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Abstract

Background: Tuberculosis still remains one of the largest killer infectious diseases, warranting the
identification of newer targets and drugs. ldentification and validation of appropriate targets for
designing drugs are critical steps in drug discovery, which are at present major bottle-necks. A
majority of drugs in current clinical use for many diseases have been designed without the
knowledge of the targets, perhaps because standard methodologies to identify such targets in a
high-throughput fashion do not really exist. With different kinds of 'omics' data that are now
available, computational approaches can be powerful means of obtaining short-lists of possible
targets for further experimental validation.

Results: We report a comprehensive in silico target identification pipeline, targetTB, for
Mycobacterium tuberculosis. The pipeline incorporates a network analysis of the protein-protein
interactome, a flux balance analysis of the reactome, experimentally derived phenotype essentiality
data, sequence analyses and a structural assessment of targetability, using novel algorithms recently
developed by us. Using flux balance analysis and network analysis, proteins critical for survival of
M. tuberculosis are first identified, followed by comparative genomics with the host, finally
incorporating a novel structural analysis of the binding sites to assess the feasibility of a protein as
a target. Further analyses include correlation with expression data and non-similarity to gut flora
proteins as well as 'anti-targets' in the host, leading to the identification of 451 high-confidence
targets. Through phylogenetic profiling against 228 pathogen genomes, shortlisted targets have
been further explored to identify broad-spectrum antibiotic targets, while also identifying those
specific to tuberculosis. Targets that address mycobacterial persistence and drug resistance
mechanisms are also analysed.

Conclusion: The pipeline developed provides rational schema for drug target identification that
are likely to have high rates of success, which is expected to save enormous amounts of money,
resources and time in the drug discovery process. A thorough comparison with previously
suggested targets in the literature demonstrates the usefulness of the integrated approach used in
our study, highlighting the importance of systems-level analyses in particular. The method has the
potential to be used as a general strategy for target identification and validation and hence
significantly impact most drug discovery programmes.
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Background

It is estimated that about two billion people, equalling
one-third of the world's total population are infected with
M. tuberculosis (Mtb) [1]. In 2006 alone, 1.7 million peo-
ple died of tuberculosis (TB). TB is also the leading killer
among HIV-infected people with weakened immune sys-
tems. The disease is also of particular interest to India and
Asia, with more than half of all deaths occurring in Asia.
Further, about 500,000 new multi-drug resistant TB cases
are estimated to occur every year [1].

Currently, over 20 drugs are available for TB, of which,
four of them, viz. isoniazid, rifampin, pyrazinamide and
ethambutol are used as front-line drugs. Injectable drugs
such as kanamycin, amikacin, capreomycin and viomycin
are preferred next for treatment. Fluoroquinolones such as
ciprofloxacin, ofloxacin have been found to be indispen-
sable in the treatment of multi-drug resistant TB. Second-
line bacteriostatics, such as p-aminosalicylic acid, ethion-
amide and cycloserine have established clinical efficacy
but have more prominent side effects [2]. Isoniazid and
ethionamide are inhibitors of mycolic acid synthesis
[3,4], while cycloserine and ethambutol inhibit synthesis
of peptidoglycan [5] and cell wall arabinogalactan [6,7]
respectively, weakening the cell wall of the bacterium.
Rifampin and Amikacin exert their pharmacological
action by inhibiting bacterial RNA or protein synthesis [8-
10]. As in the case of most other prescription drugs used
currently, these were also discovered without the advan-
tage of detailed molecular level information about the tar-
gets. A common strategy used in the past few decades for
drug discovery involves finer structural optimisations, by
starting with a lead compound that has already shown
some success. Very often, this amounts to finding a newer
improved drug, which modifies the function of the same
target as the lead compound. This does not automatically
lead to consideration of newer targets or even newer
mechanisms of action. It is no surprise, therefore, that
only a small fraction of the proteins in the bacterial
genome have been explored as drug targets.

The existing drugs, although of immense value in control-
ling the disease to the extent that is being done today,
have several shortcomings, the most important of them
being the emergence of drug resistance rendering even the
front-line drugs inactive. In addition, drugs such as
rifampin have high levels of adverse effects making them
prone for patient incompliance. Another important prob-
lem with most of the existing anti-mycobacterials, is their
inability to act upon latent forms of the bacillus. In addi-
tion to these problems, the vicious interactions between
the human immunodeficiency virus and TB have led to
further challenges for anti-tubercular drug discovery [11].
For example, protease inhibitors have been shown to be
incompatible with rifampin-containing anti-TB regimens
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[12]. As drug discovery efforts are increasingly becoming
rational and much less dependent on trial and error, iden-
tification of appropriate targets becomes a fundamental
pre-requisite.

Traditionally, targets have been identified through knowl-
edge of the function of individual protein molecules,
where their function has been well-characterised. Poten-
tial targets thus identified are generally taken through a
validation process involving whole-cell or animal experi-
ments, gene knock-outs or site-directed mutagenesis that
lead to loss-of-function phenotypes. Target validation is
one of the critical steps in drug discovery, where a lot of
time and money is spent in the pharmaceutical industry.
The need for systematic and large-scale validation in the
post-genomic era has led to the usage of computational
methods for validation [13]. Here, we seek to apply vari-
ous in silico techniques for the identification and valida-
tion of drug targets, specifically for Mtb. In silico methods
have the advantage of speed, low cost and even more
importantly, provide a systems view of the whole microbe
at a time, which enables asking questions that are often
difficult to address experimentally. Drug discovery has
witnessed a paradigm shift from the traditional medicinal
chemistry-based  ligand-oriented  drug  discovery
approaches to rational drug target identification and tar-
get-driven lead discovery, by targeting the molecular
mechanisms of disease. A number of studies have been
carried out by various experimental methods to identify
drug targets in Mtb [14]. Attempts have also been made for
the same purpose, based on sequence comparisons of
metabolic enzymes [15], and by using various features
such as Lipinski druggability at the sequence level and
metabolic choke-points at the systems-level [16].

Establishing systems biology concepts and understanding
the microbe as a whole opens up new opportunities for
computational target identification. Here, we report a
comprehensive in silico target identification pipeline for
Mtb, which can also be used as a general framework for in
silico target identification. We focus our analysis at the sys-
tems level, based on network analyses and flux balance
analyses (FBA), and further validating it based on
sequence analyses and structural comparisons. We have
used novel algorithms for the comparison of protein
structures and identifying similarity of target pockets with
pockets in the human proteome, which could initiate
adverse drug effects. Gene expression data have also been
considered to render the analysis more comprehensive.

Methods

The targetTB Pipeline

A new multi-level target identification pipeline, including
a novel method for structural comparison of proteins has
been developed. Different levels of abstraction are used for
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analysis, as discussed below. A summary of the several
datasets used in these analyses is given in Table 1.

Systems Analysis

Interactome Analysis

System Construction

We have constructed a protein-protein interaction net-
work, based on the STRING database [17] version 7,
which includes protein linkages between 3,925 Mtb pro-
teins, inferred from published literature describing exper-
imentally studied interactions, as well as those from
genome analysis using several well-established methods
such as domain fusion, phylogenetic profiling and gene
neighbourhood concepts [18]. Thus, the network captures
different types of interactions such as (a) physical com-
plex formation between two proteins required to form a
functional unit, (b) genes belonging to a single operon or
to a common neighbourhood, (c) proteins in a given met-
abolic pathway and hence influenced by each other, (d)
proteins whose associations are suggested based on pre-
dominant co-existence, co-expression, or domain fusion.
Only the high-confidence interactions that had a STRING
score of 0.7 or more were included in the network. We fur-
ther augmented these with links between proteins that are
influenced by the same metabolite, based on the reactions
in the genome-scale metabolic reconstruction of Mib,
iNJ661 [19]. The resulting network contained 3,405 of the
3,925 proteins.

Table I: Datasets used in this study
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Node Deletions

Networks may be perturbed, through the removal of
nodes and edges. A typical analysis would be to probe the
effect of disrupting a node and its corresponding edges.
Networks of different topologies vary in their resilience to
various types of perturbations. The effect of node dele-
tions on this network was analysed. Each of the 3,405
nodes was knocked out and the critical network parame-
ters such as clustering coefficient and characteristic path
length were monitored. In addition, the number of short-
est paths that were disrupted in each deletion were moni-
tored. The shortest paths between all pairs of proteins in
the network were computed. Following removal of a
node, some of these shortest paths may be disrupted,
leading two pairs of nodes becoming unreachable from
one another. Based on the change (loss) in the connectiv-
ity of nodes in this network and the change in network
structure, on the deletion of nodes, we have delineated
potential targets.

Reactome Analysis

Two independent genome-scale metabolic models for Mtb
have become available. A genome-scale metabolic net-
work, comprising 849 reactions, mediated by 739 metab-
olites and involving 726 genes, reported by McFadden
and co-workers (GSMN-TB) [20] has been considered.
Jamshidi and Palsson have reported another genome-
scale metabolic model of Mtb, iNJ661, comprising 939

Reference Short Description

Beste et al (2007) [20]
(GSMN-TB)

essential for growth.
Jamshidi et al (2007) [19]
(Mtb iNJ661)

slow-growing mutants.
Raman et al (2005) [21]
(MAP)

biosynthesis.
Sassetti et al (2003) [23]
(TraSH)
ModBase [25]

required by Mtb for optimal growth.

modelling
Gao et al (2005) [30]
(Gao-expression)
Rachman et al (2006) [31]
(Rxsachman-expression)
Boshoff et al (2004) [32]
(Boshoff-expression)
Muttucumaru et al (2004) [40]
(Muttucumaru-expression)
Voskuil et al (2004) [39]
(Voskuil-expression)
Betts et al (2002) [38]
(Betts-expression)
Hampshire et al (2004) [41]
(Hampshire-expression)

of Mtb non-proliferation.
also modeling persistence.

for persistence.

Reports GSMN-TB, a genome-scale metabolic model of Mtb, consisting of 849 unique reactions and 739
metabolites, and involving 726 genes. In silico gene deletions have been performed, using FBA, identifying genes

Reports the genome-scale metabolic reconstruction of the in silico strain Mtb iNJ66 1, comprising 66| genes and 939
reactions. In silico gene deletions have been performed, using FBA, identifying genes essential for growth, as well as

Reports an FBA of the mycolic acid pathway (MAP) in Mtb, comprising 217 reactions involving |97 metabolites and
mediated by 28 proteins. In silico gene deletions have been performed, detailing genes essential for mycolic acid

Reports the use of transposon site hybridisation (TraSH) mutagenesis to comprehensively identify the genes

A database of structural models of proteins from various organisms, including Mtb and Human, based on homology
Reports the variability in gene expression patterns among ten clinical isolates of Mtb, as well as the laboratory
strains H37Rv and H37Ra, growing in liquid culture.

Reports genome-wide expression analysis of Mtb from clinical lung samples, as well as in vitro.

Reports gene expression of Mtb in response to several drugs/inhibitors of metabolism, as well as under
persistence, starvation and different pH/media.

Reports global gene expression in aerobic, microaerophilic and anaerobic cultures.

Reports a genome expression profiling, analysing the adaptive mechanisms initiated by Mtb in two common models

Reports the use of gene and protein expression profiling to identify the response of Mtb to nutrient starvation,

Reports the stationary phase gene expression of Mtb following a progressive nutrient depletion, proposing a model
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reactions mediated by 828 metabolites and 661 genes
[19]. We have also earlier published a pathway-level
model (MAP) of mycolic acid biosynthesis in Mtb [21].
We collated a list of lethal gene deletions for these studies.
The essentiality predictions for the iNJ661 model were
based on growth in Middlebrook 7H9 medium, as
detailed in [19], while those for the GSMN-TB model were
based on growth in Middlebrook 7H10 medium, as
detailed in [20]. Genes whose deletion severely impaired
growth (biomass formation) in the medium were desig-
nated as essential. The essentiality in [21] was studied
using an objective function for optimal production of
mycolates; a gene was considered essential if on deletion,
most fluxes in the mycolic acid pathway including those
of the mycolates dropped to zero. Using the COBRA Tool-
box [22] for MATLAB, we also performed double gene
deletions for the iNJ661 model.

Essentiality Analysis

Information on gene essentiality from a transposon site
hybridisation (TraSH) mutagenesis study for Mtb [23] has
also been incorporated in the decision criteria.

Sequence Analysis

Close homologues for the Mtb proteins in the human pro-
teome were identified by performing a BLAST search [24].
The BLAST results were parsed using python scripts based
on BioPython http://www.biopython.org/. The criteria for
regarding a protein as a close homologue were a sequence
similarity of greater than 50% using a BLOSUMG62 matrix,
for a length of more than 50% of the bacterial query pro-
tein with an E-value less than 10-.

Structural Assessment of Targetability

Obtaining Structures

Crystal structures of 229 proteins from Mtb and 3,515
from human are available (excluding those with greater
than 70% sequence identity) from the Protein Data Bank
(PDB). This translates to a mere 6% of the Mtb proteome
and under 10% of the human proteome. However, thou-
sands of protein structures from both host and pathogen
could be obtained using theoretically calculated structural
models, from the ModBase database. Models in ModBase
are built on the principles of homology modelling using
Modeller [25]. Models of 2,808 proteins from Mtb and
16,000 proteins from the human proteome were obtained
from this database. The database hosts multiple models
for each protein, depending on the number of confident
templates available for that protein in the PDB. For this
analysis, only the first model for each protein was consid-
ered. Also, only those proteins which passed the previous
stages of filtering in the target identification pipeline were
considered. Of the 942 Mtb proteins considered, only 773
had available structures in ModBase.
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Pocket Identification

In order to predict binding sites of a modelled protein, we
have used PocketDepth (PD) [26], a geometry-based algo-
rithm that has been developed and validated earlier by
our group, to predict potential binding grooves on the sur-
face of the protein. All possible binding sites in the 773
proteins of Mtb and the 16,000 human proteins were
identified using PD. PD uses the concept of depth, which
reflects how central a given pocket is and not merely how
deep a subspace is in the pocket. PD outputs predicted
binding sites in the form of sets or clusters. From such
clusters, protein neighbourhoods within 4.0A are
extracted to obtain the binding sites.

An additional method to identify binding pockets in pro-
tein structures was used to obtain a consensus prediction.
LigsiteCSC [27], a geometric method based on vectors in
eight directions on a grid, also incorporating amino acid
conservation information within each protein family, was
used for this purpose. Top ten PD clusters were first
obtained for each protein, which were compared with the
top three pockets obtained from LigsiteCSC. Only the
common clusters were retained for further analysis. 767 of
the Mtb proteins and 15,830 of the human proteins were
feasible for analysis, by which 3,500 pockets were identi-
fied in Mtb and 70,149 pockets in human.

Pocket Comparison

The next step towards structural assessment of targetabil-
ity is to compare the binding sites of shortlisted targets of
Mtb with those of the human proteome. An algorithm
developed by us very recently, PocketMatch (PM) [28],
has been used for this purpose. PM is based on shape sig-
natures encoded by 90 lists of all-pair distances of residues
in the binding site, pre-classified into one of the five
standard amino acid types. A similarity score is assigned
to each pair of binding sites. Extensive validation for PM,
using the PDBbind database [29] of experimentally deter-
mined protein-ligand complexes is reported elsewhere
[28]. We have now tested the algorithm to compare pre-
dicted pockets of all proteins in PDBbind as well. The
SCOP-PM comparison for predicted pockets at various
thresholds is provided as supplementary material [See
Additional file 1].

All the 3,500 identified sites from the 767 short-listed pro-
teins from Mtb were compared with the 70,149 identified
sites from 15,830 human proteins. The topmost score for
every protein pair is then chosen to capture the highest
similarity an Mtb protein has in any of its pockets with any
human protein. The scores are then compared to a pre-
defined threshold as discussed in the results section to
infer similarity. The exhaustive pairwise comparison of
pockets is highly computationally intensive and was car-
ried out on a massively parallel BlueGene (configuration:
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4096 2-way shared memory processor nodes: 8192 IBM
PowerPC 440x5 processors operating at 700 MHz, run-
ning Linux).

Further Analysis of Short-listed Targets
The short-listed targets were subjected to further analysis,
to retain only those proteins that are highly targetable.

Transcriptome Analysis/Gene Expression

One of the critical factors influencing the choice of a target
would be its expression. Expression profiles related to per-
sistence have been incorporated in [16]. Based on the
expression of the genes, we have further filtered our list of
targets. For this, we have used data from Small and co-
workers [30], who have analysed the expression of genes
in ten different strains of Mtb, M. tuberculosis H37Rv and
M. tuberculosis H37Ra using cDNA microarrays. We also
use data from Kaufmann and co-workers [31], who have
performed a genome-wide expression analysis of Mtb
from clinical lung samples using DNA arrays, and Barry
and co-workers [32], who report an expression analysis of
Mtb under a wide range of conditions. Lists of expressed
genes have been reported in [30,31], while in [32], the z-
scores have been reported for gene expression, in each of
the experiments. A gene passed this filter if it was reported
to be expressed, by either of [30,31], or in at least one of
the studies (where an inhibitor of metabolism was not
introduced) reported in [32].

Comparison with 'Anti-targets'

About seven proteins have been reported to form a set of
'anti-targets' [33], viz. the human ether-a-go-go-related
gene (hERG), the pregnane X receptor (PXR), constitutive
androstane receptor (CAR), P-glycoprotein (P-gp), as well
as membrane receptors like the adrenergic ,, the
dopaminergic D2, the serotonergic 5 - HT,,and the mus-
carinic M;. Unintentional binding of drugs to these pro-
teins causes adverse effects, leading to their labelling as
anti-targets. The sequences of 306 proteins in the human
proteome corresponding to these anti-targets were fetched
from the NCBI sequence database. The accession numbers
of these protein sequences are provided as supplementary
material [see Additional file 2]|. The short-listed targets
were compared to these anti-targets by standard sequence
analysis.

Similarity to Gut Flora Proteins

A number of organisms are known to inhabit the gut of a
normal healthy individual [34]. Inadvertent inhibition of
proteins of these organisms is likely to result in side
effects. In order to study this possibility, the short-listed
Mtb proteins were compared to the proteins of the gut
flora (296,017 proteins from 95 organisms), again by
sequence analysis. Some of these organisms are Bacteroides
intestinalis, Bifidobacterium bifidum, Bifidobacterium longum
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and Lactobacillus salivarius. A full list of the 95 organisms
is provided as supplementary material [see Additional file
3].

Involvement in Persistence

Mtb has an unusual capacity to persist in the host at many
levels. In the cellular level, it resides in macrophages that
typically function to eliminate pathogens and at the sys-
temic level, it resists clearance by the adaptive immunity
of the host. Its clearance by anti-bacterials is also very slow
[35]. It may be possible to address the problem of persist-
ence by targeting those genes that are implicated in per-
sistence. For example, isocitrate lyase is a well-known
persistence factor in mice, whose disruption attenuated
bacterial persistence [36]. pcaA, a cyclopropane synthase
involved in mycolic acid biosynthesis has also been
shown to be a requirement for long-term mycobacterial
persistence and virulence in mice models of tubercular
infection [37]. Targets that passed all the previous filters
were examined for expression during persistence based on
several microarray expression data [32,38-41].

Phylogenetic Profiling

Phylogenetic profiling was carried out against 707 fully
sequenced bacterial genomes. First, a BLAST was run
against each of the 707 genomes, for Mtb. The BLAST out-
put was then parsed using python scripts, based on BioPy-
thon, to obtain the E-value of the best hit, with a match of
more than 50% of the query length, for each sequence in
Mtb. The E-values thus obtained were converted to scores
between 0 and 1, with O representing a strong match and
1 representing a weak match. The score was calculated as
-1/log(E). Hits with E > e* were all neglected and given a
score of 1.0. This is identical to the scoring scheme of Pro-
tein Link EXplorer (PLEX) [42], which however currently
considers only 89 genomes. For each protein in Mtb, pro-
file strings comprising scores for the hits of the proteins
were generated. Each profile string thus encodes the pres-
ence or absence of each of the Mtb proteins and where
present, the extent of similarity as well. A subset of these
results, for 228 pathogenic genomes, was analysed to
examine the broad-spectrum nature of an identified tar-
get.

Involvement in Drug Resistance
Proteins involved in emergence of resistance to anti-tuber-
cular drugs have been analysed and reported by us
recently [43]. The list of about 25 proteins closely con-
nected to different pathways of resistance were obtained
and used for analysis here.

Results

A range of analyses spanning multiple levels of abstrac-
tion have been carried out, to identify plausible drug tar-
gets. The methodology can also be used more generally as
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a target identification pipeline that would be applicable to
many drug discovery programmes. Starting from the
entire proteome of Mtb H37Rv comprising 3,989 pro-
teins, we have shortlisted 451 proteins as potential drug
targets using a variety of filters, as depicted in Figs. 1 and
2. Fig. 1 illustrates a pictorial view of the targetTB pipeline
while Fig. 2 shows a simplified view of the pipeline as a
flowchart, illustrating the flow of this study. We first carry
out a network analysis, where a full genome-scale interac-
tome encoding several types of protein-protein interac-
tions and protein-protein influences from metabolic
pathways is reconstructed. Gene deletions that would sig-
nificantly disrupt the network are then identified (List-
A1). Next, we have studied the reactome through FBA
(List-A2), to identify lethal gene deletions. This is further
augmented with high-throughput gene essentiality data
(List-A3). These system-level analyses together comprise
Filter A. This is then integrated with sequence-level (Filter
B) and structural analyses (Filter C) as described below
(see Fig. 1). The expression of the gene encoding for the
target is highly desirable (Filter E) and the list is further
pruned by eliminating targets with high similarities to
known 'anti-targets' in the human proteome (Filter F) and
proteins in gut flora (Filter G). Those targets known to
contribute to drug resistance in the pathogen are then pri-
oritised. By analysis of similarity against several patho-
genic proteomes, broad-spectrum targets as well as those
unique to Mtb have also been identified. Various filters,
lists and the numbers of proteins passed and eliminated
at the various stages of the pipeline are given in Table 2.

Systems Analysis

Interactome Analysis

A protein-protein interaction network comprising 3,405
nodes and 29,302 edges was constructed, which covered
over 85% of the Mtb proteome. To evaluate the impor-
tance of a given protein in the context of the large interac-
tome network, each node was individually deleted and its
impact measured in terms of the number of shortest paths
that are disrupted. Shortest paths in a network are quite
critical to the structure of the network. Shortest paths in
metabolic networks of Mtb and M. leprae have been iden-
tified and analysed by us earlier [44]. Samson and co-
workers have earlier analysed a protein network in Saccha-
romyces cerevisiae, indicating that the analysis of shortest
paths may provide an idea of network navigability as well
as the efficiency with which a perturbation can spread
throughout a network [45]. More recently, Wingender and
co-workers have illustrated the importance of a similar
metric, a 'pairwise disconnectivity index', for topological
analysis of regulatory networks [46]. The disruption of
shortest paths is expected to have a substantial effect on
the network connectivity in protein networks as well. In
the interactome network studied here, most of the node
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deletions do not significantly disrupt network connectiv-
ity. However, substantial effects (more than 5,000 dis-
rupted shortest paths) were observed upon deletion of
431 of the 3,405 nodes (List-A1). These 431 proteins, for
which a critical role in maintaining interactome network
structure is suggested, were taken through further steps of
filtering, in order to identify most useful drug targets. For
example, for BirA (Rv3279c), close to 95,000 shortest
paths in the network, were disrupted by its removal. A
complete list of these proteins is provided as supplemen-
tary material [See Additional file 4].

Reactome Analysis

An FBA study, using the iNJ661 model [19], identified
188 proteins of the 661 studied, as essential for the
growth of the bacterium, whereas an additional 41 also
had a significant impact on growth (the in silico knock-out
mutants were slow growers) [19]. A separate FBA study
using an independently derived genome-scale metabolic
model (GSMN-TB) identified 259 of the 719 proteins
studied as essential for growth [20]. While these two mod-
els are similar in many respects, there are subtle differ-
ences in their biomass functions for FBA, as well as their
coverage of the Mtb proteomes. 134 proteins were com-
mon to both lists of essential proteins. A third FBA study
(MAP), carried out by us previously for the mycolic acid
pathway alone identified 15 proteins in the pathway as
essential for the microbe. Put together, the three studies
suggest 318 proteins to be essential for the microbe. A crit-
ical role in maintaining the metabolism of the bacterium
is suggested for the 318 proteins (List-A2). We have also
carried out a double knockout study, on the Mtb iNJ661
model, identifying 49 pairs of genes, which when
knocked out together, produce a lethal phenotype.

Essentiality Analysis

A high-throughput analysis of gene essentiality, using
Transposon Site Hybridisation (TraSH) mutagenesis has
been reported earlier. Genes, whose deletion produced
slow-growing mutants, were also identified. These pro-
teins (List-A3), taken together with Lists A1 and A2, form
the list of proteins (List A) that are implicated to be essen-
tial, by systems-level analyses. We have combined the
essentiality data, rather than take a consensus from the
different system-level models discussed above, since each
model has its own strengths and weaknesses. Many pro-
teins are eliminated from the pipeline at this stage. For
example, MabA (Rv1483), which has been suggested as a
potential drug target [47,48], was not found to be essen-
tial in any of the systems-level analyses. MshA (Rv0486),
suggested as an essential component of mycothiol biosyn-
thesis and essential for growth in Mtb Erdman strain [49],
is also not found to be essential in any of the systems-level
studies.
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Table 2: Models and methods used in the targetTB pipeline

Analysis Coverage N/A 4 X Computation

(A) Systems Analysis

(i) Network 3405 431 2974 Single node deletions

(i) FBA
a) Mtb iNJ66 1 661 229 432 FBA
b) GSMN-TB 717 259 458 FBA
c) MAP 26 15 Il FBA

(i) TraSH 3186 656 2530
Summary ((i) or (i) or (iii)) 3823 166 (A') 1138 2685 (Ay)

(B) Sequence Analysis 3989 3611 378 (By) 3,989 Mtb vs. 33,453 human sequence

comparisons

(A&B) Systems & Sequence Passed 3989 - 942 3047 (AU By)

(C) Structural Assessment 767 175(C) 622 145 (Cy) 3,500 sites of Mtb (767 proteins) vs 70,149
(PMScore < 0:8) [942 from A&B sites of Human pocketome (15,830 proteins) =
only considered] 245,521,500 pairwise comparisons
(D)A&B&C 3989 - 622 3552 (AyuByuU Cyxu )

(E) Expression

(i) Gao-expression 3590 399 2210 1380
(ii) Rachman-expression 634 3355 634 -
(iii) Boshoff-expression 3915 74 3915 -
Summary ((i) or (ii) or (iii)) 3917 72 3264 653 (Ey)
Summary (for (D)) 622 I 529 92
(F) Non-similarity to Anti-targets 3989 - 3928 6l (Fy) 306 vs. 3,989 sequence comparisons
Non-similarity to Anti-targets 622 - 6ll I
(for (D))
(G) Non-similarity to gut flora 3989 - 3730 259 (Gy) 296,017 vs. 3,989 sequence comparisons
Non-similarity to gut flora (for 622 - 543 79
(&)
(HHD&E&F&G 622 I 451 170

() Expression during Persistence

(i) Muttucumaru-expression 3924 82 639 3268

(i) Boshoff-expression 3915 74 105 38I0

(i) Betts-expression 3649 340 274 3375

(iv) Voskuil-expression 3924 82 310 3597

(v) Hampshire-expression 3757 395 1349 2245

Summary ((i) or (ii) or (iii) or (iv) 3933 73 1871 2045

or (v)

Summary (for (H)) 451 - 216 235
(J) Broad-spectrum Targets 451 - 186 265 2,295,901 vs. 3,989 sequence comparisons
[present in > 100/228 pathogenic (phylogenetic profiling against 707 genomes)
genomes]
(K) Targets unique to Mycobacteria 451 - 66 385

Number of proteins covered in each study are indicated. A '4" indicates that it passes the filter, while a X' indicates failure. The method used at
each step is also indicated. The number of targets identified in the final lists H, I, ] and K are boxed and indicated in bold typeface. The symbols A,
C', A-Gy are as described in the text and in Fig. |.
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Figure |

The targetTB Target Identification Pipeline. The funnel depicts the order in which the entire proteome of Mtb is con-
sidered and analysed at different layers. 'A' refers to the systems level studies, which includes Al, for network analysis of the
interactome; A2, for flux balance analyses of the reactome; and A3, for genome-scale essentiality data determined experimen-
tally as reported by Sassetti et al [23]. Those proteins that passed these filters are indicated as 'A’', and combined with the
results of sequence analysis (B), to derive those that passed both filters (depicted as 'A&B'). These were then taken through Fil-
ter C, referring to the structural assessment filter, yielding the list of 622 proteins as the D-List (A&B&C). Further steps of fil-
tering are indicated in the smaller funnel as E (expression under various conditions), F (non-similarity to anti-targets) and G
(non-similarity to gut flora proteins). Those proteins that pass all the six levels of filtering (indicated as D&E&F&G) form the H-
List comprising 451 targets. Additional filters I, ] and K used for analysing the H-List are also indicated. Lists A', C' and E' refer
to the set of proteins at A, C and E levels, respectively, that could not be analysed for lack of appropriate data. Lists Ay, By, Cy,
Ex, Fx and Gy refer to sets of proteins that failed in that particular filter, but may have passed at other levels.
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Sequence Analysis

At the sequence level, comparison with the human (host)
proteome can be useful in filtering out those targets that
have detectable homologues in the human cells, in order
to reduce the risk of adverse effects that arise due to unin-
tended interaction of the drug with the host protein. For
3,611 of 3,989 Mtb proteins, no close homologues were
observed in the human proteome. The remaining 378
proteins, for which close homologues were observed,
were eliminated at this step. The 3,611 proteins (List-B)
were taken through further steps in the targetTB pipeline.
Proteins such as KasA (Rv2245), KasB (Rv2246), MabA
(Rv1483), RmIB (Rv3464), which have been suggested as
potential targets in earlier studies, have all been elimi-
nated at this stage, due to the presence of close homo-
logues in the human proteome.

Combining the systems and sequence level analyses, 942
proteins were shortlisted for further analysis. A list of
these proteins is presented as supplementary material [See
Additional file 4].

http://www.biomedcentral.com/1752-0509/2/109

Structural Assessment of Targetability

Similarity between proteins is better captured through
structural comparisons, where structural data for both
proteins are available. In fact, what ultimately matters in
determining the pharmacological profiles of drug mole-
cules is the recognition of the drug molecules by various
protein molecules at their binding sites. It is therefore
important to compare binding sites in the various protein
molecules in both the pathogen and the host. At this step,
we want to critically weed out targets that share very high
similarity with binding sites from the human 'pock-
etome', since targeting these may lead to adverse drug
reactions, due to inadvertent binding with human pro-
teins.

This type of analysis would become more meaningful if
carried out at the proteome-scale. Advances in crystallog-
raphy and various structural genomics projects [50-52]
have led to the determination of 229 and 3,515 structures
of Mtb and human, respectively. In the absence of experi-
mentally determined structures, high-confidence homol-

M. tuberculosis Proteome ’

Systems-level Analyses (A)
Interactome (Al) & Reactome analyses (A2)
Integration of Essentiality data from literature (A3)

]:VSeq:e nce Analysis (B)|

(we@

Genome-scale
Structural Assessment (C)
(Analysis of Mtb and human 'pocketomes')

Further Analysis of Suitability
| Expression (E), Non-similarity to human anti-targets (F), gut flora (G)

i High-confidence list of targets (H) ﬂ’

[ Mtb-specific targets (K)|

/Broad-spectrum targets (J)“ lTargets implicated in Persistence (l)]

Figure 2

Flowchart illustrating the sequence of analyses in this study. This flowchart provides a simplified view of the various fil-
ters used in this study, in the order in which they are applied, to arrive at the final lists of targets.
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ogy models for 2,808 Mtb proteins and 16,000 human
proteins were obtained from the ModBase database. The
availability of such a large number of protein structures in
both species makes it feasible to carry out a proteome-
scale structural assessment of targetability. Identification
of binding sites and further comparison of the identified
binding sites are the next two challenging steps towards
this goal. Two new algorithms that we have recently devel-
oped, PD and PM, enable us to carry out this comparison.

Of the 942 proteins shortlisted earlier in the pipeline, 773
had structures available in the PDB/ModBase databases.
For these 773 proteins, the top 10 binding sites for each
protein, identified using PD were compared with the top
three binding pockets from LigsiteCSC. LigsiteCSC con-
siders amino acid conservation at the putative sites, in the
family of proteins. This automatically leads to identifying
residues and hence the sites that are likely to be function-
ally important. Finding a consensus among top predic-
tions between the two methods increases confidence in
site prediction significantly. Some proteins such as DesA3
(Rv3229c¢), EmbB (Rv3795) and AccE5 (Rv3281) passed
all other tests, but were not included in the H-List of high-
confidence targets, since the structural analysis could not
be performed.

A consensus between PD and LigsiteCSC was obtained so
as to identify the most probable pockets that also con-
tained conserved amino acid residues at the binding sites.
Using this, 3,500 pockets were identified for 767 of the
Mtb proteins. A similar exercise carried out for the human
proteins identified 70,149 pockets. An all-versus-all com-
parison of the 'pocketomes' of Mtb and human was per-
formed, using PM. This translated to 245,521,500
pairwise comparisons, which corresponded to over three
years of serial CPU time, that was successfully completed
on a BlueGene System, within a week.

A PM score of 0.8 or more indicates high similarity between
two binding pockets. This threshold was used as a filter to
eliminate all those proteins in Mtb whose pockets closely
matched with any pocket of any protein in the human pro-
teome. Of the 767 proteins, 145 had closely matching
pockets in the human proteomes and were therefore elimi-
nated from the pipeline. It is possible that some of these
Mtb proteins contain some pockets that are sufficiently dif-
ferent from pockets of human proteins. Such proteins may
also be targetable, but would require a close and more
detailed analysis of all the pockets in the protein. The
remaining 622 form a list of targets for anti-tubercular
drugs. These proteins were taken through further steps of
filtering to produce lists of highly viable targets.

Thus, of the 767 proteins that passed the A and B filters
described above and had available structures, only 622 of

http://www.biomedcentral.com/1752-0509/2/109

them were found to pass this filter. This is despite the fact
that sequence filtering was already carried out, re-empha-
sising the need for a multi-level target identification and
validation scheme. The resulting proteins form the D-List,
of targets that can be further explored for TB drug discov-

ery.

Further Analysis of Short-listed Targets

While the fundamental determinants of the quality of a
target have already been considered earlier, the following
aspects are also of importance in selecting a quality target
for drug design. The following filters were therefore used
to further prune the identified list and in some cases to
enrich the list with targets having additional benefits.

Gene Expression

It is obvious that a target would be desirable only if it is
expressed in the organism, at least under disease condi-
tions. Expression data is available for over 3,900 genes in
Mtb from various studies [30-32]. Of the shortlisted tar-
gets in the D-List, 529 are expressed, indicating their high
viability as suitable targets. It must be noted here that the
expression data are not comprehensive, especially in
terms of the conditions that have been tested. The expres-
sion filter, while useful in understanding what is
expressed and hence what is a useful target, should not be
used to rule out otherwise useful targets. Until availability
of more comprehensive data, this step is best used at the
post-identification analysis stage. For example, proteins
such as TrpD (Rv2192c), AroA (Rv3227), RibC (Rv1412)
do not appear to be expressed in any of the experiments
considered.

Comparison with Anti-targets

An ideal target should not only have specific recognition
to the drug directed against it, but should also be suffi-
ciently different from the host proteins, which have been
termed as anti-targets. Considering this aspect early in the
drug discovery pipeline may prove to be very useful in
minimising the risk of failure of the drug candidates in the
later stages of drug discovery. Anti-targets include proteins
such as the transporters and pumps, which modify the
bio-availability of a drug by their efflux action, or those
proteins that trigger hazardous side effects, such as the
hERG protein, which when blocked causes the 'sudden
death syndrome' [33]. This list is by no means complete,
but has been included here, more from a conceptual per-
spective, to highlight the need for screening against anti-
targets. Sequence comparisons against 306 sequences
belonging to the eight categories of anti-targets carried out
revealed that sequence homologues at a similarity of 30%
for over 30% of the query length were observed for 11 of
the targets from the D-List. Such a loose similarity meas-
ure is used, since it is desired to rule out even a remote
similarity with any anti-target. Moreover, close homo-
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logues have already been eliminated by sequence analysis
earlier. A structural analysis of the proteins, when more
data become available would be of immense utility in this
regard. Serine/Threonine protein kinases such as the PknB
(Rv0014c), earlier proposed as a target [53],
PknL(Rv2176) and PknH (Rv1266¢c), as well as cyto-
chromes such as Cypl128 (Rv2268c) and Cypl132
(Rv1394c) were eliminated at this stage.

Similarity to Gut Flora Proteins

The targets from the D-List were further compared to the
protein sequences of hundreds of organisms that inhabit
the gut of a healthy human. This was carried out to prune
the list of identified drug targets, so that the drugs admin-
istered do not bind unintentionally to the proteins of the
gut flora. Unintentional inhibition of gut flora proteins
are known to lead to adverse effects and can promote
pathogenic colonisation of the gut [54]. Drug interactions
with gut flora are also believed to be the cause of idiosyn-
cratic drug toxicity and reduced bio-availability of the
drug [55,56]. Similarity of the identified targets to such
proteins therefore affects their suitability. The sequence
analyses carried out here indicate that 79 proteins from
the D-List had close homologues in the gut flora and were
hence removed from the list of most viable targets. For
example, FtsZ (Rv2150c), GIf (Rv3809c) have homo-
logues in gut flora and were hence eliminated at this stage.
Interestingly, Icl (Rv0467), which has been particularly
suggested as an attractive drug target [57] and also impli-
cated in persistence [36], fails at this stage, due the pres-
ence of homologues in gut flora.

At this stage of filtering, from the 622 targets in the D-List
identified earlier, 163 have been eliminated, leaving
behind a high-confidence list of 451 targets (H-List). Sev-
eral known targets appear in this list. A comprehensive
analysis of the passage of several known targets in the tar-
getTB pipeline has been performed. Some of these targets
are indicated in Table 3, while the complete list is availa-
ble as supplementary material [See Additional File 5].

Involvement in Persistence

The expression of targets in the H-List, under conditions
of persistence were analysed, from a set of microarray
data. 216 of the H-List targets were up-regulated two-fold
or more in at least one of the studies considered. These
216 targets form the I-List of targets, which may be useful
in combating persistent Mtb infection. Some examples of
proteins in the I-List are DesAl (Rv0824c), DesA2
(Rv1094), DevS (Rv3132c), FadD32 (Rv3801c), KatG
(Rv1908c), Pks13 (Rv3800c), CysH (Rv2392) and Wag31
(Rv2145c¢). CysH has also previously been shown to be
important for Mtb persistence [58].

http://www.biomedcentral.com/1752-0509/2/109

Identification of Broad-spectrum vs. Mtb-specific targets
Phylogenetic profiling of Mtb proteins against various
genomes gives a measure of the uniqueness of a particular
target to the Mtb proteome. Phylogenetic profiling can
also help in identifying important functional linkages of
chosen targets. It is also useful for identifying targets that
can be used for designing broad-spectrum anti-bacterials.
The 451 shortlisted targets were compared with 228 path-
ogenic bacterial genomes (provided as supplementary
material [See Additional file 6]). If the Mtb target has close
homologues in more than 100 genomes, we refer to it as
a possible broad-spectrum anti-bacterial target (J-List).
Several proteins involved in lipid metabolism are present
in this list, viz. InhA (Rv1484), FabH (Rv0533c), FabD
(Rv2243), PcaA (Rv0470c) and the MmaA's 1-4. IspF
(Rv3581), which has been suggested as an attractive target
in many pathogens [59], is also in the J-List. A main con-
cern of such a strategy to target a multitude of bacteria in
clinical therapy is the emergence of resistance to multiple
organisms, which is highly undesirable. However, if the
emergence of resistance is countered, as discussed below,
having broad-spectrum targets could be of great advan-
tage.

Proteins that were present only in mycobacteria were also
identified by this analysis (K-List). This list is rich in
mycobacteria PPE proteins and also contains proteins
such as DevS, a sensor histidine kinase involved in a two-
component signal transduction pathway.

Involvement in Drug Resistance

In a recent study, we identified possible pathways that
would be involved in the emergence of drug resistance in
Mtb [43]. We also proposed the concept of 'co-targets',
referring to those proteins, which when inhibited simulta-
neously with a corresponding primary target, will help in
reducing the emergence of resistance to the drug binding
to that primary target. The importance of any protein in
the H-List identified here will significantly increase if it
also happens to be a constituent of the resistance path-
ways. These pathways comprise proteins that are pre-
dicted to be either directly responsible for generating
resistance to the given drug, or serve as an important hub
in the flow of information from the target of the given
drug to the machinery of resistance. Proteins in the resist-
ance pathways broadly belong to one of the four mecha-
nisms, which are mediated by cytochromes, SOS related
genes, antibiotic efflux pumps and genes involved in hor-
izontal gene transfer (HGT). The putative targets in the H-
List were analysed for their proximity to resistance-related
proteins in the protein-protein interaction network
described in [43]. Of 451 proteins in the H-List, 25 were
closely involved in the resistance pathways and would
therefore be significantly more useful as drug targets.
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Table 3: Results for known and proposed targets in the targetTB pipeline

Target Remarks targetTB pipeline
A B CEF GHI J K

I. Cell Wall Biosynthesis

DdIA (Rv2981c) Known target of cycloserine [5] 4 4 X 4 4 4 X
EmbA (Rv3794) Known target for ethambutol [7,75] 4 4 4 4 4 4 4
AftA (Rv3792) Suggested as an attractive target [76] 4 4 X 4 4 4 X
AftB (Rv3805c) Suggested as a potential target [77] 4 4 4 4 4 4 4
MurG (Rv2153c) Suggested as a potential target [78] 4 4 4 4 4 4 4 1 1

II. Lipid Metabolism

FabH (Rv0533c) Possible target of thiolactomycin; also suggested as potential target [79,80] 4 4 4 4 4 4 4 1
FabD (Rv2243) Suggested as a potential target [81-83] 4 4 4 4 4 4 4 1
AcpM (Rv2244) Induced on isoniazid treatment [81,84] 4 4 4 4 4 4 4 1
Pks13 (Rv3800c) Suggested as a promising target against Corynebacterineae [85] 4 4 4 4 4 4 4 1

InhA (Rv1484) Known target for isoniazid, ethionamide [4] 4 4 4 4 4 4 4 1
PcaA (Rv0470c) Suggested as a possible target of thiacetazone [86] 4 4 4 4 4 4 4 1

MmaAl (Rv0645c) -do- 4 4 4 4 4 4 4 1 1
FadD32 (Rv3801c) Suggested as a promising target [87] 4 4 4 4 4 4 4 1 1
DesA3 (Rv3229c) Suggested as a possible target [88] 4 4 1 4 4 4 X

Fas (Rv2524c) Possible target of pyrazinamide [89] 4 4 4 4 4 4 4

I1l. Intermediary Metabolism and Respiration

LysA (Rv1293) Lysine auxotroph has vaccine potential [90]; suggested as potential target [91] 4 4 4 4 4 4 4 1
TrpD (Rv2192c) -do- 4 4 4 X 4 4 X
LeuA (Rv3710) Suggested as potential target [92] 4 4 4 4 4 4 4 1
DapB (Rv2773c) Suggested as potential target [93] 4 4 4 X 4 X X
AroB (Rv2538c) Shikimate pathway suggested as an attractive target [94] 4 4 4 4 4 4 4 1 1
ArgA (Rv2747) Essential enzyme catalysing initial step of arginine biosynthesis [95] 4 4 4 4 4 4 4
AlrA (Rv3423c) Known target of Cycloserine [5] 4 4 X 4 4 4 X
DfrA (Rv2763c) Important drug target in many pathogens [96]. Suggested as drug target in 4 X - 4 4 4 X

[96,97]

PanB (Rv2225) Ciritical for pantothenic acid synthesis [98] 4 4 4 4 4 4 4 1 1
PanC (Rv3602c) Critical for pantothenic acid synthesis [98]; suggested as potential target [99] 4 4 4 4 4 4 4 1 1
PanD (Rv3601c) Ciritical for pantothenic acid synthesis [98]; suggested as potential target [100] 4 4 X 4 4 4 X

PanK (Rv1092c)/CoaA Prokaryotic enzymes involved in the synthesis of CoA are good targets [101]; 4 4 4 4 4 4 4

[102]
CysH (Rv2392) Suggested as an attractive drug target [103-106]; CysH is important for Mtb 4
protein during latent infection [58]
IspD (Rv3582c) Potential drug target [107] 4
IspF (Rv3581c) Potential drug target [107]; attractive target in many pathogens [59] 4
Icl (Rv0467) Required for persistence of Mtb in macrophages and mice [36]; suggestedas 4 4 4 4 4 X X
an attractive target [57]. Icll and Icl2 are required for fatty acid catabolism
and virulence in Mtb [108]
AtpEl (RvI305) Inhibited by a diarylquinoline drug R207910 in vitro [109] 4 4 4 4 4 4 4
Cypl21 (Rv2276) Putative essential gene. Possible role in virulence through studies with AAraC/ 4 4 4 4 4 4 4 |
XylS gene regulator mutant (ARvI931c) [110]. Induced in isoniazid- and
thiolactomycin-treated Mtb [111]
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IV. Information Pathways

GyrA (Rv0006) Known target of uoroquinolones [112,113]
GyrB (Rv0005) -do-

RpoB (Rv0667) Known target of rifampicin [8]

RpsL (Rv0683) Known target of Streptomycin [I14]

N
X &

N
INOF NN
INOF NN
X X X X
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V. Regulatory proteins
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Table 3: Results for known and proposed targets in the targetTB pipeline (Continued)

GInE (Rv2221c)
MtrA (Rv3246c)
DevR (Rv3133c)

Essential for growth of Mtb [ 15]
Essential for growth of Mtb [116]

Two-component system is a novel target in dormant mycobacteria [ 17];

T 4 4 4 4 4 4
X 4 - 4 4 4 X
4 4 4 X 4 4 X

essential for growth of Mtb under conditions of low oxygen [118]

DevS (Rv3132c)

Two-component system is a novel target in dormant mycobacteria [ | 17]; part

~
N
N
~
N
~
~

of the DevR-DevS two-component signal transduction system [118,119]

PknB (Rv0014c) Possibly essential for mycobacterial growth and hence possible target [53] 4 4 4 4 X 4 X
PknG (Rv0410c) Crucial virulence factor [120]; possibly essential for mycobacterial growthand 4 4 X X 4 4 X
hence possible targets [53]
MbtA (Rv2384) An important adenylation enzyme required for siderophore biosynthesis 4 4 X 4 4 4 X
[121
IdeR (Rv2711) Suggested as target [122,123] X 4 - 4 4 X X

An account of the passage of known targets (previously reported in literature) through the targetTB pipeline. The putative targets are classified
based on their broad functional categories. A, B, C, E, F, G, H, |, ] and K refer to the different filters depicted in Fig. | and described in the text. '4'
indicates that the given protein passes the filter, while a "X' indicates a failure. A ?" indicates that the analysis was not performed due to lack of
appropriate data, while '-' indicates that the protein was not passed through the filter due to failure at a previous stage. All proteins in the H-List
indicated in Fig. 3 would have a '4' at levels A-H. 'l' indicates the additional lists (I/J/K) in which a target from the H-List is present.

Some notable examples are PolA (Rv1629), a protein
involved in the SOS response, a cytochrome Cyp121
(Rv2276), which is also connected to 19 other cyto-
chromes, and SecY (Rv0732), a protein connected to
DnaE1l (SOS) and two other proteins, SecAl and SecA2,
implicated in HGT. Table 4 gives a list of these proteins
and their association with resistance related proteins.

Targets Identified by the targetTB Pipeline

The various filters and the corresponding analyses that
have been applied in this study, to arrive at the final lists
of targets are listed in Table 2. Of the 3,989 proteins that
have been annotated in the Mtb genome, 622 proteins
pass the filters of systems and sequence analyses, as well
as the structural assessment (D-List). These proteins are
then screened to eliminate those which are not expressed,
as well as those which have homologues in gut flora, or
with anti-targets in the human proteome. A final list of
451 proteins is arrived at, which comprise the H-List. Of
these, 216 proteins satisfy persistence criteria (I-List),
while 186 are potential broad-spectrum anti-bacterial tar-
gets (J-List), and 66 targets are unique to mycobacteria (K-
List). Proteins for which the analysis could not be per-
formed, due to lack of available data at this time are sepa-
rated as lists A' and C', which may be considered for
analysis once more data become available. Proteins that
have been eliminated at various stages could still find use
as drug targets under different scenarios. For example,
those proteins eliminated due to non-essentiality to Mtb
(Ax-List) may contain pairs of proteins that could together
be essential and may hence be useful, if targeted concur-
rently. In fact, the double knock-out studies using FBA car-
ried out here clear demonstrate this aspect. Similarly,
proteins that have been eliminated due to some structural
similarity with human targets (Cx-List) may be useful as
drug targets if the structural differences between the host
and pathogen proteins could be exploited.

The functional classes of the 451 targets (H-List) identi-
fied by this study are indicated in Fig. 3. The list is also
available as supplementary material [See Additional file
4]. This list includes several known targets and many that
have been proposed as potential targets. Some known tar-
gets have been eliminated because they have failed one or
more filters in the targetTB pipeline. The passage of
known and proposed targets for anti-tubercular drugs in
the targetTB pipeline is detailed in Table 3 (also see Addi-
tional File 5). Some examples of proteins that are in the H-
List include known targets such as InhA, EmbA and FabH,
as well as many targets that have been proposed for anti-
tubercular drug discovery, such as GIfT2, a bi-functional
UDP-galactofuranosyl transferase, the fatty acid synthase
Fas, the pantothenate kinase PanK, a glutamine-syn-
thetase adenylyltransferase GInE and the sensor histidine
kinase DevS. The list also indicates several proteins that
have been suggested as potential drug targets in literature,
but eliminated from the targetTB pipeline on account of
failing one or more of the filters.

It is interesting to note that of the 451 targets in the H-List,
over a half of them belong to the functional classes of
'lipid metabolism' and 'intermediary metabolism and res-
piration'. It has been said that metabolism has often not
been given sufficient importance in ‘intelligent' drug
design [60]. Our analysis is in support of that observation,
highlighting several targets from lipid metabolism, partic-
ularly the critical pathway of mycolic acid biosynthesis,
amino acid biosynthesis, menaquinone biosynthesis and
mycothiol biosynthesis. Several of the metabolites pro-
duced in these pathways are essential for mycobacterial
survival and hence, the pathways producing these metab-
olites are ideal candidates for anti-tubercular drug discov-
ery. Many of these pathways do not have equivalent
pathways in the human, making them even more suitable
candidates for targeting.
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Table 4: Targets in the H-List that are also involved in drug resistance mechanisms.

Resistance related proteins

Protein Description
CcdA (Rv0527) Cytochrome
PolA (Rv1629) SOS

LIdD2 (Rv1872c) Cytochrome
QcrC (Rv2194) Cytochrome
QcrB (Rv2196) Cytochrome
CtaC (Rv2200c) Cytochrome
Cypl21 (Rv2276) Cytochrome
Rv3660c (Rv3660c) HGT

Proteins closely connected to resistance proteins

Protein
SecY (Rv0732)
Rv0843 (Rv0843)
Pdc (Rv0853c)
Rv1456c (Rv1456c)
RvIZIT (RvI711)
Rv1828 (Rv1828)
QcrC (Rv2194)
QcrA (Rv2195)
QcrB (Rv2196)
CtaC (Rv2200c)
Cypl21 (Rv2276)
HemE (Rv2678c)
FtsK (Rv2748c)
RnhB (Rv2902c)
TrmD (Rv2906c)
PrfB (Rv3105c)
IlvX (Rv3509c)
TrxB2 (Rv3913)

Closely connected to
Three cytochrome proteins

Three cytochrome proteins

Four cytochrome proteins
Five cytochrome proteins
Five cytochrome proteins
Five cytochrome proteins
19 cytochrome proteins
Seven cytochrome proteins

Three cytochrome proteins

SOS proteins RecA, PolA and DnaEl

SOS proteins PolA, DnaEl and DnaE2

SOS proteins PolA, DnaEl and Rv2294 (Antibiotic Efflux Pump)
PolA (SOS) and SecAl and SecA2 (HGT)

DnaEl (SOS) and SecAl and SecA2 (HGT)
Rv1988 (Antibiotic Efflux Pump) and two cytochromes

RecA, DnaEl (SOS proteins) and a cytochrome
SecA2 (HGT) and two cytochromes

RecA (SOS) and two cytochrome proteins

The top panel shows targets that are directly implicated in resistance mechanisms. The lower panel indicates targets which are immediately
connected to proteins involved in the emergence of resistance in the interactome. These proteins are predicted to be involved in mediating the

flow of information from the targets to the resistance machinery.

Desaturases DesAl and DesA2, which have been shown
by us to be hallmarks of the mycolic acid biosynthesis
pathway in Mtb [61], pass all the filters and are present in
the H-List. They are also present in the I-List of targets
expressed during persistence. These proteins thus appear
to be highly viable targets for anti-tubercular drugs. AcpS
(Rv2523c¢), an acyl-carrier-protein synthase involved in
mycolic acid biosynthesis, also passes all the filters and is
a potential target. TrxB2 (Rv3913), a probable thiore-
doxin reductase and LysA (Rv1293), a diaminopimelate
decarboxylase which catalyses the conversion of diami-
nopimelic acid to lysine and ThiB (Rv1296), a probable
homoserine kinase, which are also ranked very high
(ranked two, four and six, respectively) in the metabolic
list of prioritised targets reported by Schreiber and co-
workers [16], are also targets of interest.

Comparison with Earlier Computational Studies
Two computational studies, outlining strategies for target
identification, particularly for anti-tubercular drugs, have

been reported earlier [15,16]. We present an overview of
the passage of the targets suggested in these studies in the
targetTB pipeline, also outlining the advantages of the tar-
getTB pipeline over the previously reported methods.

Anishetty et al (2005) [15]

Based on a sequence analysis study, comparing enzymes
in metabolic pathways between human and Mtb, Pen-
nathur and co-workers proposed 186 proteins as suitable
drug targets. Of these, 51 feature in our H-List and 129 do
not, while six could not be considered for lack of sufficient
functional data. Some examples of the 51 targets featuring
in the H-List are AcpS (Rv2523c), AtpC (Rv1311), FabH
(Rv0533c), FbpA (Rv3804c), FolB (Rv3607c), IspE
(Rv1011), KatG (Rv1908c), LeuA (Rv3710), MenC
(Rv0553), PanB (Rv2225), PanC (Rv3602c), PpdK
(Rv1127¢), GIfT1 (Rv3782) and TrpA (Rv1613). An
account of how each of the 180 proteins proposed as tar-
gets in the study reported by Anishetty et al (2005) fare in
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Figure 3

http://www.biomedcentral.com/1752-0509/2/109

List of Identified Targets. Distribution of the functional classes of the 451 targets identified in the H-List. The number of

targets present in each of the functional classes is also indicated.

the targetTB pipeline is given as supplementary material
[See Additional file 7].

Of the 129 targets that do not pass the filters used in our
study, but were predicted by Anishetty et al, 77 have been
eliminated due to their non-essentiality in Mtb, as pre-
dicted by systems-level analyses, clearly demonstrating
the need for incorporating systems-level studies. Of the
remaining 52, one had a close homologue in the human
proteome and 16 had a PM score of 0.8 or more, leading
to their elimination. Of the remaining 35, 14 are not
expressed under any of the conditions considered by the
experiments considered (studies [30-32]), while 18 of
them had homologues in gut flora (five failing both
expression and gut flora filters). For the remaining eight,
structural assessment through PD-LigsiteCSC-PM was
infeasible due to lack of availability of an appropriate
model. These observations reiterate the need for a com-
prehensive multi-level analysis for target identification, as
demonstrated by the targetTB pipeline.

Hasan et al (2006) [16]

Schreiber and co-workers have reported a study in which
they prioritise all proteins in the Mtb genome for use as
drug targets. Their ranking is based on a consideration of
metabolic choke-points, in vitro essentiality for growth
and druggability as judged by sequence similarity to pro-
teins capable of binding small molecule ligands, besides
sequence analysis to identify unique proteins. Some con-
cepts are similar between our study and that of Hasan et

al, but our study differs from theirs in a number of ways:
(i) to start with, the goal in our study is to identify a very
high quality list of drug targets that are also computation-
ally validated, whereas Hasan et al have aimed to prioritise
all proteins in Mtb for their feasibility as drug targets (ii) a
pipeline has been developed that filters out proteins at
every stage, leading to a final list of very high quality tar-
gets at the same time eliminating the need for a blind con-
sideration of all proteins at all stages. The pipeline is also
useful for considering proteins eliminated at different
steps, if required, with necessary caution. (iii) a rigorous
FBA and network analysis have been carried out in our
study, making the systems-level analysis much more com-
prehensive (iv) a comprehensive structural assessment of
767 proteins of Mtb that passed other filters in the pipe-
line, against 15,830 different human proteins, has been
carried out. New algorithms developed by us have been
used to identify and compare pockets, again rendering the
structural analysis efficient and more importantly feasi-
ble, since it considers only the relevant features that
describe drug recognition. In addition, we have consid-
ered (v) elimination of proteins similar to anti-targets and
also (vi) those important in countering the emergence of
drug resistance.

Hasan et al have proposed three lists of prioritised targets,
based on different scoring schemes. In the metabolic list
proposed by Hasan et al, 146 of the targets from the H-List
are present in the top 500. Of the rest, 82 were eliminated
due to the presence of sequence homologues in the
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human proteome. 107 were non-essential by systems
analysis, while for eight, no data was available. Of the
remaining 154, 43 were not feasible for structural analy-
sis, while 49 had a PM Score of 0.8 or more. Two of the
proteins had similarities with human anti-targets. Of the
remaining 62, 36 had homologues in gut flora and 32
were not expressed (6 failed both filters). As a result, the
final list of proteins that we have identified (H-List) differs
significantly from those proposed by Hasan et al. A report
of how the top 500 targets in each of the three lists pro-
posed by Hasan et al (2006) fare in the targetTB pipeline
is given as supplementary material [See Additional file 8].

Discussion

It is now well-established that better insights into biolog-
ical systems may be obtained by considering large-scale
system-level models, since biological systems are complex
networks of many processes. The conventional method of
focussing on a single protein at a time, however important
the protein may be, would mean losing perspective of its
larger context and hence may not provide the right
answers, especially in drug discovery. Broader insights
about the appropriateness of a potential target can be
obtained by considering pathways and whole-system
models relevant to that disease. For example, an enzyme
that may be identified as a good target for a particular dis-
ease may not actually be critical or essential, when viewed
in the context of the entire metabolism in the cell. Analys-
ing system-level models can help in assessing criticality of
the individual proteins by studying any alternate path-
ways and mechanisms that may naturally exist to com-
pensate for the absence of that protein. This study has
demonstrated how systems biology can be used in drug
target identification and drug discovery.

As the necessity of systems-level studies is becoming more
and more obvious, a wide spectrum of techniques have
been developed and applied for the simulation and anal-
ysis of biochemical systems [62-65]. These include stoi-
chiometric techniques that rely on reaction stoichiometry
and other constraints, kinetic pathway modelling tech-
niques that rely on comprehensive mechanistic models
and interaction-based analyses, as well as Petri nets and
qualitative modelling formalisms [66]. The FBA carried
out in conjunction with gene knock-outs here indicates
the criticality of individual reactions and hence the associ-
ated proteins. In FBA, knock-outs can in fact be viewed as
extreme inhibitions in which the target is totally inhibited
by a drug. 188 of the 661 proteins in Mtb iNJ661 model
resulted in lethal phenotypes when knocked out, indicat-
ing their essentiality for producing the required biomass
and hence for bacterial growth. The FBA analysis also has
the potential to consider multiple knock-outs again
amounting to total inhibition at multiple points. Such a
phenomenon is known to occur by some drugs individu-
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ally and more commonly by a cocktail of drugs. For exam-
ple, isoniazid is thought to act at two points in the
pathway by inhibiting both InhA and KasA [4,67]. The
FBA study presents a ready framework to analyse the
effects of such drug inhibitions, which would be
extremely difficult to judge by inspection of the reaction
maps alone. Various combinations of the non-lethal gene
deletions leading to about 111,628 different double
knock-outs were generated and tested with FBA using the
same objective function. 49 of them were found to lead to
lethal phenotypes, with growth ratio of zero, as compared
to that of the wild-type. Such proteins can be targeted
simultaneously to achieve excellent antibacterial effect,
although individually either one of them would not be
good targets. Some examples of such pairs are Rv0505c
(SerB1, non-essential)-Rv3042c (SerB2, in H-List), both
phosphoserine phosphatases, Rv2243 (FabD, H-List)-
Rv0649 (FabD2, non-essential), both malonyl CoA-ACP
transacylases, Rv3273-Rv3588c, both carbonic anhy-
drases, and non-essential, individually, by systems analy-
ses. It is conceivable that each of these pairs that appear to
be isozymes produce a lethal phenotype on deletion,
since the functional step of the pathways they catalyse
may have proceeded in the absence of one, but would be
arrested in the absence of both enzymes. Another example
is that of Rv0363c (Fba, a fructose-bisphosphate aldo-
lase)-Rv1237 (SugB, a sugar transport membrane protein
ABC transporter). Such studies using FBA, however, can
be carried out only for the annotated reactome compo-
nent of the bacterial cell.

Networks obtained by considering various protein-pro-
tein interactions and influences, on the other hand are
much more comprehensive and nearly complete in their
coverage, especially because of the availability of an inte-
grated database that considers experimentally mapped
interactions and those predicted from one or more of the
four well-established computational methods [17,18]. A
drawback of such a network however, could be a large
number of false positives. To minimise the introduction
of false positives, we have eliminated all low-confidence
interactions from our study. The number of broken paths
introduced by a knock-out is taken here as a measure of
the essentiality of the protein in maintaining the network.
Biological networks typically display a power-law degree
distribution. We explore the importance of the disruption
of network connectivity that occurs on account of attack-
ing nodes that lie on many shortest paths in the network.
The advantage of interaction-based modelling such as this
is that it is possible to generate interaction networks from
existing databases and it is not constrained by lack of
quantitative mechanistic data.

Besides essentiality to the pathogen, an ideal target should

have several other properties such as non-similarity with
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human proteins whose inhibition could lead to potential
adverse drug effects, an aspect that has been analysed at
multiple levels in this study (see Fig. 1). The simplest level
of course is to check for sequence similarity of the target
being queried with all the proteins in the human pro-
teome. Sequence information is readily available for hun-
dreds of bacteria and this type of analysis is reported
earlier for pathogenic genomes such as Burkholderia pseu-
domallei [68], Helicobacteri pylori [69], Pseudomonas aerugi-
nosa [70,71] and even Mtb [72]. However, such sequence
filtering while important, cannot be the sole criteria for
identifying high quality targets, since two proteins that are
considerably dissimilar in their sequences could have very
similar binding sites [73,74]. Thus, while sequence simi-
larity very often leads to structural and hence functional
similarity, it is not a necessary condition for two proteins
to have similar ligand binding profiles.

In the process of target identification, what really matters
for a good target is to have a binding site in the target pro-
tein that is sufficiently different from that of any host pro-
tein. This is so that a given drug is both available in
intended quantities to the intended target and perhaps
more importantly, to avoid adverse effects by the drug
binding to another protein from the host and manipulat-
ing its function as well, which is unintended and unantic-
ipated. For this purpose, it is not very intuitive to look at
structural classes and overall properties such as the struc-
tural family or secondary structural types, that might
describe a structure. Instead, it is important to study the
possible binding profile of a given drug to all those pro-
teins to which it is likely to be exposed. Towards this goal,
we first identified possible pockets in the set of Mtb and
human structures, using PD, a validated algorithm that
was recently developed in our lab. All such putative pock-
ets were tested for certain criteria such as size and volume,
retaining only those that were likely to bind to small mol-
ecules. The filtered pockets from preliminarily shortlisted
targets from Mtb were then screened for similarity against
pockets from the human proteins, which involved over
245 million comparisons, using PM, a site-matching algo-
rithm recently developed in our laboratory. From this,
145 putative targets were eliminated due to high similar-
ity with one or more human proteins. Interestingly, well-
known molecules such as AlrA, PanD and GyrB are
observed to have high similarities with proteins in the
human, perhaps explaining the side effects caused by the
drugs targeting them. With a cut-off in PMScore of 60%,
molecules such as InhA, EmbA and EmbC, would all have
been eliminated from the list for not having the properties
of a safe target. However, since it is in principle, possible
to design inhibitors that could bind only to the intended
target by exploiting subtle structural differences that exist
at the sites of the bacterial target in question with those of
the human proteins obtained as hits with PM, we chose to
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use a high cut-off of 80%, so as to remove only those with
very high risk of causing side effects. Some examples of
molecules that have failed at this stage are DdIA, GyrB,
AftA and AlrA. It must be noted that some of these were
ranked as high priority targets by other studies that did
not consider the structural aspect explicitly, again empha-
sising the need for structural level analysis. Eliminating
those proteins with high similarity to proteins in the gut
flora also helps in ultimately reducing the risk of side
effects.

The last stages of filtering and post-identification analysis
resulted in identifying two categories of targets: broad-
spectrum targets and Mtb-specific targets. It is necessary to
identify targets in both the categories, since they are
required in different situations. Mtb-specific targets are
believed to be safer since they would not lead to many
organisms developing resistance against the drugs of such
targets. Broad-spectrum targets, on the other hand, would
be extremely useful when multiple infections co-exist or
in some cases where a specific diagnosis is not possible. A
comprehensive phylogenetic analysis of the shortlisted
targets against 228 different pathogenic genomes has been
carried out in this study, leading to the identification of
broad-spectrum targets. Identification of pathways and
proteins involved in generating drug resistance and then
targeting them simultaneously as co-targets along with the
primary broad-spectrum targets would reduce the risk of
drug resistance significantly, making many more mole-
cules accessible for therapeutic intervention.

Conclusion

In summary, network analysis of the interactome in Mtb
and flux balance analysis of the reactome, both systems-
level studies, have helped in identifying a set of proteins
critically required for the survival of the bacterium. By
mapping these with experimentally determined essential-
ity data, a set of proteins that would be useful as drug tar-
gets is identified. The list is pruned by a series of filters to
eliminate all those with a risk of causing side effects. Tra-
ditionally, drug safety has been addressed by modification
of the drug molecule itself, but this paper reports how a
careful choice of the target molecule can be made to
achieve that goal, which could be used as a general strat-
egy right in the beginning of the drug discovery process.
To our knowledge, this is also the first study to carry out a
comprehensive structural level analysis of identifying
binding pockets and matching them so as to obtain a pos-
sible pharmacodynamic map of the administered drugs.
In addition to the sequence and structure level filters, the
final list of targets identified has also passed filters put in
place to eliminate those similar to known anti-targets and
the gut flora proteins. Finally, the list is further enriched
by considering possible mechanisms in emergence of
drug resistance. The pipeline developed provides rational
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schema for drug target identification that are likely to have
high rates of success, which should save enormous
amounts of money, resources and time in the drug discov-
ery process.
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