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Abstract
Background: Photosynthetic organisms convert atmospheric carbon dioxide into numerous
metabolites along the pathways to make new biomass. Aquatic photosynthetic organisms, which fix
almost half of global inorganic carbon, have great potential: as a carbon dioxide fixation method,
for the economical production of chemicals, or as a source for lipids and starch which can then be
converted to biofuels. To harness this potential through metabolic engineering and to maximize
production, a more thorough understanding of photosynthetic metabolism must first be achieved.
A model algal species, C. reinhardtii, was chosen and the metabolic network reconstructed.
Intracellular fluxes were then calculated using flux balance analysis (FBA).

Results: The metabolic network of primary metabolism for a green alga, C. reinhardtii, was
reconstructed using genomic and biochemical information. The reconstructed network accounts
for the intracellular localization of enzymes to three compartments and includes 484 metabolic
reactions and 458 intracellular metabolites. Based on BLAST searches, one newly annotated
enzyme (fructose-1,6-bisphosphatase) was added to the Chlamydomonas reinhardtii database. FBA
was used to predict metabolic fluxes under three growth conditions, autotrophic, heterotrophic
and mixotrophic growth. Biomass yields ranged from 28.9 g per mole C for autotrophic growth to
15 g per mole C for heterotrophic growth.

Conclusion: The flux balance analysis model of central and intermediary metabolism in C.
reinhardtii is the first such model for algae and the first model to include three metabolically active
compartments. In addition to providing estimates of intracellular fluxes, metabolic reconstruction
and modelling efforts also provide a comprehensive method for annotation of genome databases.
As a result of our reconstruction, one new enzyme was annotated in the database and several
others were found to be missing; implying new pathways or non-conserved enzymes. The use of
FBA to estimate intracellular fluxes also provides flux values that can be used as a starting point for
rational engineering of C. reinhardtii. From these initial estimates, it is clear that aerobic
heterotrophic growth on acetate has a low yield on carbon, while mixotrophically and
autotrophically grown cells are significantly more carbon efficient.
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Background
Algae and other marine organisms are responsible for the
fixation of almost half of the inorganic carbon from the
atmosphere [1]. With rising atmospheric carbon dioxide
levels, knowledge of how photosynthetic organisms con-
vert atmospheric carbon dioxide into metabolites and
other important compounds is becoming increasingly
important. Not only do these organisms fix carbon diox-
ide, but they also have the potential to be used for the pro-
duction of inexpensive bulk chemicals because the major
inputs into the system (light and CO2) are essentially free.
However, to harness this potential through metabolic
engineering, a deeper understanding of photosynthetic
metabolism is required.

There are several widely accepted methods for modelling
metabolism, ranging from highly detailed kinetic models
to less complex stoichiometric models. One of the more
increasingly used methods is flux balance analysis (FBA),
which has the ability to predict fluxes using linear pro-
gramming with the knowledge of reaction stoichiometry,
biomass composition and additional constraints, such as
limits on uptake/excretion rates and thermodynamic con-
straints. FBA has been used for a number of model organ-
isms [2-7] to predict fluxes and viability of knockouts. FBA
can also be used for rational strain design, both to predict
theoretical yields and to identify bottlenecks or sinks in
metabolism that need to be altered to achieve the theoret-
ical yield [8,9].

FBA has been previously used to model photosynthetic
metabolism in a model cyanobacteria, Synechocystis [9]. In
an earlier related study, the metabolic network of another
cyanobacterium, Arthrospira platensis, was reconstructed
and fluxes computed [10]. The goal of the current study
was not only to model photosynthetic metabolism, but to
model it in a higher eukaryote in order to have a model
more representative of plant metabolism. Therefore,
Chlamydomonas reinhardtii was chosen as a representative
algal species for this study. C. reinhardtii has been used as
a model organism to study numerous cellular functions
from photosynthesis research to flagellar function and
assembly [11] and most recently a metabolomics and pro-
teomics approach to genome annotation [12]. It has
served as a bridge between higher plants and cyanobacte-
ria in the field of photosynthetic research due to the rela-
tive simplicity of the cell structure and metabolism while
being more comparable to higher plants. C. reinhardtii
was the first algal species to have its genome sequenced
[13] and this has provided researchers with an abundance
of data on genes and their functions. Another advantage
of C. reinhardtii is that its photosynthetic capability is dis-
pensable; as it can grow heterotrophically on acetate.
However, as an acetate flagellate, it can only grow on ace-
tate and similar 2-carbon molecules in the dark. In the

presence of light, C. reinhardtii can metabolize pentoses
and hexoses (mixotrophic growth) as well as acetate [14]
and supports autotrophic growth using carbon dioxide as
the carbon source.

The major contribution of this work is the reconstruction
of a compartmental metabolic network for primary
metabolism in the green alga, C. reinhardtii. The metabolic
network was reconstructed using the genomic database
[13], biochemical texts [15-17], metabolic pathway data-
bases [18,19], and archival journal articles (See methods
section for specific articles). Localization of enzymes in
the cell was proposed using bioinformatic software
[20,21]. FBA was then used to predict flux distributions
for three conditions: autotrophic, heterotrophic and mix-
otrophic growth.

Results and discussion
Network reconstruction
The reconstructed metabolic network of C. reinhardtii con-
sists of 458 metabolites and 484 metabolic reactions.
Almost half of the metabolites included in the network
are present in the chloroplast (Figure 1), which is a result
of the large number of reactions localized to the chloro-
plast (212 out of 484). The cytosol acts as the 'hub' of
transport for metabolites as well as the polymerization
location for most macromolecules; as a result, roughly
one third of the metabolites in the model are localized
there. Another significant portion of reactions in the
model function as intracellular transporters, which indi-
cates the high interconnectivity between the compart-
ments.

In the course of reconstructing the model, several assump-
tions about the presence or absence of reactions had to be
made. Although many reactions were not linked to the EC
number in the database, the coinciding gene was deter-
mined by performing a protein BLAST [22] search. Of the
359 metabolic reactions in the model, only 17 resulted in
no hits in the database, these are shown in Table 1. One
enzyme, fructose-1,6-bisphosphatase resulted in a hit in
the database but was not previously annotated and was
subsequently added to the C. reinhardtii database. Finally,
a few reactions/enzymes/metabolites were assumed to be
present as formulated in the model, which include the
electron transport chain (ETC) reactions, oxidative phos-
phorylation and a simplified lipid biosynthesis reaction.

Localization of enzymes and metabolites
The reactions in the network were localized into three
compartments; cytosol, mitochondria and chloroplast
(see Figure 2). Localization of enzymes present in the
database was determined by submitting the amino acid
sequence to software programs [20,21] which identify the
presence or absence of a signal peptide (SP). Enzymes that
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did not have a predicted SP or those that were targeted to
the secretory pathway were modelled as cytosolic because
only three compartments were considered. Predicting the
localization of an enzyme is only possible when the
amino acid sequence is known, therefore for the few
enzymes that were not in the database, the localization
was assumed based on where the preceding and following
metabolic steps were located. Metabolites were also
assigned to compartments based on which compartment
they were in while participating in enzymatic reactions;
these are differentiated by a small m (mitochondria) or c
(chloroplast) following the metabolite abbreviation.
Metabolites without a subscript, by default, are located in
the cytosol [see additional file 1 for a complete list of
metabolites]. Metabolites were allowed to move between
compartments either through known transporters and
shuttle systems or through inferred reactions (or passive
diffusion) based on the need for metabolites in certain
compartments.

Biomass formation equation
The macromolecular composition of cells from each
growth condition was measured as described in the meth-
ods section. The DNA and RNA content were assumed
constant across all growth conditions. The final cellular
dry weight composition of each growth condition is given
in Table 2. The elemental composition was also measured
(Table 3) and compared to the values calculated from the
measured cellular composition. The final balances varied
from the measured elemental composition by 0.1% to
6%. The biomass composition was then used to construct
a biomass formation equation for each growth condition.
Along with the 7 main components (DNA, RNA, protein,
lipid, chlorophyll a, and chlorophyll b), the polymeriza-
tion and growth associated maintenance energy was also
included in the biomass formation equation. The polym-
erization energy requirement for protein, DNA and RNA
from their respective precursors was assumed to be the
same as that for E. coli [23]. The resulting biomass forma-

Distribution of enzymes and metabolitesFigure 1
Distribution of enzymes and metabolites. Distribution of enzymes and metabolites in the reconstructed model of 
Chlamydomonas reinhardtii. Almost half of both the enzymes and metabolites are localized to the chloroplast, followed by the 
cytosol and mitochondria. There are also a large number of transport reactions, indicating the importance of metabolite 
exchange between compartments.
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tion equations for auto-, hetero- and mixotrophic growth
are shown in Table 4.

Simulation results
Central metabolism flux maps
Flux maps for three growth conditions (auto-, hetero-, and
mixotrophic) were calculated using the reconstructed net-
work and FBA. During autotrophic growth, the cell fixes
carbon dioxide by converting light into cellular energy
(reducing equivalents and ATP). In this study we defined
heterotrophic growth as aerobic growth on acetate in the
dark; the cell using acetate for both carbon and energy
sources. Another metabolic mode, mixotrophic growth, is
the link between the two extremes. In our model, mix-
otrophic growth has three inputs: light, acetate and car-
bon dioxide.

Autotrophic growth was simulated using a two-step opti-
mization with a basis of 100 moles CO2. Interestingly, the
fluxes for both optimization steps were identical (as
reported previously by [9]), which implies the cell is opti-
mally utilizing energy to produce biomass without need-
ing the second constraint of minimum light energy. As
expected, the majority of the carbon flux is directed
through the Calvin Cycle (Figure 3). The energy required
for the regeneration of GAP from 3PG to run the Calvin
Cycle is supplied by photophosphorylation. Due to com-
partmentation and no known direct NADPH or NADH
transporters, the flux through the non-cyclic ETC is almost
wholly constrained by the flux from 3PG to GAP, which is
the main consumption of NADH in the chloroplast. The
rest of the NADPH produced by the non-cyclic ETC must
be transported out of the chloroplast via an indirect shut-
tle. In the autotrophic case, the cell produces most of its

Table 1: Missing enzymes from the C. reinhardtii database

Rxn # E.C. # Gene Description Reaction

5 2.7.1.11 Phosphofructokinase F6P + ATP --> F16P + ADP

6 3.1.3.11 Fructose-1,6-Phosphatase F16P + H2O --> F6P + Pi

7 2.7.1.11 Phosphofructosekinase F6P_c + ATP_c --> F16P_c + ADP_c

167 3.6.1.3 ATPase ATP_c + H2O_c --> ADP_c + Pi_c

169 3.6.1.3 ATPase ATP_m+ H2O_m --> ADP_m + Pi_m

209 2.7.1.31 Glycerate Kinase Glycerate_c + ATP_c → 3PG_c + ADP_c

300 4.1.2.15 DAP synthase, KDPH Synthetase PEP_c + E4P_c + H2O_c --> DDP_c

326 3.6.1.- Dihydroneopterin Dephosphorylase DHN + 2 H2O --> DHDN + PP + Pi

328 2.7.6.3 Dihydropterin Pyrophosphokinase HMD + ATP --> DHT + AMP

330 4.1.3.38 Aminodeoxychorismate Lyase 4AD --> PYR + ABZ

336 2.7.1.28 Triose Kinase Glyceraldehyde + ATP --> GAP + ADP

353 2.3.1.31 Homoserine O-acetyltransferase Hser + AcCoA --> OAH + CoA

357 2.3.1.46 Homoserine O-Succinyltransferase SucCoA_c + Hser_c --> CoA_c + OSH_c

377 4.1.1.48 Indole-3-glycerol Phosphate Synthase CPDRP_c --> I3GP_c + H2O_c + CO2_c

380 3.1.3.15 Histidinol Phosphatase HOLP_c + H2O_c --> HOL_c + Pi_c

446 2.7.4.14 Cytidylate kinase. CMP_c + ATP_c --> CDP_c + ADP_c

484 6.3.4.3 Formate-tetrahydrofolate ligase ATP_c + Formate_c + THF_c --> ADP_c + Pi_c + FTHF_c

Missing enzymes from the Chamydomonas reinhardtii database but assumed present to make a complete metabolic network. Metabolites without 
subscripts are localized in the cytosol, those denoted by a small 'm' and 'c' are localized to the mitochondria and chloroplast.
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energy from the conversion of light energy, which occurs
in the chloroplast. However, there is demand for both ATP
and NAD(P)H outside the chloroplast for other biosyn-
thetic reactions. Indirect transport of this energy is accom-
plished by transporting GAP from the chloroplast to the
mitochondria and subsequently degrading it to 3PG,
releasing both ATP and NADH into the mitochondria.
The calculated photosynthetic quotient (moles of oxygen
released per mole carbon dioxide fixed) for the optimal
flux distribution is 1.27 which agrees with the typical
range of 1.0 – 1.8 for algae [24].

The basis of the heterotrophic simulation was 100 moles
acetate because C. reinhardtii is only capable of growing
heterotrophically on acetate and other similar 2-carbon
molecules. Most of the carbon flux for heterotrophic
growth is directed through the TCA cycle, as would be
expected (Figure 4). Since the cell is not capable of metab-
olizing external sugars in the dark, almost all the energy is
produced by respiration in the TCA cycle. The oxidative
pentose phosphate pathway is also active, providing
reducing power for use in the cytosol. Synthesis of G6P
occurs via gluconeogenesis; a lack of ATP and NADH in
the cytosol causes the regeneration of GAP from 3PG to

Reconstructed metabolic network of C. reinhardtiiFigure 2
Reconstructed metabolic network of C. reinhardtii. Based on predicted target peptide sequences, the following localiza-
tion of pathways was determined. Chloroplast: fatty acid synthesis, amino acid synthesis, nucleotide synthesis, starch synthesis 
and chlorophyll synthesis. Mitochondria: TCA cycle, amino acid synthesis. Cytosol: glycolysis, amino acid synthesis and fatty 
acid synthesis.
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take place in the mitochondria. The glyoxylate shunt is
also active, which is known to be needed to metabolize
acetate in E. coli [25], Neurospora crassa [26],Scenedesmus
obliquus [27], A. thaliana [28] and several other organisms.

C. reinhardtii is also capable of mixotrophic growth, utiliz-
ing acetate, light and carbon dioxide for growth. Mix-
otrophic growth was simulated by using heterotrophic
growth as the base case and allowing the uptake of carbon
dioxide and light for energy. The free uptake of carbon
dioxide was allowed, however to limit the biomass
formed, an additional constraint on the absorbed light
was added. The total absorbed light flux was fixed over a
range of 0 to 2 μE/m2/s in a step-wise fashion and at each
light flux, the optimal flux distribution was calculated.
Fluxes that changed significantly over the range of
absorbed light are plotted in Figure 5. From this graph it
is evident there are two distinct regions of growth. The first
resembles heterotrophic growth in which carbon fixation
does not occur and the cell is producing CO2. However,
unlike the heterotrophic case above, at very low light lev-
els, the cell has a complete TCA cycle. The flux through 2-
oxoglutarate decarboxylase decreases steadily to zero at
which point the flux begins to be directed through
Rubisco. This could be due to the need for NAD(P)H for

biomass synthesis during low light conditions, but when
light intensity increases enough to send flux through
Rubisco, the cell is capable of producing enough NADPH
through the non-cyclic ETC to supply metabolism with
NADH via transhydrogenases. In the heterotrophic case,
C. reinhardtii has an incomplete TCA cycle. This could also
be a result of the production of NADPH within the chlo-
roplast and the subsequent indirect transport of reducing
equivalents throughout the cell. At a light flux of approxi-
mately 0.8 μE/m2/s, flux is directed through the Calvin
cycle and the cell enters the second growth regime. In this
growth regime, the glyoxylate shunt flux steadily decreases
while the Rubisco flux increases rapidly with increasing
light. As the light increases, the flux distribution becomes
more similar to the autotrophic case. The increase in bio-
mass flux with each increase in light is slightly less than
that for the first growth regime. This is due to the higher
energetic demand of carbon fixation.

Quantitative results for all three growth regimes as well as
reaction lists can be found at http://cobweb.ecn.pur
due.edu/~jamorgan.

Comparison of yields
The autotrophic biomass yield is 28.9 g biomass for every
mole of carbon taken up (Table 5), based on the elemen-
tal analysis of C. reinhardtii, this is 100% of the carbon
taken into the cell. This is of course due to the production
of energy from light during photosynthesis, so no net car-
bon is lost during respiration. In contrast, the hetero-
trophic biomass yield is 15 g per mole carbon, which
implies that almost half of the carbon taken in by the cell
is used for energy production instead of biomass forma-
tion. The fraction of carbon used for energy production is
quite high compared to another photosynthetic organ-
ism, Synechocystis [9], which only utilized 37% of the car-
bon for energy. This is due to the difference in energy

Table 2: Dry weight composition

Fraction DW

Autotrophic Mixotrophic Heterotrophic

Cell Component Average (+/-) Average (+/-) Average (+/-)

Carbohydrate 0.508 0.381 0.448

Protein 0.261 0.014 0.303 0.027 0.222 0.007

Lipid 0.189 0.016 0.279 0.023 0.287 0.018

Chlorophyll a 0.009 5.6E-06 0.007 4.2E-05 0.018 3.7E-04

Chlorophyll b 0.015 2.5E-04 0.013 4.7E-05 0.008 3.6E-04

Measured and calculated dry weight composition based on mass fraction from three independent measurements +/- one standard deviation.

Table 3: Elemental composition

C H N O

Autotrophic 0.481 0.073 0.058 0.388

Mixotrophic 0.507 0.079 0.035 0.379

Heterotrophic 0.505 0.077 0.105 0.313

Elemental composition of different growth regimes. Carbon, 
hydrogen and nitrogen were measured directly, oxygen was taken to 
be the balance.
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content of the substrate. Synechocystis utilizes glucose,
which has significantly higher energy content per mole
than acetate; glucose has a standard heat of combustion of
-2.8 kJ/mole compared to -0.8 kJ/mole for acetate. During
mixotrophic growth, the biomass yield of C. reinhardtii
increases from 13.5 to 22.9 g per mole carbon. With
increasing light flux, the cell can direct more carbon
towards biomass and less towards energy production,
however, the amount of carbon fixed per photon is con-
stant. Therefore, the maximum yield is lower than the
autotrophic yield because it is limited by the energy in the
cell. During mixotrophic growth, the cell must utilize ace-
tate and it has to divert some carbon away from biomass
and towards energy production.

Comparison to a model photosynthetic microbe
Flux estimates for autotrophic growth were compared to
estimated fluxes for the cyanobacteria, Synechocystis sp
PCC 6803 [9]. One major difference is the flux through
the cyclic and non-cyclic ETCs (Table 6). Although both
organisms utilize approximately the same amount of
energy to produce each kilogram of biomass, the flux
through the ETCs are split quite differently. Synechocystis
has a much higher flux through the non-cyclic ETC than
C. reinhardtii which is due mainly to the compartmenta-
tion in the model; due to a lack of a direct NAD(P)H trans-
porter in C. reinhardtii, the flux through the non-cyclic
ETC is constrained to match the need for NADPH in the
chloroplast. Any additional NAD(P)H is indirectly trans-

ported via shuttles, but these shuttles are also constrained
by mass balances and steady state assumptions. In con-
trast, since Synechocystis is prokaryotic and unicellular, it
can use the non-cyclic ETC to produce all the NADPH
needed in the cell. Therefore, to make up for the energetic
difference of having a lower flux through the non-cyclic
ETC, C. reinhardtii must have a larger flux through the
cyclic ETC. Cellular compartmentation also comes into
play in the total moles of oxygen produced. The only reac-
tion the cell can use to produce oxygen in both organisms
is the non-cyclic ETC, which is why the production of oxy-
gen from C. reinhardtii is lower than that of Synechocystis.
Comparison of the biomass yields per 100 moles carbon
dioxide from both organisms shows yet another differ-
ence; Synechocystis has a lower yield than C. reinhardtii,
2.43 kg and 2.89 kg respectively. Part of this difference can
be explained by the use of a lumped biomass equation for
Synechocystis which specifies the loss of approximately
one mole of carbon dioxide per kilogram biomass formed
in order to have a balanced reaction. In contrast, the C.
reinhardtii model is much more detailed and the carbon
dioxide lost during biosynthesis can be fixed because it is
not required to be present on the right hand side of the
biomass formation equation to balance the reaction. This
results in 2.47 moles of carbon dioxide loss for the pro-
duction of 2.43 kilograms of Synechocystis, which trans-
lates to a loss of 0.11 kg of biomass. Another element that
contributes to the difference in yield is the carbon content
of the 2 organisms; Synechocystis is reported to be 51%

Table 4: Biomass formation equations

Biomass Formation Equation (moles/kg biomass)

Autotrophic Mixotrophic Heterotrophic

DNA 0.002 0.002 0.002

RNA 0.051 0.051 0.051

Protein 2.005 2.328 1.706

Carbohydrate 2.008 1.513 1.752

Lipid 0.203 0.298 0.307

Chlorophyll a 0.010 0.008 0.020

Chlorophyll b 0.016 0.014 0.009

ATP (polymerization) 9.350 13.320 8.890

ATP (maintenance) 29.890 29.890 29.890

Biomass formation equation given in moles per kg biomass. Protein, lipid, chlorophyll were measured independently for each growth regime. DNA 
and RNA content were assumed the same for all cases and carbohydrates was assumed to be the balance. Polymerization energy includes energy 
required for protein, RNA and DNA polymerization and maintenance is based on a fitted value for heterotrophic growth.
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carbon [9] while C. reinhardtii was measured to be 48%
carbon, which explains at least 0.15 kilograms difference
in biomass yield. Due to the nature of the optimization
technique employed, which allows the cell to use unlim-
ited energy in the first step, the difference in yields can be
attributed to these two factors and it is not due to a lack of
energy.

Conclusion
A stoichiometric model of primary metabolism was con-
structed for C. reinhardtii from the genomic database,
pathway databases and literature. The network includes
all the major pathways in central metabolism (glycolysis,
TCA cycle, oxidative and reductive pentose phosphate
pathways) as well as amino acid, nucleotide, chlorophyll,
lipid and starch synthesis. Metabolic network reconstruc-
tion is a valuable tool to identify gaps in existing knowl-
edge [4,5,29-31]. As a result of the reconstruction process,

one new gene was annotated and 16 other genes were
identified to be missing, implying either non-conserved
amino acids sequences or possibly new pathways. Despite
being incomplete, it is the first model of a eukaryotic pho-
tosynthetic organism to include central and intermediary
metabolism with three metabolically active compart-
ments.

Intracellular fluxes were estimated using FBA for three
growth conditions, autotrophic, heterotrophic, and mix-
otrophic. Yield on carbon and growth rate are factors that
need to be considered in choosing the appropriate growth
conditions for maximizing the production of desired
metabolites. For example, a lower yield for heterotrophic
growth is off-set by a faster growth rate, which may be
ideal for the production of growth associated products.
Along with this, the model provides a more complete pic-
ture of photosynthesis in a compartmented organism and

Autotrophic central metabolism flux mapFigure 3
Autotrophic central metabolism flux map. The thickness of the arrows has been normalized to the total carbon dioxide 
uptake of 100 moles. The green compartment represents the chloroplast and the orange compartment is the mitochondria.
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can serve as a starting point for models of other photosyn-
thetic algae and more complex models of higher photo-
synthetic organisms.

With renewed interest in biofuel production from algae
[32] the reconstructed network of C. reinhardtii presented
here can serve as a starting point for metabolic engineer-
ing of lipid or starch production in algae. Future work will
use elementary mode analysis [33] to determine if multi-
ple pathways that lead to the same optimum exist, which
is highly likely due to the size and complexity of the net-
work.

Methods
Network reconstruction
A stoichiometric model of the primary metabolism of C.
reinhardtii was constructed using the genomic database
[13], pathway databases [18,34], biochemistry texts [15-

17,35] and archival journal articles. The reconstruction
process began with a search of the genome database for
reactions in the metabolic pathways to be modelled. This
included the following pathways: glycolysis, gluconeogen-
esis, pentose phosphate pathway (oxidative and reductive),
TCA cycle, photorespiration, glycolate cycle (recycles 2-
phosphoglycolate to 3-phosphoglycerate in plants) and the
biosynthesis of amino acids, chlorophyll, nucleotides,
starch and lipids. The reversibility of reactions was also
assigned during this initial search; if no information was
available, reactions were assumed to be reversible. Starch
and lipid metabolism were simplified by making a few
assumptions. An average chain length of 50 was assumed
for starch based on typical values that range from 3–1000
for amylase chains and 3–50 for amylopectin [36]. Fatty
acid synthesis reactions were added to represent the synthe-
sis of hexadecanoic and octadecanoic acids as well as their
corresponding unsaturated fatty acids (16:1, 16:2, 16:3,

Heterotrophic central metabolism flux mapFigure 4
Heterotrophic central metabolism flux map. The thickness of the arrows has been normalized to the total acetate 
uptake of 100 moles. The green compartment represents the chloroplast and the orange compartment is the mitochondria.
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16:4, 18:1, 18:2, 18:3, 18:4), which represent the majority
of fatty acids present in Chlamydomonas reinhardtii [37]. The
synthesis of the major classes of lipids (MGDG, DGDG,
SQDG, PG, PI, DGTS, and PE) were included based on
average lipid composition for each head group and the
localization of each lipid was based on the distribution of
C16 and C18 in the C1 and C2 position on the head group

[37]. Although detailed lipid synthesis reactions were
included in the network reconstruction, lipids were lumped
into a single representative lipid to simplify the FBA simu-
lations. An 'average' lipid made up of unsaturated C18 fatty
acids and a glycerol head group was assumed based on the
largest percentage of lipids being C18 as reported by Janero

Mixotrophic growth as a function of absorbed lightFigure 5
Mixotrophic growth as a function of absorbed light. Mixotrophic growth in C. reinhardtii has two distinct regions. The 
first region (below 0.8 μE/m2/s) is characterized by a complete TCA cycle and inactive Rubsico. The second region (above 0.8 
μE/m2/s) has an incomplete TCA cycle due to the zero flux through oxoglutarate decarboxylase and an active Rubisco.
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Glyoxylate Shunt
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ICT --> AKG

Biomass Yield

Table 5: Biomass yields

Growth Condition Yield (g biomass/mole carbon)

Autotrophic 28.9

Heterotrophic 15.6

Mixotrophic Increases with increasing light flux from 13.5 to a maximum of 22.9

Biomass yields under different growth conditions. The organic carbon source for heterotrophic and mixotrophic growth was exogenously supplied 
acetate.
Page 10 of 14
(page number not for citation purposes)



BMC Systems Biology 2009, 3:4 http://www.biomedcentral.com/1752-0509/3/4
and Barrnett [38] and is shown in reaction 179 in addi-
tional file 2.

Despite large efforts to fully annotate genome databases,
not all enzymatic functions are listed and therefore gaps
exist in the pathways. Gaps in the network were first
addressed by searching pathway databases for the missing
enzymes and corresponding genes in other organisms
whose genome is sequenced (A. thaliana, E. coli, and S. cer-
evisiae). The amino acid sequence of these known genes
were then blasted against the C. reinhardtii database; in
most cases, this resulted in a hit which had already been
annotated but not linked to the KEGG portion of the
genome database. There were a few genes that resulted in
hits to proteins that were either listed as having a different
function or were not annotated at all (see results). A few
enzymes resulted in no hits in the database, but were
assumed to be present in order to have a complete net-
work.

Phosphorylation
Accurate reconstruction of a metabolic network requires
the inclusion of reactions for cellular energy production.
Two main sources of energy in algae are photophosphor-
ylation and oxidative phosphorylation. Photophosphor-
ylation is the process by which light is converted into
energy (ATP) and reducing power (NADPH) via two elec-
tron transport chains (ETC). The cyclic ETC is made up of
several membrane-bound and membrane associated pro-
teins that are coupled with the light harvesting complex,
photosystem I (PSI) which pumps protons across the
chloroplast membrane. The non-cyclic ETC uses both
light harvesting complexes (photosystem I and photosys-
tem II) to produce NADPH and pump protons across the
plastidic membrane. This process has been modelled pre-
viously in Synechocystis by Shastri and Morgan (2005) as
two non-interacting reactions as shown below:

Both the cyclic and non-cyclic ETCs are coupled to the
chloroplast ATP synthase complex to synthesize ATP from
ADP. This enzyme complex couples the translocation of
protons with the production of ATP. Recent studies have
shown that the H+/ATP ratio for this reaction is 14/3 or
4.67 [39]. The ATP synthase reaction can then be mod-
elled as:

Oxidative phosphorylation occurs via the mitochondrial
ETC, which is made up of 4 complexes (I, II, III, and IV)
that control the flow of electrons from NADH to reduce
oxygen to water. The ETC is also coupled to an ATP syn-
thase which produces ATP from ADP by pumping protons
across the mitochondria membrane. Although the exact
H+/ATP ratio for the mitochondria ATP synthase has not
yet been agreed upon, it is assumed to be between 3 and
4 [39-41]. For this model, the H+/ATP ratio of the reaction
was assumed to be the same as that used in the genome-
scale Saccharomyces cerevisiae model [41]. The reaction in
the model is shown in equation 4.

Linear programming formulation
The reconstructed metabolic network provided the infor-
mation necessary to develop a stoichiometric model [42].
A stoichiometric model takes the form S·v = 0, where S is
the stoichiometric matrix and v is a vector of fluxes. The
stoichiometric matrix and flux vector is constructed by
writing a steady-state mass balance on each intracellular
metabolite in each compartment, this set of mass balances
is then converted to matrix form. Reversible reactions are
separated into one forward and one reverse reaction in
order to constrain all fluxes to be positive, therefore min-
imizing solution time. An additional constraint was

1 absorbed photon 2 Hc→ + (1)

4 2 absorbed photons NADP H O NADPH 6 H 0.5 Oc 2 c c+ + → + ++ +
c c

(2)

4 67.  H Pi ADP ATPc c c c
+ + + → (3)

3 H Pi ADP ATPm m m m
+ + + → (4)

Table 6: Comparison of selected fluxes to Synechocystis

Autotrophic growth fluxes (moles/100 moles CO2/kg biomass)

Synechocystis C. reinhardtii

Cyclic ETC (photons) 54 192

Non-cyclic ETC (photons) 480 352

Total photons 534 544

O2 released 60 44

Comparison of fluxes during autotrophic growth for Synechocystis and C. reinhardtii. The fluxes are normalized per kilogram biomass produced.
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added to only allow one direction of a reversible reaction
to be active by introducing a binary variable [9]. Since the
resulting model was underdetermined, linear program-
ming was used to solve for optimal fluxes.

where sij is the stoichiometric coefficient of the ith metab-
olite in the jth reaction, vj is the flux of the jth reaction, Mi
is the set of intracellular metabolites, Mr is the set of reac-
tants other than substrate, and Mp is the set of products
excreted.

A mixed integer linear program was formulated in the
GAMS environment (GAMS Development Corporation,
Washington, DC) and the optimum solution was found
using the ILOG CPLEX 8.100 solver (ILOG, Inc. Mountain
View, CA).

Optimization
Unlike heterotrophic organisms that utilize the same sub-
strate as the source of both carbon and energy, photoau-
totrophic organisms require two substrates, one for energy
(light) and one for carbon (carbon dioxide). Due to the
input of two substrates, FBA simulations can be run in
either light or carbon limitation conditions. To simulate
carbon limitation, the model is allowed unlimited light,
which calculates an optimal biomass flux. No fermenta-
tion products were detected in the media during growth
(see maximum uptake rates discussion) therefore, in the
absence of carbon overflow products, the yield of biomass
is fixed because the only outlet for carbon is biomass. For
photoautotrophic metabolism, a more meaningful result
is to find the flux distribution that maximizes biomass
while minimizing energy usage. Therefore the optimiza-
tion is done in two steps. The first step is to maximize bio-
mass with no constraint on light and the second is to fix
the biomass and minimize light. Flux distributions for the
heterotrophic case are the result of a one-step optimiza-
tion to maximize biomass.

Culture conditions
Chlamydomonas reinhardtii strain CC-400 cw15 mt+ was
acquired from the Chlamydomonas Genetics Center. Cells
were cultivated at 25°C in 250 ml flasks with a working
volume of 50 ml and an agitation rate of 200 RPM. Heter-

otrophic and mixotrophic cells were grown in TAP media
[43] and autotrophic cells were grown in similar media
without addition of acetic acid. Mixotrophic and
autotrophic cultures were grown under constant illumina-
tion at an average fluence rate of 65 μE/m2/s. All cells were
grown in the presence of atmospheric carbon dioxide lev-
els. Growth was monitored spectrophotometrically by
measuring absorbance at 750 nm.

Maximum uptake rates
In order to add constraints on nutrient and light uptake to
the model, additional experimental measurements were
taken. Maximum growth rates were measured for all three
growth conditions from three separate experiments. The
results are shown in Table 7. For autotrophic growth, the
maximum carbon dioxide uptake rate was calculated to be
2.04 mmol/g biomass/hr. The maximum solar light flux
was set to be 2100 μE/m2/s [44]. For heterotrophic
growth, the maximum acetate uptake rate was measured
using high performance liquid chromatography (HPLC)
coupled to an refractive index detector (RID) detector and
was found to be 12.06 mmol/g biomass/hr. The same
HPLC method was used to look for fermentation prod-
ucts, but none were detected and therefore they were not
included in the model. The biomass growth yield on ace-
tate was measured in exponentially growing cells to be
3.12 ± 0.23 kg biomass/100 moles acetate from three
independent experiments.

Estimation of cell surface area
In order to convert the calculated total photons from the
model to a flux (μE/m2/s), the surface area per kilogram
biomass must be calculated. Based on experimental meas-
urements, the dry weight of a typical C. reinhardtii was
determined to be 0.2 pg. The length and width of cell were
assumed to be 10 μm and 3 μm respectively [43] based on
literature values. The geometry of the cell was assumed to
be a prolate spheroid. The surface area per kilogram bio-
mass was then calculated to be 389 m2kg-1.

Maintenance requirements
Growth associated and non-growth associated mainte-
nance requirements were also included in the model.

Maximize biomass subject to:
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Table 7: Specific growth rates

Growth Regime Growth Rate (hr-1)

Heterotrophic 0.035 ± 0.002

Autotrophic 0.059 ± 0.001

Mixotrophic 0.066 ± 0.007

Experimentally determined specific growth rates for different 
cultivation conditions.
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Growth associated energy is included to account for par-
tially unknown energy requirements for transport, biosyn-
thesis and polymerization [42] while non-growth
associated accounts for cellular maintenance operations
such as DNA repair, cell wall maintenance, and pH con-
trol. Growth associated maintenance was found to be
29.89 mmol ATP/g biomass by fitting the model to the
experimentally determined biomass yield by changing the
ATP requirement. This value falls into the range of pub-
lished values for growth associated maintenance values
[2-7]. Autotrophic and mixotrophic maintenance require-
ments were assumed to be the same. Non-growth associ-
ated maintenance requirements range from 0.36 mmol
ATP/g DW hr for Lactobacillus plantarum to 7.60 mmol
ATP/g DW for E. coli. For C. reinhardtii, non-growth asso-
ciated maintenance was assumed to be 1.50 mmol ATP/g
DW [3,5,7].

Biomass composition
The biomass composition was determined separately for
each of the three growth regimes: autotrophic, mix-
otrophic and heterotrophic growth. Lipids were measured
using the chloroform-methanol extraction method of Ish-
ida et al. [45]. The resulting water layer and pellet were
then dried and resuspended in 0.2 N NaOH and diluted
by a factor of 5. This solution was then assayed for protein
content with the Pierce BCA protein assay kit (Pierce Bio-
technology, Inc. Rockford, IL). The amino acid composi-
tion (Additional file 3) was estimated from Gas
chromatography-mass spectrometry (GC-MS) analysis of
hydrolyzed protein (data not shown). Chlorophyll a and
b were measured [43] and subtracted from the total lipid
measurement. DNA and RNA were assumed to be con-
stant for all growth conditions; the DNA content was
determined by Chiang et al[46] to be 1.23 × 10-7 μg per
cell and the RNA content was assumed to be 28-fold
higher than the DNA content [47]. The GC content of
DNA was measured to be 62.1% [43] and the same GC
content was assumed for RNA. Carbohydrate composi-
tion was calculated as the balance of the fraction dry
weight. The elemental composition of lyophilized cells
was also determined. In all cases except elemental compo-
sition, experiments were done in triplicate.
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