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regimens (7 + 3 vs 7 + 3 plus additional
bone marrow evaluation) in acute myeloid
leukemia treatment
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Abstract

Background: Clinical integration of systems biology approaches is gaining in importance in the course of digital
revolution in modern medicine. We present our results of the analysis of an extended mathematical model describing
abnormal human hematopoiesis. The model is able to describe the course of an acute myeloid leukemia including its
treatment. In first-line treatment of acute myeloid leukemia, the induction chemotherapy aims for a rapid leukemic cell
reduction. We consider combinations of cytarabine and anthracycline-like chemotherapy. Both substances are widely
used as standard treatment to achieve first remission. In particular, we compare two scenarios: a single-induction
course with 7 days cytarabine and 3 day of anthracycline-like treatment (7 + 3) with a 7 + 3 course and a bone marrow
evaluation that leads, in case of insufficient leukemic cell reduction, to the provision of a second chemotherapy course.
Three scenarios, based on the leukemias growth kinetics (slow, intermediate, fast), were analyzed. We simulated
different intensity combinations for both therapy schemata (7 + 3 and 7 + 3 + evaluation).

Results: Our model shows that within the 7 + 3 regimen a wider range of intensity combinations result in a complete
remission (CR), compared to 7 + 3 + evaluation (fast: 64.3% vs 46.4%; intermediate: 63.7% vs 46.7%; slow: 0% vs 0%).
Additionally, the number of simulations resulting in a prolonged CR was higher within the standard regimen (fast:
59.8% vs 40.1%; intermediate: 48.6% vs 31.0%; slow: 0% vs 0%). On the contrary, the 7 + 3 + evaluation regimen allows
CR and prolonged CR by lower chemotherapy intensities compared to 7 + 3. Leukemic pace has a strong impact on
treatment response and especially on specific effective doses. As a result, faster leukemias are characterized by superior
treatment outcomes and can be treated effectively with lower treatment intensities.

Conclusions: We could show that 7 + 3 treatment has considerable more chemotherapy combinations leading to a
first CR. However, the 7 + 3 + evaluation regimen leads to CR for lower therapy intensity and presumably less side
effects. An additional evaluation can be considered beneficial to control therapy success, especially in low dose
settings. The treatment success is dependent on leukemia growth dynamics. The determination of leukemic pace
should be a relevant part of a personalized medicine.
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Background
Acute myeloid leukemia (AML) is a rare malignant dis-
ease of the blood cell formation and is the most com-
mon acute leukemia among adults leading to most death
events caused by leukemias [1]. In particular, AML is
constituted of genetically different hematopoietic neo-
plasms that collectively stem from various multistep mu-
tations affecting the myeloid cell line resulting in
accumulating neoplastic precursor cells [2]. The intrinsic
origin of AML is a small subset of leukemic stem cells
(LSC) leading to a self-perpetuating proliferation of
clonal progenitor cells also referred to as blasts [3]. Fast
growing number of inoperative and undifferentiated
blasts induce a disorder of normal hematopoiesis located
in the bone marrow with further systemic implications
in blood and other tissues [1]. As part of a clonal evolu-
tion in one patient, genetically different AML clones
exist, develop and are specifically responsible for diagno-
sis or potential relapse because of a presumed selection
by chemotherapy [4].
This complex pathogenesis and additional resist-

ance mechanisms lead to various treatment strategies
and respective various patient outcomes [5, 6]. Inde-
pendently from new more tailored treatment ap-
proaches (e.g. CAR-T cells), an established but
relatively unspecific combination chemotherapy of
cytarabine and anthracycline sets still the standard
aiming for a first clinical remission during induction
therapy [2, 5].
A widely used therapeutic approach is the 7 + 3 regi-

men (starting with seven days cytarabine and supple-
mentary for the first three days anthracycline). In
clinical practice variation of this regimen exists differing
e.g. in dose and/or schedule [5, 7]. Different 7 + 3 regi-
mens are preferred depending on respective region, e.g.
an evaluation process with potential re-induction in the
United States compared to a preferred double induction
in Europe [8].
Our scientific objectives were to compare different in-

tensities of two 7 + 3 chemotherapy regimens using a
mathematical model, which characterizes the dynamics
of AML using ordinary differential equations. We pri-
marily intend to increase the efficiency of this known in-
duction therapy by detecting more disease-specific
treatment conditions. A single-induction 7 + 3 regimen
was compared with a 7 + 3 regimen plus an additional
bone marrow (BM) evaluation on day 14 and/or 21 after
treatment start with a potential second induction cycle.
In total, we analyzed about ten thousand different in-

tensity combinations, which is more than in tangible ex-
periments (in vivo or in vitro) or clinical studies are
feasible [9–11].
To evaluate each scenario, we computed the time from

treatment start to complete remission (CR) and the

following CR duration as two essential clinical parame-
ters that enable a rational comparison [12].

Methods
For our analysis, we extended the published two-compart-
ment AML model by Stiehl et al. [13]. The two compart-
ments represent hematopoietic stem cells (HSC) within the
bone marrow (first compartment) which can differentiate
by cell division into non-proliferating (differentiated) cells
(second compartment). Healthy and non-healthy (leukemic
stem cells, LSC) cells are modelled separately and differ in
their parameter values. The model is able to explain the dy-
namics of cell population abundance adequately [13–16].
Normal HSC and pathological LSC are represented by a set
of two ordinary differential equations. Cellular abundance
(in cells/kg body weight) at day t is denoted by c1(t) for
HSC, c2(t) for healthy differentiated cells, l1(t) for LSC and
l2(t) for non-proliferating leukemic cells, respectively. HSC,
LSC and non-proliferating leukemic cells are considered to
reside in the bone marrow, whereas healthy differentiated
cells belong to the blood stream. This model assumption
corresponds with prior results by Stiehl [13], who showed
that a model extension by a bone marrow exit did not lead
to qualitative changes of the selected cell properties via
chemotherapy. The proliferation rates pc (HSC) and pl

(LSC) and the self-renewal rates, (ac for HSC, al for LSC),
are used to characterize healthy hematopoiesis and
leukemia growth kinetics, respectively. In the model the
term of self-renewal represent this self-sustaining fraction
as a proportion (0–1). We considered proliferation
rates in the range 0–2 and self-renewal rates between
0 and 1.
Depletion (e.g. apoptosis or migration into, for our

model, negligible states) of non-proliferating cells is mod-

elled as constant death rate dc
2 and dl

2. Resident cells (here
c1, l1, and l2) will also deplete, if bone marrow cell number
exceed a density threshold value, i.e. the physiological
equilibrium value of bone marrow cell count. The func-
tion d(x(t)) is an additional death rate describing the frac-
tion of bone marrow cells dying because of overcrowding.
A feedback regulation denoted by s(t) is integrated to rep-
resent cellular communication. Affecting self-renewal,
feedback regulation leads to the result that increasing
number of differentiated healthy cells causes a reduced
number of HSC and LSC (and vice versa).
Intensive induction chemotherapy of AML contains a

combination of two or more chemotherapeutics applied in
a specific therapy regimen [5, 7]. We extended the model
to implement the 7 + 3 scheme based on 7 days cytarabine
and 3 days anthracycline treatment. Cytarabine acts as an
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antimetabolic agent and attacks primarily on cells during
their synthesis phase (S-phase) by inhibiting the
DNA-polymerase α [17, 18]. The modelled chemotherapy
mechanism (kcyt · p

c · c1(t)) can be considered as a
cytarabine-like chemotherapy acting on proliferating cells.
Anthracycline affects proliferating and non-proliferating
cells via various mechanisms (e.g. inhibition of topoisom-
erase II or free radical generation) [19]. A second chemo-
therapy mechanism has been introduced acting on
non-proliferating cells. We assume that the effect of
anthracycline on mitotic cells is limited to the prolifera-
tion phase. This is justified by experimental observation
that anthracycline’s toxicity on mitotic cells is mainly due
to active proliferative state [20–22]. The extended Stiehl
model [13] is defined by

d
dt

c1ðtÞ ¼ 2 � ac � pc � sðtÞ � c1 ðtÞ−pc

�c1ðtÞ−dðxðtÞÞ � c1ðtÞ−kcyt � pc � c1ðtÞ
−kanthra � pc � c1ðtÞ

ð1Þ
d
dt

c2ðtÞ ¼ 2 � pc � c1ðtÞ−2 � ac
�pc � sðtÞ � c1ðtÞ−dc

2 � c2ðtÞ
−kanthra � c2ðtÞ

ð2Þ
d
dt

l1ðtÞ ¼ 2 � al � sðtÞ � pl � l1ðtÞ−pl

�l1ðtÞ−dðxðtÞÞ � l1ðtÞ−kcyt � pl � l1ðtÞ
−kanthra � pl � l1ðtÞ

ð3Þ
d
dt

l2ðtÞ ¼ 2 � pl � l1ðtÞ−2 � al � sðtÞ

�pl � l1ðtÞ−dl
2 � l2ðtÞ−dðxðtÞÞ

�l2ðtÞ−kanthra � l2ðtÞ
ð4Þ

x tð Þ ¼ c1 tð Þ þ l1 tð Þ þ l2 tð Þ ð5Þ

s tð Þ ¼ 1
1þ kcc2 tð Þ ð6Þ

d x tð Þð Þ ¼ 10−10 � max 0; x tð Þ−4 � 109cells=kg� � ð7Þ
The model represents an intermediate state between

Model 1 and Model 2 from [13]. It is known that the
bulk of leukemic cells express granulocyte colony-stimu-
lating factor (G-CSF) receptors [23]. G-CSF is the main
mediator for hematopoietic feedback regulation and can
stimulate as well leukemic cells [24]. G-CSF-feedback

regulation is mainly directed by, not fully understood,
transcriptional signaling processes with STAT3/SOCS
proteins [25–27]. A relevant amount of AML subtypes
shows a significant dysregulation of STAT3/SOCS-re-
lated pathways [28–31]. Thus, we assume for a wider part
of AML no negative G-CSF feedback regulation by
leukemic cells. As an implementation the leukemic cell
self-renewal depends on the feedback s(t) (eq. (6)), but the
feedback s(t) does not depend on the leukemic cell count
in our model.
We implemented the model in the statistical software

R [32]. Numerical solutions for the ordinary differential
equations were calculated using the R package ‘deSolve’
[33]. A more detailed description, including the param-
etrization of the model, is given in Additional file 1. The
R syntax is given in Additional file 2.
To analyze the model, we performed the following steps

Identification of leukemic pace
Different leukemias (characterized by self-renewal, al,
and proliferation rate, pl) from initial prediagnostic
occurrence (i.e. a model state which, in real patients, is
below the diagnostic threshold) to the onset of leukemia
were simulated. When the leukemia hits the diagnosis
threshold (20% blasts, following international guidelines
[34]) treatment is triggered. Blast fraction is defined as
l1þl2

c1þl1þl2
. We assume that in bone marrow there is no

routine distinction made between LSC and non-prolifer-
ating leukemic cells [35]. Indeed, in clinical practice this
distinction could be drawn for further investigation [36,
37].

Selection of leukemia
We consider one distinct leukemic (parameter combin-
ation) per patient and identified three parameter sets,
one leading to slow, one leading to intermediate and one
leading to fast pace (cp Fig. 3 and Table 2). These
parameter combinations can e.g. result in a leukemia
emerging from different genetic characteristics. We use
these parameter sets for our simulations to study how
the growth kinetics (leukemic pace) influences outcome
after induction therapy.

Simulation of two combination therapy regimens
Two chemotherapy regimens of AML have been mod-
elled and analyzed (Fig. 1).
All simulations start with a small amount (1 cell / kg)

in the L1 compartment and trajectories are observed.
The initial state of the simulations is given in Table 1.
When the blasts percentage hits the diagnostic thresh-
old, therapy is triggered.
The “standard arm” resembles a single 7 + 3 induction

course [38] with a cytarabine-like chemotherapy for 7
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days and anthracycline-like chemotherapy for 3 days. No
further therapy is applied and the course of the leukemia
is observed until the end of the simulation (2000 days,
5000 days for the slow pace leukemia).
A variation of the 7 + 3 chemotherapy regimen that is

based on the 2017 guidelines of the National Compre-
hensive Cancer Network (NCCN) [1] has also been im-
plemented. Analogously to classical 7 + 3 the prescribed
combination therapy will be applied, if blast fraction ex-
ceeds 20%. A first evaluation of therapy success by asses-
sing blast fraction is made on day 14 after treatment
start. A second induction therapy will be performed, if
blast fraction ≥5.5%. However, second induction therapy
will be intensity-reduced (5 days of cytarabine-like
chemotherapy and 2 days of anthracycline-like chemo-
therapy (5 + 2)). If blast fraction is < 5.5%, a second
evaluation will be made on day 21 after treatment start.
In that case, a blast fraction ≥5% also leads to a second
therapy course (5 + 2). For blast fractions < 5% no fur-
ther treatment will be applied. Within one simulation
run intensity values (kcyt, kanthra) will be preset and fixed
for 7 + 3 and 5 + 2.
To identify a realistic range of chemotherapy inten-

sities (kcyt and kanthra, in unit cell deaths per day) we
sampled therapy combinations starting with no therapy
(kcyt= kanthra=0) and increased intensities until we
reached the area of overtreatment (i.e. no complete re-
mission can be achieved and all compartments are com-
pletely depleted by intensive therapy). By intention, we
included the mono-treatment scenarios. While cytara-
bine mono-treatment is common practice in the

pre-phase, consolidation and treatment of the elderly [1]
anthracycline mono-treatment is uncommon in clinical
practice. Finally, we simulated all scenarios between in-
tensity values between 0 and 10 (step size 0.1). We could
show for the selected fast and intermediate leukemia
that for kcyt>8.8 (mono-therapy) in the standard arm and
kcyt> 5.8 in the evaluation regimen leads, regardless of
kanthra, leads to overtreatment (complete depletion of all
compartments). Under-treatment exists for low kcytand
kanthra rates that lead to no CR. As internal validation,
we also measured absolute reduction of leukemic cells
(l1 and l2) per chemotherapy combination on day 29
after treatment start (compared to leukemic cell abun-
dance at diagnosis). For the effective regions (no under/
over-treatment) we observed reductions between 105and
109 cells, resembling realistic values [39].
An exemplary simulation of a fast leukemia under a spe-

cific treatment dose is shown in Fig. 2, which depicts the
cell number trajectories and blast percentages over time.

Outcomes
To characterize the three scenarios (fast, intermediate,
and slow) we derived the following outcomes:

a. Time to complete remission (CR): Complete
remission: blast fraction ≤5% [5]. We measured
time in days from diagnosis to first time CR.

b. Duration of CR: In case of a CR, we measured time
from CR to relapse (blast fraction > 5%) or respectively
until all HSC are depleted. In our simulations we used
a threshold that set cell counts (c1, c2, l1, l2) to zero if
they are respectively below one cell (here, < 1/70). We
consider such a situation as complete loss of normal
hematopoiesis that very probable leads to death. If
none occurs (neither relapse nor loss of normal
hematopoiesis), the time from CR until the end of the
simulation run was reported (2000 days, 5000 days for
the slow pace leukemia).

c. Therapeutic width: Therapy combinations will vary
in their effectiveness. We thus also report the
relative frequency of therapy combinations leading

Fig. 1 Study design. We simulated two different therapy regimens (study arms). The standard arm contains a single induction therapy using the
7 + 3 regimen (7 days cytarabine + 3 days anthracycline). After the induction the course of the leukemia is observed without further intervention.
The evaluation arm contains one or two additional bone marrow (BM) evaluations. Based on the blasts abundance (%) a second induction
consisting of a 5 + 2 protocol can be given. Patients with blast clearance will be observed without further intervention

Table 1 Initial condition for all simulations

Compartment Initial state

c1(t = 0)a 2 × 109 cells/kg

c2(t = 0)a 3.9 × 109 cells/kg

l1(t = 0) 1 cell/kg

l2(t = 0) 0 cells/kg
aCompartment c1 and c2 start in the steady state of the healthy systems
(without leukemic cells or therapy)
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to a CR (therapeutic width), as well as the relative
frequency of therapy combinations resulting in
under- and overtreatment, respectively.

Resulting outcomes will be presented as heatmap fig-
ures in the manuscript. Outcome data is contained in
Additional file 3.

Results
Time to diagnosis (pre-treatment phase)
Figure 3 shows the results for different parameter
combinations for self-renewal (al) and proliferation
(pl). Fast and high self-renewal leukemia can occur
in a very short time (60 days). Slower leukemias can
persist on low, undetectable levels, for several years
before a detectable blast count is produced.
Leukemic stem cells (LSC) always need an increased
self-renewal rate to outcompete HSC. A reduced
proliferation rate can also lead to a diagnosable dis-
ease if self-renewal is increased. This finding is in
accordance with prescribed similar findings [16, 40].
We used this information to select three parameter
combinations (slow, intermediate, fast leukemia; Fig.
3 and Table 2).

We selected three leukemias representing three differ-
ent paces (fast, intermediate, slow) using the time to
20% blasts (diagnostic threshold) as criterion. Full model
parametrization is given in Additional file 1.
Before presenting treatment results we emphasize that

we used the same “standard patient parameters” for every
simulation [see Additional file 1]. As a result, percentages
of CRs cannot be compared directly to known clinical CR
rates, which are generated from a patient population.
Additionally, we restrict the AML treatment to the induc-
tion therapy, in order that we can analyze the isolated ef-
fect of induction treatment.

Slow-pace leukemia
Our simulations show that the selected slow-pace
leukemia cannot be treated to CR. Nevertheless, we
can record a significant reduction of leukemic cells
on day 29 after treatment start (at that time in our
simulation a potential second induction cycle has
been administered). Reduction in absolute cell num-
bers ranges from about 105 to 109 for standard regi-
men and from about 104 to 109 for evaluation
regimen. However, for CR (leukemic cells under 5%)

A

C

B

D

Fig. 2 Exemplary simulations of a fast pace leukemia. The simulations started in the steady state of the healthy hematopoietic model. A small
amount of leukemic cells (l1) with proliferation p = 2 and self-renewal a = 1 was introduced at Time = 0. The simulation shows the development of
a leukemia that reaches the diagnostic threshold (20% blasts) at day 63. Treatment starts immediately (monotherapy with 7 days cytarabine).
Healthy and leukemic compartments immediately react to the chemotherapy and get depleted. Panels a and b show the simulated trajectories
within the standard arm. The neutropenic phase lasts ca. 20 days (Panel a). During this phase the relative blasts count (%, panel b) is high due to
the very low absolute cell counts. This simulation shows the occurrence of a complete remission. The l1 cells (HSC) can be cleaned by therapy.
The total blasts clearance (also for the l2 compartment) takes until day 90 to 100. Panels c and d (Evaluation arm) show, in contrast to the
standard arm a prolonged neutropenic phase (plus additional 20 days). This is induced by the second course, which is applied during the already
recovering normal hematopoiesis
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required intensities lead inevitably to complete deple-
tion of healthy cell lines.

Fast-pace leukemia
Figure 4a shows the resulting time to CR values for each
simulated therapy combination under standard regimen.
In general, we can observe that a region with effective
therapies exists and is flanked by a region (lower left) we
denote “undertreatment” and “overtreatment” region
(upper right). Overtreatment decreases the abundance of
healthy HSC faster than the LSC and no CR is achieved.
Compared to clinical practice, this effect could be

analogous to chemotherapy toxicity leading to patient’s
death. Low chemotherapy is not able to reduce leukemic
burden in bone marrow effectively and no CR is reached,
either.
Higher cytarabine-like intensities lead to pro-

longed times to reach a CR. This effect is due to
the simultaneous reduction of LSC and HSC. Time
to CR will be shortened if anthracycline-like inten-
sities increase, i.e. additional decrease of the differ-
entiated cells.
In total, 64.28% of simulated intensity combinations

result in a CR (Fig. 4a, Table 3). Between 8 and 70 days
can be necessary to achieve CR. An early CR, at day 8, is
reached mostly by increasing the effectiveness of
anthracycline-like therapies. A cytarabine-like monother-
apy has a minimal time to CR of ca. 25 days. A large
fraction of therapy combinations (45.75%) lead to an
early CR (within 8 days).
In the evaluation regimen 46.39% of simulated inten-

sity combinations lead to a CR (Fig. 4b, Table 3). The
range of required days to CR is between 8 and 78 days.
As before, an early CR is mostly due to increasing
anthracycline-like effectiveness. Minimal time to CR
under cytarabine-like monotherapy accounts for approx.
35 days. Fastest possible CR (on day 8) can be reached in
63.40% of CR combinations.
Due to the second induction therapy course, overtreat-

ment is more prominent in the evaluation regimen
(Evaluation: 51.24% vs. Standard: 33.03%). Undertreat-
ment is slightly less likely (Evaluation: 2.37% vs. Stand-
ard: 2.7%).
Figure 4c shows that 71.27% of combinations do not

differ in time to CR. Reasons are (i) that the additional
evaluation does not lead to further treatment (sufficient
blast clearance) and (ii) overlapping under- and over-
treatment regions. Comparing the minimal required ef-
fective anthracycline-like monotherapy shows no
difference. Minimal required effectiveness of cytarabine-
like monotherapy is slightly decreased under evaluation
regimen (kcyt=2.4 vs kcyt=2.5).
Single-induction 7 + 3 outperforms the evaluation regi-

men in 27.36% of combinations (Fig. 4c, blue region).
The evaluation regimen leads to a CR in 1.36% of com-
binations, where standard regimen does not allow for a
CR (Fig. 4c, red region). These are therapy combina-
tions, which are considered “undertreatment” in 7 + 3.
The evaluation regimen can be applied with lower inten-
sities. Other therapy combinations do not show a clear
advantage or, worse, might even prevent faster recovery
of normal hematopoiesis (elongation between 0 and
approx. 20–30 days).
Figure 4d and e show the CR duration. Two groups

can be identified. On the one hand a very short and on
the other hand a prolonged CR. In the model LSC are

Fig. 3 Time to 20% blasts. We simulate all combinations of leukemic
proliferation (pl, range: 0–2) and self-renewal (almax, range: 0–1) rates.
Each parameter combination can be considered a different leukemia.
We observed the time to reach the diagnostic threshold (20% blasts).
Black lines indicate exemplary contour lines (parameter combinations
leading to the same time to diagnosis). The plot shows that leukemia
only occurs when the leukemic cells outcompete the healthy cells. The
green filled circle indicates the parameter combination of the healthy
HSCs. No leukemia occurs for parameter combinations with self-
renewal < 0.87 (healthy self-renewal). A reduced proliferation can lead
to a leukemia in combination with increased self-renewal. Simulations
were run for 5000 days (13.7 years), but leukemic clones that resides
within a patient for such a prolonged subclinical phase might not be
considered an acute leukemia anymore. Three parameter
combinations (fast, intermediate and slow pace; blue filled circles,
Table 2) were selected for further analysis

Table 2 Parameter values of the three analyzed parameter
combinations

Pace Self-renewal Proliferation Time to diagnosis

slow 0.9 0.2 2756 days

intermediate 0.92 1 316 days

fast 1 2 63 days

healthy HSCa 0.87 0.42 –
aParametrization of the healthy system according to [13]
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completely cleared, leading to quasi-infinite CRs.
Short-time CRs range between 1 and 11 days.
Quasi-infinite CRs account for 59.79% and short CR for
4.49% of all simulated combinations.
Increasing anthracycline-like monotherapy effective-

ness results initially in very short CR under lower
effectiveness and subsequently with higher level in
quasi-infinite CR. On the other hand, cytarabine-like
monotherapy leads directly to lengthy CR at a certain
level of effectiveness.

In the evaluation regimen, short and quasi-infinite CR
represent of 5.17 and 41.22% of all combinations, re-
spectively. Range of short CR is between 1 and 18 days.
69.27% of all treatment combinations do not differ in

CR duration. Standard regimen achieves longer CR dura-
tions in 28.89% of combinations (Fig. 4f, red region). The
evaluation regimen only in 1.84% of combinations.
However, under the evaluation regimen longer lasting CR
are established by lower chemotherapy intensities (Fig. 4f,
green region). For the cytarabine-like monotherapy the

Fig. 4 Time to complete remission and duration of complete remission for a fast-pace leukemia. For the selected fast-pace leukemia we
simulated all therapy-intensity combinations for the 7 + 3 combination therapy (range: 0–10) for both study arms. a and b show the days from
diagnosis to CR. c shows the difference “Evaluation – Standard”. The gray areas show treatment intensities which lead to no CR (lower left area
because of under- and upper right area because of overtreatment). The black lines represent selected contour lines (i.e.treatment intensities with
same values). Considering a shorter time to CR as beneficial, a difference > 0 indicates a benefit for the standard arm. Differences < 0 indicate that
the evaluation regimen is beneficial. Blue and red regions in the plot indicate where one of the two regimens allows for CR while the other does
not, respectively. In particular, the blue area covers treatment combinations where the standard treatment leads to CR while the evaluation
regimen already results in overtreatment. The red area shows that the evaluation regimen can be useful for low dose treatments. Here the
evaluation and the second course allows to reach a CR where the standard regimen results in undertreatment. Plots d, e, and f display the CR
duration. Due to the setup of the simulation no relapses occur thus simulation time after CR onset is considered. The difference between
evaluation and standard shows two regions (red) where standard leads to longer CR durations. The green region shows where evaluation
regimen allows for a CR while the standard arm does not
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evaluation regimen shifts the minimal effectiveness from k
= 2.5 to k = 2.4. Figure 4f show that a further reduction in
cytarabine-like effectiveness can only be achieved by in-
creasing the anthracycline-like effectiveness. An increase in
anthracycline-like effectiveness to k = 1.2 allows to reduce
cytarabine-like effectiveness to k = 1.9 while still maintain-
ing a quasi-infinite CR. All other quasi-infinite CRs can
only be reached with either higher cytarabine-like or
anthracycline-like effectiveness, e.g. by increasing chemo-
therapy doses. Evaluation regimen prevents the occurrence
of quasi-infinite CR (or leads only to very short CRs) in a
large number of therapy combinations, where standard 7 +
3 leads to a quasi-infinite CRs (Fig. 4f, red region).

Intermediate-pace leukemia
Regarding the intermediate pace leukemia under stand-
ard regimen, we observe that 63.65% of computed ther-
apy combinations result in a CR (Fig. 5a, Table 3).
Required times to CR range between 8 and 69 days. A
cytarabine-like monotherapy shows a minimal time to
CR of ca. 35 days. The minimal required effectiveness of
anthracycline-like monotherapy leading to a CR is lower
than in the fast pace leukemia (kanthra =2.3, fast paced
leukemia; kanthra=1.8, intermediate pace leukemia). The
required effectiveness of cytarabine-like monotherapy
resulting in a CR is larger (kcyt=2.5, fast paced leukemia;
kcyt =4.0, intermediate pace leukemia). Quickest possible
CR on day 8 forms again the largest group among all
therapy combinations leading to CR with 46.76%. Com-
paring potential overtreatment combinations there is no
difference between the intermediate and the fast pace
leukemia under standard regimen (Table 3). Our model
shows that more chemotherapy combinations fail to re-
duce leukemic burden effectively for the intermediate
pace leukemia in contrast to the fast pace leukemia
under standard regimen (2.70% (fast) vs. 2.74% combina-
tions (intermediate)).

For the intermediate pace leukemia under evaluation
regimen 46.70% of intensity combinations result in a CR
(Fig. 5b, Table 3). Range of time to CR is between 8 and
78 days. Minimal duration to CR under cytarabine-like
monotherapy is ~ 45 days. Minimal required effective-
ness of anthracycline-like monotherapy leading to an
early CR is lower for the intermediate pace leukemia
(kanthra =2.3, fast pace leukemia; kanthra =1.8, intermedi-
ate pace leukemia). Required effectiveness of
cytarabine-like monotherapy resulting in a CR is in-
creased (kcyt =2.4, fast pace leukemia; kcyt =3.1, inter-
mediate pace leukemia). Quickest possible CR on day 8
represents again a major portion (63.73%) of all CR
combinations.
Under evaluation regimen our model shows that more

chemotherapy combinations fail to reduce leukemic bur-
den effectively for the fast pace leukemia in contrast to
the intermediate (2.12% (intermediate) vs 2.37% combi-
nations (fast)) (Fig. 4b and 5b, Table 3). Comparing
standard and evaluation regimen for the intermediate
pace leukemia, we can observe more treatment combi-
nations result in undertreatment in the standard regi-
men (2.74% (standard) vs 2.12% (evaluation)) and more
combinations of overtreatment under evaluation (33.55%
(standard) vs. 51.16% (evaluation)).
Regarding absolute difference between standard and

evaluation regimen 71.53% of simulated combinations
do not differ in time to onset of complete remission (ei-
ther same time or no CR is achieved: 36.37% vs 35.16%,
Fig. 5c). A faster CR (alternatively in the first place a
CR) is achieved in 26.26% of simulated combinations
under standard regimen. Evaluation regimen only allows
this superior scenario in 2.21% of cases (Fig. 5c, red re-
gion). The evaluation regimen can provide more therapy
combinations resulting in a CR by lower chemotherapy
intensity compared to standard regimen.
Furthermore, we can record that (as with the fast pace

leukemia) minimal required effectiveness of
anthracycline-like monotherapy is the same under stand-
ard and evaluation regimen (kanthra=1.8). Required ef-
fectiveness of cytarabine-like monotherapy resulting in
CR is lower under evaluation regimen (kcyt=3.1) com-
pared to 7 + 3 single induction (kcyt=4.0).
The intermediate pace leukemia under standard regi-

men shows again very short CR durations (15.05%) and
quasi-infinite CR durations (48.06%) (Fig. 5d). Short CRs
range from 1 to 25 days. As with the fast pace leukemia
total lengthy CR under standard treatment can be con-
sidered as persistent lasting until the end of simulation
(2000 days).
Within the evaluation regimen, higher cytarabine-like

therapy intensities also exhibit short CR durations (Fig.
5e). 14.67% of all simulated therapy combinations are
short CRs while 32.03% are prolonged CR.

Table 3 Outcome parameters for fast and intermediate paced
leukemias

Standard arm Evaluation arm

Fast-pace leukemia

Time to CR (range) 8 to 70 days 8 to 78 days

Therapeutic widtha 64.28% 46.39%

Overtreatment regiona 33.03% 51.24%

Undertreatment regiona 2.70% 2.37%

Intermediate-pace leukemia

Time to CR (range) 8 to 69 days 8 to 78 days

Therapeutic widtha 63.65% 46.70%

Overtreatment regiona 33.55% 51.16%

Undertreatment regiona 2.74% 2.12%
a % combinations
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66.81% of all combinations do not differ in duration of
CR between standard and evaluation regimens (Fig. 5f ).
Standard regimen provides longer lasting CR (25.71%)
compared to evaluation regimen (7.48%). Under evalu-
ation regimen lengthier CR require lower chemotherapy
intensity to achieve CR.

Discussion
We modelled three leukemias by varying proliferation
and self-renewal rates leading from initial mutation to
three different times of diagnosis. Results from AML
pathogenesis research show that growth properties (such
as proliferation rate) affect different survival outcomes
[41, 42]. This finding is also supported by mathematical
modeling results [40]. Quantifying leukemias by growth
kinetics (e.g. leukemic pace as time-to-diagnosis) is rele-
vant. Various mutations were identified and specific
cytogenetics are linked to different patient outcomes
[43–45]. However, there is no information about the

time to diagnosis for specific leukemia types and how
chemotherapy influences dynamics of hematopoiesis
over time. For example, bone marrow examinations are
performed for diagnosis and 7 to 10 days after induction
chemotherapy [5]. In between, no continuous data is
collected to reduce patient burden. When modern cyto-
metric techniques get more available this gap can be
closed. These procedures, especially if based on bone
marrow samples, cannot be used for continuous moni-
toring [46]. Mathematical models are able to bridge this
diagnostic gap and can reveal suspected useful thera-
peutic implications by its dynamical approach.
Here, we presented results based on a homogenous ap-

proach (one type of leukemic cells) to characterize the dy-
namic behavior of certain AML subtypes. Nevertheless, it
is known that AML is a multiclonal disease [4, 35]. We
modelled a combination chemotherapy attacking this one
leukemia and summarized the simulated therapy combi-
nations. In reality, a mixture of leukemic cells with

Fig. 5 Time to complete remission and duration of complete remission for an intermediate-pace leukemia. The intermediate paced leukemia
shows qualitatively the same results as the fast paced leukemia (Fig. 4). The pace type shifts the regions suggesting how treatment efficacy
affects therapy success. The color-coding is described in the caption of Fig. 4
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different properties is observed at diagnosis and a clonal
evolution leading to relapse can be demonstrated [4, 47].
Despite of this variety, in most cases a dominant clone
induces AML onset [48]. We only focused on induction
therapy’s impact on this dominant clone. Post-remission
therapy like consolidation chemotherapy is intentionally
not considered and is subject of future research. As a con-
sequence, our comparison of two induction regimens aims
exclusively at an improvement of CR achievement without
considering effects on potential relapse in the course of
clonal evolution. Our presented results must be assessed
in the specific model context and a direct comparison
with usual clinical outcome or endpoint parameters,
which are based on patient populations, cannot be made
instantly. In our focused consideration, relapses by differ-
ent clones are not possible, in order that quasi-infinite
CRs are obtained by induction treatment by complete de-
pletion of a single leukemic clone. In multiclonal models
relapses are expected.
With respect to realistic therapy concepts several limi-

tations occur. The leukemia’s sensibility to chemother-
apy usually is influenced by drug resistance mechanisms
[49, 50]. The therapy effectiveness (kcyt, kanthra) can be
considered as combinations of therapy intensity (dose)
and the leukemia’s resistance (only affected by prolifera-
tion rate and cell numbers) to the therapy, e.g. due to its
specific genetic characteristics. At present, the model
cannot simulate an AML-type specific resistance. Future
model extensions will aim for data-derived proliferation
and self-renewal parameters (representing specific geno-
types) and respective resistance mechanisms. Besides, in
clinical practice, chemotherapy intensity is applied in
units of mg/m2 adapted to body surface to take account
of side effects [5]. Currently, we cannot compare model
parameters to clinical therapy intensities directly. The
model is at least able to review different doses qualita-
tively on a course-grained scale (high vs low). Another
future prospect will be to link the model parameters in a
pharmacodynamics model to therapy doses, to e.g. re-
play studies intensifying induction by dose increase [51–
53]. With respect to the selected leukemia parameter
combinations via leukemic pace our selection might bias
our conclusions if leukemic proliferation and
self-renewal parameters influences our selected outcome
measures significantly. Additional simulations (data not
shown) indicate that time to CR is not influenced signifi-
cantly by leukemia parameters. For lower intensity ther-
apy combinations CR duration is related to the
leukemias proliferation rate, while self-renewal has no
effect. There seems to exist a threshold proliferation
rate. Below this threshold, only very short CRs can be
observed. While we focused on therapy intensity in this
publication, a more elaborate analysis of the interplay
between leukemia characteristics and therapy outcomes

will be necessary and should be investigated in future
research.
To assess the modelled chemotherapy values com-

pared to realistic used intensities, we used the estab-
lished criterion of 3 log10 cytoreduction, which is at the
minimum required for a reduction of leukemic cells
under 5% in bone marrow [39]. In addition, a reduction
of transcription products of more than 3 log10 levels is
also used as a prognostic factor in minimal residual dis-
ease (MRD) monitoring after induction therapy [54–56].
Therefore, in relation to an adequate chemotherapy in-
tensity a log10 reduction ≥ 3 of leukemic cells can be
considered as a predictor for treatment success. All
chemotherapy intensities leading to CR feature a
leukemic cell reduction > 3 log10 levels. In fact, in the
model reductions often exceed this criterion. Referring
to minimal detection level of minimal residual disease
(MRD) with sensitivities between 10− 4 and 10− 5 [46],
our model provides a starting basis for further and novel
MRD investigations by demonstrating cell trajectories
(with precise blast percentages) over time (Fig. 2). Com-
mon medical diagnostics cannot enable a comparable
continuous view.
In the next steps, patient data like healthy steady state

stem and progenitor cell numbers must be integrated
into the model. In future, exact cell number analysis of a
patient will be challenging, especially the knowledge
transfer from mice models to manageable in-vivo ana-
lysis [43]. At the same time, a determination of
self-renewal must be derived from this patient individual
data [13, 45]. Availability of personalized parameter
values lead to a further specialized model would be able
to translate full spectrum of genetic change into specific
values of proliferation and self-renewal [57]. Subse-
quently, each individual AML as an own genetic entity
and effects of therapy could be highly effectively mod-
elled and assessed. Regarding this, the categorization of
AML types by current classification systems (e.g. ELN,
MRC, WHO, FAB) considering cytomorphological, gen-
etical and immunological properties is complex because
of known heterogeneity of AML [5]. These classifica-
tions especially regard rather static properties like muta-
tions or the immunophenotype. Derived aggregations
lead to risk groups that comprises similar patient
outcomes, but they do not precisely describe how fast the
AML proliferates, nor which resistance mechanisms exist
and which consecutive dynamical impact on the
hematopoietic system is generated. Hereby, the mathem-
atical model provides a functional perspective, which al-
lows a more individual analysis of the AML pathogenesis
and therapy effects.
Varying therapy regimens are used worldwide, that

mostly differ in time and duration of chemotherapy ad-
ministering [8]. The presented treatment model is also
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suitable for a planned comparison of different double in-
duction concepts like TAD-HAM vs. S-HAM [7]. In
addition to our evaluation regimen investigation, we will
analyze different evaluation time points to find out,
when bone marrow assessment should be optimally
done. Indeed, evaluation timing is still an open issue and
our dynamical model could be helpful to provide add-
itional valuable insights [58–60].
Risk-stratification concepts for AML therapy are currently

gaining in importance and are particularly established in
post remission therapy [61–63]. Hereby, treatment strat-
egy is especially influenced by estimated outcome [64].
We could observe that personalized treatment intensities
in induction chemotherapy produce relevant advantages
(lower minimum necessary chemotherapy intensities).
Therefore, prospective stratification concepts might also
include inherent properties of AML.

Conclusions
Complementary to randomized controlled trials (RCT),
modelling can be understood as a tool that can add a hol-
istic point of view to classical reductionist medicine [65].
Moreover, clinical relevant modelling consists of a
hypothesis-driven research, that connects in-silico experi-
mental results with established experimental facts in a sci-
entific interacting cycle [66, 67]. Concerning an effective
personalized medicine in AML treatment, we are con-
vinced that this interdisciplinary approach will be inevit-
able and offers great potential. At present, our model can
derive clinical relevant conclusions despite the prescribed
limitations, because our integral dynamical approach en-
ables new insights in AML-hematopoiesis and optimal
chemotherapy effect relating to a certain AML types.
Our results suggest, that the “7 + 3” regimen results in

CR more often. In addition, more therapy combinations
result in quasi-infinite CR. This holds for the fast and
the intermediate paced leukemia (in the model the slow
paced leukemia is not treatable to achieve CR). The re-
sults support the current scientific view that “7 + 3” regi-
men is a standard of care independent from existing
diverse regimen variations that are applied in study
groups all over the world [7]. Nevertheless, a more ex-
tensive evaluation and comparison with many more
established therapy schemata is necessary.
We assume that genetic heterogeneity of every leukemic

clone determines unique characteristics that require cor-
responding unique therapy concepts. This assumption is
based on significantly different survival outcomes that are
strictly dependent on specific genetic constitution [5]. In-
duction therapy is not routinely adapted to genetic dispos-
ition and patients are treated with standardized induction
doses only adapted to body surface [5]. Concepts of higher
doses or adding a third agent were implemented in several
randomized studies, but the comparison proved difficult

and dose increases were not precisely adapted to individ-
ual patient [7]. Regarding this, our model suggests that a
whole spectrum of effective (that means CR as well as
prolonged CR) chemotherapy intensities from relatively
low to high exists and “7 + 3” regimen offers a larger ef-
fective spectrum that is respectively adjusted to character-
istics of considered clone type. On the hypothesis that
these insights hold true concerning real life, “7 + 3” regi-
men could be lead to higher cure probability of a stan-
dardized dose applied to heterogeneous diseases because
of more existing effective dose combinations for each
AML type. Nevertheless, a more substantial model based
comparison of “7 + 3” and other therapy regimens is
lacking.
In our simplifying model, the essential criterion for an

optimal clinical outcome is ultimately duration of CR.
As a result, we initially consider different intensity com-
binations as equivalent, as far as achieved CR duration is
similar. However, side effects of chemotherapy are mod-
elled via a cytotoxic effect on blood cells (indeed model
is calibrated to number of neutrophil granulocytes as
most frequent leukocytes [13]). Thus, lower and higher
intensities leading to same CR duration only differ in ab-
solute cytoreduction without affecting the defined out-
come. Other significant side effects concerning for
example the gastrointestinal tract or residual blood sys-
tem (or anyway related infections) are not factored in.
For that reason, we consider lower intensities leading to
same CR duration as superior. There is growing evi-
dence that a relevant part of progress in AML outcome
is due to improved supportive therapy [68–70]. Finding
lowest as possible and at the same time effective therapy
intensities seems to be eminently important [71]. To that
effect, we observe for both regimens that spectrum of ef-
fective therapy intensities leading to CR as well as per-
sistent CR only differs in the region of lowest intensities.
We can derive from this model results that lower and
still effective induction therapy intensities may exist de-
pending on different AML clone type. In the concrete
case of our model, a fast leukemia can be treated effi-
ciently with lower intensities than the intermediate
leukemia. We record that the evaluation regimen en-
ables lowest intensities leading to prolonged CR (i.e.
most efficient treatment) for both selected parameter
combinations.
It should be noted that evaluation regimen provides

these lower effective intensities especially for the inter-
mediate paced leukemia, because hereof largest reduction
of essential intensity (in relative comparison to “7 + 3”) is
obtained. We emphasize that in our model evaluation
regimen does not offer more effective therapy combina-
tions but the most efficient regarding optimal outcome
and respective minimum intensity. Hereby, in our model
the evaluation approach is particularly worthwhile to
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minimize therapy intensities and consecutive side effects
with regard to medium-fast proliferating leukemia. The
main potential of the evaluation approach is presumably
present for AML of poorer risk categories. This insight
complies inherently with current results that discusses ne-
cessity of bone marrow assessment and recommends a
more individualized decision of evaluation [72].
An early response to the first induction cycle is a known

prognostic factor, but its impact on evaluation process stays
unclear [58, 73]. Our results show that therapy combina-
tions enabling fastest CR (in our model quasi-instantly after
chemotherapy) constitute the majority of achievable CR in-
dependent of administered regimen and leukemia pace. In
consideration of intensity and optimal outcome, we de-
tected therapy combinations leading to CR within 20 to 45
days. Concerning this efficient subset, in general, “7 + 3” en-
ables faster CR and in addition, the intermedium paced
leukemia takes longer time to CR. Persistent CR under
minimal dose (the most efficient situation) is obtained by
evaluation regimen regardless of whether other therapy
combinations lead to even faster CR.
Published literature proposes that CR should be

reached as fast as possible [74–76]. According to our
modeling results, therapy combinations leading to CR
within the first 10 days does not always enable a
long-lasting CR. A therapy intensification can lead to
longer times until onset of CR, but then lead also to a
more stable CR. In summary, in our model fast as pos-
sible CR achievement is not inevitably optimal.
Enabling persistent CR with examined minimal dose,

cytarabine-like monotherapy turns out to be optimal for
both regimens. This model result conflicts with clinical
reality, which ascribes relevant importance to a combin-
ation chemotherapy for decades [38]. Our model consid-
ered one type of leukemic cells per patient (see model
limitations above). We know from recent studies, that in
one patient several subtypes exist and combination chemo-
therapy leads to a selection process [13, 47, 57]. Some sub-
types are more resistant to this chemotherapy for several
reasons (e.g. a lower proliferation rate). In our homogenous
model, we do not examine the prescribed selection process,
because we focus on the treatment effect regarding one
specific AML. The success of classical “7 + 3” cannot be
considered as resounding because of existing numerous
AML subgroups with poor survival outcomes [5]. There-
fore, multi-layered approaches of targeted therapy (e.g. im-
munotherapy or pathway inhibition) are recently under
investigation without major breakthrough until now [7].
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