
systems biology approaches, design of optimal culture
conditions and metabolic engineering strategies for
improved production of biological and industrially
important products.

Additional material

Additional file 1: The metabolite and reaction lists of C. salexigens
iOA584 metabolic model (Excel file).

Additional file 2: The complete list of genes and their annotations
related to the transport mechanisms of C. salexigens DSM 3043
(Excel file).

Additional file 3: Topological analysis of the reconstructed C.
salexigens iOA584 metabolic model (Excel file).

Additional file 4: The overall network map and detailed batch
images of C. salexigens iOA584 metabolic model (Word document).
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