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Abstract

Background: Numerous experimental results have indicated that microRNAs (miRNAs) play a vital role in biological
processes, as well as outbreaks of diseases at the molecular level. Despite their important role in biological processes,
knowledge regarding specific functions of miRNAs in the development of human diseases is very limited. While
attempting to solve this problem, many computational approaches have been proposed and attracted significant
attention. However, most previous approaches suffer from the common problem of being inapplicable to new
diseases without any known miRNA-disease associations.

Results: This paper proposes a novel method for inferring disease-miRNA associations utilizing a machine learning
technique called matrix factorization, which is widely used in recommendation systems. In recommendation systems, the
goal is to predict rating scores that a user might assign to specific items. By replacing users with miRNAs and items with
diseases, we can efficiently predict miRNA-disease associations without seed miRNAs. As a result, our proposed model,
called prediction of microRNA-disease association utilizing a matrix completion approach, achieves excellent performance
compared to previous approaches with a reliable AUC value of 0.882 by implementing five-fold cross validation.

Conclusions: To the best of our knowledge, the proposed method applies the matrix completion technique to infer
miRNA-disease associations and overcome the seed-miRNA problem negatively affects existing computational models.

Keywords: miRNA, Disease, Matrix completion approach

Background
MicroRNAs (miRNAs) are small non-coding RNAs with
lengths of 19~25 nucleotides that play significant roles in
inhibiting gene expression by binding to the 3′ untranslated
regions of mRNAs at the post-transcriptional level [1–4].
Numerous studies have demonstrated that miRNAs play im-
portant roles in multiple biological processes, including aging
[5, 6], apoptosis [7], cell proliferation [8], development [9],
and differentiation metabolism [10], as well as the progres-
sion of human diseases. Additionally, over the past few de-
cades, there have been numerous studies supporting the idea
that miRNA is a key factor in cancer-related processes. For
example, mir-31 and mir-335 have been shown to be in-
volved in suppressing breast cancer [11–13]. Mir-101 and
mir-185 are vital components associated with breast cancer

that affect Vegfa and Stathmin1, respectively [14, 15]. Calin
et al. proved that mir-15 and mir-16 are key components of
cancer formation based on the evidence that they were
found in B-cell chronic lymphocytic leukemia patients in
over 50% of cases [16]. Despite their significant role in vari-
ous biological processes, inferring interactions between miR-
NAs and diseases utilizing experimental methods has critical
disadvantages in terms of expense and time. With the emer-
gence of miRNA-related databases from various studies, nu-
merous computational methods have been proposed. Their
common goal is to predict true miRNA-disease associations.
Most previous computational methods are based on the

basic assumption that functionally related miRNAs have a
high chance of relating to phenotypically similar diseases
[17–19]. Jiang et al. proposed a hypergeometric-distribu-
tion-based method to prioritize disease-related miRNAs by
constructing a human phenome-miRNAome network, miR-
NAs functional interactions network, and disease similarity
network [20]. However, this method only considers the
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information of neighboring nodes, meaning there is still a
possibility of enhancing performance by utilizing a full global
network. Jiang et al. further investigated inferring
miRNA-disease associations by integrating multiple sources
of data through a naïve Bayes’ model [21]. Zou and Zeng et
al. predicted potential miRNA-disease associations through
network-based analyses. Their study is based on the
assumption that miRNAs with similar functions have a
higher possibility of causing phenotypically similar diseases
[22, 23]. Furthermore, based on this assumption, Tang et al.
inferred candidate disease-related miRNAs [24]. Liu et al. in-
tegrated multiple data sources to measure miRNA and dis-
ease similarities. By calculating precise similarities, they
constructed a heterogeneous network using true miRNA–
disease relationships. They also implemented random walk
algorithms to predict miRNA–disease associations through
heterogeneous networks [25]. However, the performance of
this method is strongly affected by miRNA-target interac-
tions and disease-gene association datasets, meaning the au-
thors only focused on specific information, which led to high
false-positive and false-negative rates.
There have been continuous efforts to improve the per-

formance of predicting potential miRNA-disease associations
by utilizing various types of emerging datasets. Accumulated
evidence indicates that the functions of miRNAs can be af-
fected by environmental factors (EFs), such as alcohol, ciga-
rettes, diet, drugs, stress, radiation, and viruses. Ha el al.
constructed a miRNA functional-similarity-based network
by integrating miRNA expression profiles and environmental
factor data, where nodes represent miRNAs and edges repre-
sent the functional similarities between miRNAs [26]. In this
method, the similarity between two different miRNAs is cal-
culated based on the common assumption that similar miR-
NAs tend to share larger numbers of EFs. However, this
method does not consider the chemical structure similarity
between EFs, which remains chance of improving perform-
ance by calculating more accurate similarity scores.
Despite continuous efforts to infer the functions of

miRNAs in biological processes, the known functions of
miRNAs are very limited. Because of insufficient infor-
mation, previous methods heavily rely on seed genes. In
other words, previous methods are not applicable to
new diseases with miRNA that has no revealed informa-
tion. These models rely on seed miRNAs that are known
to be related to a given query disease. Therefore, they
fail to make accurate predictions for new miRNA nodes
that are not linked to neighboring miRNAs.
To solve this insufficient information problem, we propose

a novel computational method called prediction of
microRNA-disease association utilizing a matrix completion
approach (PMAMCA) to predict potential disease-related
miRNAs. Our goal is to find how each miRNA is related to a
specific disease. By utilizing a machine learning technique
called matrix factorization (MF), we infer potential new

miRNA-disease associations in a systematic manner without
relying on known miRNA-disease association. MF is a ma-
chine learning technique that has shown excellent perform-
ance in recommendation systems. It has significant
advantages in terms of model expandability and accuracy.
For these reasons, most major companies involved in selling
products to users have adopted matrix factorization to
achieve significant profits.
The problem of predicting most candidate disease-related

miRNAs can be represented as the same problem faced by
recommendation systems. In recommendation systems, the
goal is to predict the rating score that each user might as-
sign to a given item. By replacing users with miRNAs and
rating scores with diseases, we can effectively identify
disease-related miRNAs.
This paper is organized into four main sections. Section 1

reviewed previous computational methods that focus on in-
ferring miRNA-disease associations and discussed their limi-
tations. Section 2 consists of two subsections. The first
enumerates the databases utilized in this paper and the sec-
ond describes the proposed method. Section 3 presents the
results of various experiments that verify the performance of
our method. In section 4, we summarize the proposed
method and results of our experiments.

Method and materials
In this Section, we describe a method for extracting
miRNA-disease associations utilizing a matrix completion
approach. Figure 1 illustrates the workflow of the PMAMCA
model. First, we gathered miRNA-disease association data
from the Human microRNA Disease Database (HMDD),
miR2Disease, and Database of Differentially Expressed MiR-
NAs in Human Cancers (dbDEMC), and preprocessed the
data into a uniform format to construct a binary
miRNA-disease matrix R. Additionally, we downloaded
miRNA expression data from The Cancer Genome Atlas
(TCGA) and utilized it to weight our proposed cost function.
Second, we divided the original matrix R into a miRNA la-
tent space M and disease latent space D. Finally, by utilizing
a MF technique, we trained each matrix M and D simultan-
eously according to the seed miRNAs in matrix R. Following
the training process, prediction can be performed based
on the miRNA-disease matrix R by calculating an inner
product of M and D (i.e., brij=mT

i d j). Therefore, we can de-
rive the score of each candidate miRNA from matrix R,
where miRNAs with high scores are expected to have a
high probability of being involved in disease pathogenesis.
For evaluation, the validation datasets were randomly di-
vided into training and test data-sets with a ratio of 80/20.

Datasets
Human miRNA-disease association data
We downloaded miRNA-disease associations data from
the HMDD, dbDEMC, and miR2Disease. HMDD v2.0 is a
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database that contains curated experiment-supported evi-
dence for human miRNA-associated disease associations.
HMDD contains 10,368 entries with information regard-
ing 572 miRNAs and 378 diseases from 3511 papers. Yang
et al. constructed the dbDEMC, which includes informa-
tion regarding cancer-related miRNAs from in silico com-
puting. A recently updated version of dbDEMC contains
information regarding 2224 miRNAs and 36 diseases.
miR2disease is a manually curated database that provides
a comprehensive list of miRNA functions in various hu-
man diseases. Currently, miR2disease contains informa-
tion regarding 3273 miRNA-disease associations for
approximately 349 miRNAs and 163 diseases. By combin-
ing and preprocessing miRNA-disease association from
the three databases, we extracted common information re-
garding 1879 miRNAs and 536 diseases.

miRNA expression data
We manually downloaded miRNA expression data from
TCGA and the Gene Expression Omnibus databases for
each disease d. Then, for preprocessing, we performed
min-max normalization on each expression value and uti-
lized the values as weights (wij) for our cost function. We
utilized the miRNA expression value only when there was
no miRNA-disease association in the original matrix R. The
main effect of applying miRNA expression data is that we

can efficiently train the latent spaces M and D without
knowing the true miRNA-disease associations in the
original matrix R, which makes our model more robust.

PMAMCA
The common drawback of most previous methods is that
they rely on specific seed genes. For miRNAs that have no
associations with seed miRNAs, the aforementioned
methods cannot be applied. In other words, previous
methods are not applicable to new diseases that do not have
any true miRNA-disease associations. However, by applying
a machine learning technique called MF, we can solve this
problem in an analytical manner. PMAMCA works well for
query diseases with no previously known miRNA associa-
tions and for inferring potential miRNAs (i.e., miRNAs that
are not linked to diseases). Another advantage of utilizing
MF is its applicability to various domains. For these reasons,
we applied MF to predict novel miRNA-disease associations
based on various biological data.

Predicting miRNA-disease relationships can be regarded
as the same problem solved by recommendation systems,
where goal is to recommend the most plausible product (dis-
ease) that the user (miRNA) might like. Most major com-
panies that deal with selling products to users, including
Netflix, have adopted MF and gained significant profits. In
recommendation systems, the goal is to find a correct rating

Fig. 1 The workflow for prioritizing candidate miRNAs
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score that a user might assign to an item. By replacing each
item with a disease and each user with a miRNA, we can
infer whether each miRNA is related to a specific disease.

Recommendation systems rely on several types of input
data, including explicit feedback and implicit feedback. Ex-
plicit feedback is direct input from users regarding items of
interest, such as a movie rating score. Based on the difficulty
of collecting explicit feedback, recommendation systems in-
directly infer the preferences of each user by observing their
behavior. This type of input data is called implicit feedback
and consists of search patterns, records of purchasing
history, and social network information. In our study, we re-
placed explicit feedback with known disease-miRNA associ-
ations, which we utilized as entries in the original matrix R,
and implicit feedback with miRNA expression data for the
weights wij in our objective function.
In recommendation systems, input data are typically

placed in a matrix with one dimension indicating users and
the other dimension indicating items of interest. Our goal
is to predict the most plausible miRNAs for a given disease
of interest. We constructed a miRNA-disease associations
matrix R∈RNm�Nd , where each row refers to a miRNA with
a total number of Nm and each column refers to a disease
with a total number of Nd. This original matrix R has the
form of a binary matrix, which contains entries Rij equal to
one if there exists a true miRNA-disease association or
equal to zero if no association exists.
We then applied the MF technique, which is the most

common and successful approach for recommendation
system as illustrated in Fig. 2. MF maps both miRNAs
and diseases into two latent spaces of dimension k. In
our method, we set the value of k to 100.
MiRNA-disease associations in the original matrix R

are the inner product of the two latent spaces. Given the
underlying original matrix R, our goal is to learn latent
spaces M∈RNm and D∈RNd that are close to the observed
entries in matrix R so predicted values can be obtained

from the inner product of each latent space. Training
was performed after each latent space was randomly ini-
tialized. Random initialization was implemented for each
entry in the latent space with values following a Gauss-
ian distribution with mean zero variance one. We then
applied the MF technique to train the latent spaces. The
resulting dot product mT

i d j denotes the relationship be-
tween miRNA i and disease j.

min
M;D

1
2

XNm

i¼1

XNd

j¼1
wij rij−mT

i d j
� �2 þ λ1 Mk k2F þ λ2 Dk k2F

n o
ð1Þ

Our proposed objective function is described above,
where λ1 and λ2 represent regularization terms that
control over-fitting. wij is the weight for approximat-
ing the value of the corresponding entry in R. wij

equals one if there already exists a known relationship
between miRNA i and disease j. Otherwise, we utilize
a miRNA expression value for the weight wij. How-
ever, in cases where a miRNA expression does not
exist, we set the value of the weight to zero. By ap-
plying miRNA expression values as weights wij, we
can estimate the value of the corresponding entry in
the original matrix R. This approximation aids in de-
termining if miRNA i is related to disease j even if
there is no information in entry Rij.

wij ¼ 1 if rij ¼ 1
wij ¼ miRNA expression value if rij ¼ 0

�

Optimization
The objective function in Eq. (1) is non-convex. To
optimize the cost function, we adapted stochastic

Fig. 2 Applying matrix factorization into miRNA-disease association extraction. miRNA-disease association original matrix R can be divided into
latent spaces M and D. Our goal is to learn the latent spaces M and D based on the original matrix R
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gradient descent. We computed the gradient of each
latent vector M and D and optimized them through
stochastic gradient descent. The gradients are de-
scribed below. The detailed steps of PMAMCA are il-
lustrated in Algorithm 1 and the notations are
explained in Table 1.

eij ¼def rij−mT
i d j

i ¼ 1 to Nm :

mi←mi−η
XNd

j¼1
wij rij−mT

i d j
� �

d j−λ1mi

n o

j ¼ 1 to Nd :

d j←d j−η
XNm

i¼1
wij rij−mT

i d j
� �

mi−λ2d j

n o

Experimental results
Validation by area under the curve (AUC)
In order to evaluate the performance of our method,
we performed 5-fold cross validation utilizing our ori-
ginal miRNA-disease association matrix, which was ag-
gregated from various databases (HMDD, miR2Disease,
and dbDEMC). The miRNA-disease association data
was divided into training and test data. Because ran-
domness was involved in the choice of subsets, we per-
formed cross validation 100 times and evaluated the
average AUC value. For the test set, we prioritized
candidate miRNAs with higher scores as predicted by
our model.
To validate our model performance intuitively, we first

plotted the receiver operating characteristic (ROC) curve
by plotting the false positive rate (FPR) against the true
positive rate (TPR) based on various thresholds. We
then calculated area under the ROC for our model. The-
oretically, AUC = 1 indicates perfect prediction by a
model and AUC = 0.5 indicates the results of random se-
lection. Surprisingly, our model achieved a reliable value
of 0.882.

Comparison with other methods
To further validate the predictive ability of PMAMCA,
we experimentally compared five existing state-of-
the-art methods, which have shown excellent prediction
accuracy. The ROC curves that validate the prediction
performance of our model are presented in Fig. 3 for
easy comparison. To compare model performance more
precisely, the AUC for each model was calculated. As a
result, WBSMDA [27], Liu et al. [25], RWRMDA [28],
RLSMDA [29], HDMP [30] achieved values of 0.832,
0.816, 0.802, 0.782, and 0.702 respectively. These values
were obtained by implementing five-fold cross validation
to randomly partition the miRNA-disease association
data into five equal parts and utilize one part as a test
set and other four parts as a training set. As a result,
PMAMCA achieved superior performance compared to
the five existing state-of-the-art methods with the value
of 0.882.

Table 1 Notation

Symbol Description

Nm, Nd, K number of miRNAs, diseases and latent
dimensionality, respectively

L cost function

M∈R Nm�K ,

D∈R Nd�K

miRNA and disease latent space, respectively

eui error between original matrix and inner product of
latent spaces

η learning rate
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Effect of k
The dimension of the latent spaces is a key factor that dir-
ectly influences model performance. By differentiating
various dimensions k, we were able to compare perfor-
mances based on AUC values. The effect of k on model
performance is presented in Fig. 4. A higher k value typic-
ally yields more precise results. However, beyond a certain
point, complexity begins to increase and efficiency begins
to decrease. Most importantly, even a small value of k =
10 results in competitive performance compared to
HDMP, as shown in Fig. 3. As we increase the value of k,
performance tends to increase, however beyond the cer-
tain point of k = 100, performance stabilized. Because of
the complexity and efficiency issues mentioned above, we
utilized k = 100 for our experiments.

Case studies (breast cancer, lung cancer)
Many studies have proved that half of all miRNAs are
located in cancer-related genomic regions and that
their common functions are related to the development

of multiple human malignancies [31]. To validate the
performance of PMAMCA, we implemented our algo-
rithm on various cancers (breast cancer, lung cancer,
and colon cancer) to determine how successful the pro-
posed method is at extracting potential candidates. Val-
idation was performed based on answer set data
(HMDD, miR2disease, and dbDEBC) and literature
analysis.
Breast cancer is known as one of the most common

female malignant neoplasms and accounts for 22% of all
cancers in women [32]. For our evaluation, we imple-
mented PMAMCA and prioritized the top-50 breast
cancer-related miRNA candidates. As shown in Table 2,
we confirmed that 48 miRNAs were found to be related
to breast cancer based on our answer-set data. Further-
more, we checked the remaining two miRNAs (miR-140
and miR-142) through literature analysis to determine if
these candidates have a high possibility being related to
breast cancer. We were able to confirm that these miR-
NAs are directly or indirectly related to breast cancer.

Fig. 3 Performance comparison between PMAMCA and five state-of-the-art methods. These results demonstrate that PMAMCA is superior to the
existing computational methods
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miR-140 is one of the known tumor suppressive miR-
NAs for breast cancer. Recently, it was proven that
miR-140 can lead to considerably reduce expression of
breast cancer tissue compared to normal breast tissue
[37, 38]. This means that down-regulated miR-140 can
lead to a loss of function of tumor suppressor genes and
eventually cause breast cancer. miR-142 (miR-142-3p)
has also been reported to have a dysregulated presen-
tation in several breast cancer subtypes. It has been
shown that overexpression of miR-142 can lead to
downregulation of some certain genes that are known
to be related to cytoskeletal regulation and cell motil-
ity, such as WASL or RAC1 [39]. Additionally, it has
been shown that miR-142 can inhibit breast cancer
cell invasiveness. By combining these results, we have
demonstrated that our top-50 miRNAs were all
proved to be breast-cancer-related miRNAs with an
accuracy of 100%.
Furthermore, we implemented functional enrichment

analysis on the two aforementioned miRNAs utilizing a

well-known online enrichment tool called TAM. TAM
(http://www.cuilab.cn/tam) is an online miRNA functional
enrichment tool developed by Lu et al. It provides the bio-
logical significance and common functions of given query
miRNAs. Amazingly, the two aforementioned miRNAs
were found to be related to lung cancer. Lung cancer is well
known as a phenotypically similar disease to breast cancer.
We downloaded a phenotypically similar disease list from
MimMiner [33], which provides information regarding
phenotypically similar diseases to a given input disease.
From these results, we were able to validate the biological
assumption that phenotypically similar diseases tend to
have relationships with functionally related miRNAs.
Lung cancer is one of the main causes of cancer-related

deaths worldwide and it is the second leading cause of
cancer death in the United States [36]. For the further
evaluation of PMAMCA, we analyzed the top-50 candi-
dates with the highest chances of being related to lung
cancer as identified by PMAMCA. Validation was also per-
formed based on our integrated miRNA-disease answer-set

Fig. 4 Performance of PMAMCA with different values of k. Performance tends to increase as latent dimension k increases. However, even with a
low value of k = 10, PMAMCA achieved competitive performance compared to previous computational methods
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data and 48 candidates were found to be true lung-cancer-
related miRNAs. The list of the top-50 lung-cancer-related
candidates is provided in Table 3. To verify the potential
biological functions of the remaining two miRNAs, we per-
formed functional enrichment analysis on these two miR-
NAs (hsa-mir-142 and hsa-mir-127).
These two miRNAs were found to be related to lung

neoplasms, breast neoplasms, and colonic neoplasm,
which directly or indirectly influence the biological mech-
anisms of lung cancer. In addition to its role in breast can-
cer development, miR-142 has been reported to play an
important role in modulating non-small-cell lung carcin-
oma cell tumorigenesis by targeting HMGB1 [40].
miR-142 has also been shown to inhibit the expression of
CD133, ABCG2, and LGR5 by binding to both the 3′ un-
translated regions and coding sequences of these three
genes, which are related to poor prognoses in colon can-
cer patients [41]. It has been reported that miR-127 can
induce in lung adenocarcinoma and is associated with
poor prognoses [42]. The authors of [42] demonstrated
that high levels of miR-127 can drive and promote
stem-like transitions, meaning this miRNA plays a central
role in forming aggressive phenotypes of lung cancer. It
has also been shown that the up-regulation of miR-127
can affect epigenetic silencing and BCL6, which is a
well-known oncogene in colorectal cancer [43].
By combining these experimental results, we verify

that the proposed PMAMCA model not only proves that
an MF-based prediction method is suitable for finding
disease-related miRNAs, but also successfully identifies
potential miRNAs with a high probability of being re-
lated to disease incidence.

Various ranking thresholds
To validate the performance of our proposed model with
various ranking thresholds, we counted the number of
retrieved true disease-related miRNAs for different
ranking thresholds. By differentiating various ranking
thresholds, we analyzed how our proposed model per-
forms at inferring miRNA-disease associations compared
to previous state-of-the-art methods. One can see from
Fig. 5 that PMAMCA achieved the best performance for
all ranking thresholds with various diseases.

Discussion
miRNA functionality analysis
miRNA has shown diversity when regulating translation
repression as well as during miRNA-guided rapid deade-
nylation. Moreover, several studies have proved that miR-
NAs may function as oncogenes or tumor suppressor
genes. Because of the high mutational burden of cancer
genomes, distinguishing passenger and driver genes has
become a vital task [44]. Passenger mutations were known
to affect cell growth and accumulate during tumor

progression. However, existing studies have proved that
accumulation of deleterious passengers may be associated
with carcinogenesis that leads to cellular stress, immune
response, and therapy resistance [45]. Therefore, we

Table 2 Top-50 candidate miRNAs for breast cancer predicted
by PMAMCA. Validation was performed utilizing HMDD,
miR2Disease, dbDEMC, and literature analysis. All 50 miRNAs
were confirmed to be related to breast cancer

Rank Name Evidence Rank Name Evidence

1 hsa-mir-155 miR2Disease,
dbDEMC

26 hsa-let-7i miR2Disease,
dbDEMC

2 hsa-mir-126 miR2Disease,
dbDEMC

27 hsa-mir-185 dbDEMC

3 hsa-mir-16 dbDEMC 28 hsa-mir-191 miR2Disease,
dbDEMC

4 hsa-let-7b dbDEMC 29 hsa-mir-143 miR2Disease,
dbDEMC

5 hsa-let-7d miR2Disease,
dbDEMC

30 hsa-mir-182 miR2Disease,
dbDEMC

6 hsa-mir-145 miR2Disease,
dbDEMC

31 hsa-mir-15b dbDEMC

7 hsa-let-7a miR2Disease,
dbDEMC

32 hsa-mir-150 dbDEMC

8 hsa-let-7f miR2Disease,
dbDEMC

33 hsa-mir-130b dbDEMC

9 hsa-mir-146a miR2Disease,
dbDEMC

34 hsa-let-7e dbDEMC

10 hsa-mir-100 dbDEMC 35 hsa-mir-138 dbDEMC

11 hsa-mir-181a miR2Disease,
dbDEMC

36 hsa-mir-130a dbDEMC

12 hsa-mir-148a miR2Disease,
dbDEMC

37 hsa-mir-142 Literature [34]
[39]

13 hsa-let-7g dbDEMC 38 hsa-mir-133b dbDEMC

14 hsa-mir-101 dbDEMC 39 hsa-mir-18a miR2Disease,
dbDEMC

15 hsa-mir-125b miR2Disease,
dbDEMC

40 hsa-mir-141 miR2Disease,
dbDEMC

16 hsa-mir-17 dbDEMC 41 hsa-mir-127 miR2Disease,
dbDEMC

17 hsa-let-7c dbDEMC 42 hsa-mir-135b dbDEMC

18 hsa-mir-139 dbDEMC 43 hsa-mir-107 dbDEMC

19 hsa-mir-15a dbDEMC 44 hsa-mir-140 Literature [35]
[37] [38]

20 hsa-mir-146b miR2Disease 45 hsa-mir-106b dbDEMC

21 hsa-mir-1 dbDEMC 46 hsa-mir-154 dbDEMC

22 hsa-mir-10b miR2Disease,
dbDEMC

47 hsa-mir-181c dbDEMC

23 hsa-mir-125a miR2Disease,
dbDEMC

48 hsa-mir-181d miR2Disease,
dbDEMC

24 hsa-mir-181b miR2Disease,
dbDEMC

49 hsa-mir-132 dbDEMC

25 hsa-mir-183 dbDEMC 50 hsa-mir-186 dbDEMC
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performed a functional analysis to verify whether the
extracted miRNAs can regulate driver or passenger genes.
Marchi et al. suggested 47 potential driver and 342
passenger candidate genes using a module-based analysis
[46]. We downloaded the list of driver and passenger
candidates from a Additional file 1 [46]. Surprisingly, our
33 candidate target genes were matched to the driver
genes and 184 target genes were matched to passenger
genes. Our confirmed driver and passenger genes are
described in the Additional file 1: Table S5.
We further performed literature-based analyses through

a text-mining technique to validate the study. The following
evidences are extracted from the existing papers on
PubMed. Marchi et al. suggested that overexpression of
miR-130b could affect the potential driver candidates (AR,
BIRC5, DNMT3B, ERBB4, FGFR1, PML, PPARG, RB1, and
STAT1). MiR-101 loss usually occurs in NSCLC that could
be an early occurrence of lung tumorigenesis. Furthermore,
miR-101 could be a therapeutic agent to target oncogenes
such as EZH2. The difference in miR-101 copy number loss
of SCLCs and NSCLCs, which indicates difference in
miR-101 expressions may offer different mechanisms of
EZH2 activation for different lung cancer types [47]. Over-
all, miRNA-101 has shown under-expression in various ma-
lignancies such as prostate, lung, live, and bladder. Akao et
al. proved that ERK5, which is the target of miR-143, could
regulate cell growth. This indicates that the anti-oncogenic
role of miR-143 affects gastrointestinal cancers [48]. Ac-
cording to previous studies, among the five targets of
miR-150, ITGA3, ITGA6, and TNC were found to be in-
volved in integrin-mediated signaling that promotes cancer
cell aggressiveness. Moreover, the remaining two targets,
CAV and XIAP, have been found to be involved in cancer
pathogenesis [49].

Relationship between target genes and cancer hallmarks
Because the research of cancer has considerably pro-
gressed in the recent past, further advances in this area
considerably depend on the broad understanding of
cancer hallmarks and related molecular pathways under-
pinning the mechanisms involved. These hallmarks indi-
cate the change in cell behavior that characterizes the
cancer cell. To identify the relationship between cancer
hallmarks and our candidate miRNA, we checked whether
our candidate miRNA targets correspond to cancer hall-
marks [50]. To incorporate the information of target
genes, we downloaded the open data from miRTarbase
[53] and miRecords [54]. For the evaluation, we down-
loaded the list of 163 cancer hallmarks and their signa-
tures from the Additional file 1 of [50]. It was confirmed
that our 86 candidate targets were matched to cancer hall-
marks. The confirmed cancer hallmarks and their signa-
tures are described in Table 4.

Table 3 Top-50 candidate miRNAs for lung cancer predicted by
PMAMCA. Validation was performed utilizing HMDD,
miR2Disease, dbDEMC, and literature analysis. All 50 miRNAs
were confirmed to be related to lung cancer

Rank Name Evidence Rank Name Evidence

1 hsa-let-7a miR2Disease,
dbDEMC

26 hsa-let-7e miR2Disease,
dbDEMC

2 hsa-mir-145 miR2Disease,
dbDEMC

27 hsa-mir-1 miR2Disease,
dbDEMC

3 hsa-mir-17 dbDEMC 28 hsa-mir-101 miR2Disease,
dbDEMC

4 hsa-let-7b miR2Disease,
dbDEMC

29 hsa-let-7i dbDEMC

5 hsa-mir-15a dbDEMC 30 hsa-mir-182 miR2Disease,
dbDEMC

6 hsa-mir-155 miR2Disease,
dbDEMC

31 hsa-mir-181a dbDEMC

7 hsa-mir-16 miR2Disease,
dbDEMC

32 hsa-mir-191 miR2Disease,
dbDEMC

8 hsa-mir-125b dbDEMC 33 hsa-mir-141 miR2Disease,
dbDEMC

9 hsa-mir-126 miR2Disease,
dbDEMC

34 hsa-mir-150 miR2Disease,
dbDEMC

10 hsa-mir-148a dbDEMC 35 hsa-mir-139 miR2Disease,
dbDEMC

11 hsa-mir-183 miR2Disease,
dbDEMC

36 hsa-mir-138 dbDEMC

12 hsa-let-7g miR2Disease,
dbDEMC

37 hsa-mir-107 dbDEMC

13 hsa-let-7c miR2Disease,
dbDEMC

38 hsa-mir-127 Literature [42]

14 hsa-mir-146a miR2Disease,
dbDEMC

39 hsa-mir-140 miR2Disease,
dbDEMC

15 hsa-mir-100 dbDEMC 40 hsa-mir-133b miR2Disease,
dbDEMC

16 hsa-mir-146b miR2Disease,
dbDEMC

41 hsa-mir-18b dbDEMC

17 hsa-mir-125a miR2Disease,
dbDEMC

42 hsa-mir-130b dbDEMC

18 hsa-mir-15b dbDEMC 43 hsa-mir-130a miR2Disease,
dbDEMC

19 hsa-let-7d miR2Disease,
dbDEMC

44 hsa-mir-132 dbDEMC

20 hsa-let-7f miR2Disease,
dbDEMC

45 hsa-mir-133a dbDEMC

21 hsa-mir-10b dbDEMC 46 hsa-mir-185 dbDEMC

22 hsa-mir-143 miR2Disease,
dbDEMC

47 hsa-mir-106b dbDEMC

23 hsa-mir-142 Unconfirmed
[41]

48 hsa-mir-135b dbDEMC

24 hsa-mir-18a miR2Disease,
dbDEMC

49 hsa-mir-149 dbDEMC

25 hsa-mir-181b dbDEMC 50 hsa-mir-106a miR2Disease,
dbDEMC
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We further checked the relationship between the targets
and cancer using text-mining techniques through PubMed.
Surprisingly, our candidate miRNA, mir-15a, proved to be
targeting CDCA4, BCL2L2, YAP1, AKT-3, and Cyclin E1
that are known as oncogenic mRNAs. Alderman et al. have
validated that miR-15a plays a significant role in reducing
cancer cell survival and aggressiveness through various
mechanisms. Moreover, miR-15a was found to decrease the
invasiveness of melanoma cells. Consequently, verified tar-
gets of miR-15a were found to be oncogenic mRNAs [51].
The above validations support the idea that our model not
only efficiently finds disease-related miRNAs, but also finds
mechanisms for target gene and cancer incidence.

Conclusion
Recent studies have shown that inferring new miRNA-
disease associations utilizing computational methods plays
an important role in bioinformatics because it efficiently
reduces the time and resources required for biological
experiments.
In this paper, we proposed a novel method called

PMAMCA that utilizes MF to predict novel miRNA-dis-
ease associations. PMAMCA achieved a reliable AUC value
of 0.882 for five-fold cross validation, which randomly par-
titioned miRNA-disease association data into five equal
groups, utilizing four groups as a training set and the
remaining group as a test set. We further validated the
performance of the proposed model through case studies
on breast cancer, lung cancer, and colon cancer by prioritiz-
ing the top-50 candidates with the accuracies of 96, 96, and
92%, respectively. Due to the space issues, result table of
colon cancer is contained in Additional file 1.
The reliable performance of PMAMCA can be attrib-

uted to several advantages. First, we applied MF, which
has already shown excellent performance in recommen-
dation systems. Most major companies that deals with
selling products to users, including Netflix, have adopted
MF and gained significant profits. The major advantages
of utilizing matrix-factorization are its domain expand-
ability and model expandability. In recommendation sys-
tem, the goal is to find the most correct rating score
that a user might assign to an item. By replacing objects
with miRNA and users with diseases, we can infer how
each miRNA is related to specific diseases.
By applying MF to predict new miRNA-disease associ-

ations, we can not only achieve improved prediction ac-
curacy, but also solve the problem of applying limited
sources of miRNA information. Previous methods relied
completely on specific seed genes and miRNAs having
no association with those seed genes those methods
could not be implemented. To solve this problem,
PMAMCA applies MF to achieve excellent performance,
which was demonstrated through various experiments.

Fig. 5 Numbers of correctly retrieved known disease-related miRNAs
for various rank thresholds
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Furthermore, PMAMCA also revealed mechanisms of
disease pathogenesis and expanded our knowledge of
the interactions of miRNAs.
PMAMCA still has room for possible improvements to

achieve better prediction accuracy. In future work, the
performance of our proposed method can be improved by
utilizing additional biological datasets as implicit feedback.
Furthermore, using information of each cancer hallmark
or target gene as implicit feedback increases the possibility
of enhancing performance [52]. Applying meaningful
biological data involved in cancer incidence is likely to
improve the performance of prediction as well as increase
understanding of genetic basis mechanism of miRNA.
Additionally, extracting meaningful features of miRNAs
utilizing various other machine learning techniques and
information regarding target genes should make the
prediction accuracy of PMAMCA more robust in the
future.
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NAs for breast cancer predicted by PMAMCA. Table S3. Top-50 candidate
miRNAs for lung cancer predicted by PMAMCA. Table S4. List of
validated cancer hallmark-based signature and their genes. Table S5. List
of confirmed driver and passenger genes. (additional experimental result)
Table S6. Top-50 candidate miRNAs for colon cancer predicted by
PMAMCA. (additional experimental result). Figure S1. The workflow for
prioritizing candidate miRNAs. Figure S2. Applying matrix factorization
into miRNA-disease association extraction. Figure S3. Performance
comparisons between PMAMCA and four state-of-the-art methods.
Figure S4. Performance of PMAMCA with different values of k. Figure

S5. Numbers of correctly retrieved known disease-related miRNAs for
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COL4A3 CCNE1 ATM ASTN1 ANKRD17 CPLX2 BCKDK ADRA2B

CTNNB1 CUL3 CIAPIN1 B4GALT1 APTX CRISP3 CAMK4 CDK17

ELMO2 EGFR ELMO2 HMGCR ATXN3 FCGRT ERC1 DAPK1

FAF1 NPAT FAIM PAFAH1B1 DCLRE1C IL2 LMTK2 EGFR

FAIM PCNP FOXL2 PEX5 DDB2 PSEN1 MAPK7 LPAR2

FOXL2 RASSF4 GRIK2 RPS6KB1 EYA4 TNFSF13 RPS6KB1 NPR1

GRIK2 RBBP4 JUN SCARB1 RAD23B VTCN1 SCYL3 PIK3CB
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