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Abstract

Background: Hot spot residues are functional sites in protein interaction interfaces. The identification of hot spot
residues is time-consuming and laborious using experimental methods. In order to address the issue, many
computational methods have been developed to predict hot spot residues. Moreover, most prediction methods are
based on structural features, sequence characteristics, and/or other protein features.

Results: This paper proposed an ensemble learning method to predict hot spot residues that only uses sequence
features and the relative accessible surface area of amino acid sequences. In this work, a novel feature selection
technique was developed, an auto-correlation function combined with a sliding window technique was applied to
obtain the characteristics of amino acid residues in protein sequence, and an ensemble classifier with SYM and KNN
base classifiers was built to achieve the best classification performance.

Conclusion: The experimental results showed that our model yields the highest F1 score of 0.92 and an MCC value
of 0.87 on ASEdb dataset. Compared with other machine learning methods, our model achieves a big improvement

in hot spot prediction.

Availability: http://deeplearner.ahu.edu.cn/web/HotspotEL.htm.
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Background

Protein is one of important biological macro-molecules in
organisms. Protein-protein interactions play a mediating
role in protein function biologically [1]. In order to better
understand the mechanism of protein-protein interac-
tions, hot spot residues have to be studied. By studying
hot spot residues, small molecules that bind to hot spot
residues can be designed to prevent erroneous protein-
protein interactions [2]. On the other hand, the study of
hot spot residues can also be used to predict the secondary
structure of proteins. Saraswathi et al. found that different
amino acid distributions play a crucial role in determin-
ing secondary structures [3]. In previous studies, hot spot
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residues were identified by experimental methods, such
as alanine mutagenesis scanning [4]. Based on the large
number of mutations created by experimental methods,
relevant researchers can extract a large number of accu-
rate hot spot residues and apply them to investigate func-
tional sites of protein-protein interactions [5]. With the
increase of mutation data, researchers established many
standard databases focused on hot spot residues, such as
binding interface database (BID) [6] and Alanine Scanning
Energetics database (ASEdb) [7]. However, experimental
methods are time-consuming and laborious to keep up
with the speed of increasing demand for research data.
Machine learning methods can be used to alleviate the
disadvantages of experimental methods and identify hot
spot residues.

Feature selection is an important part of develop-
ing prediction method. With the popularity of big data,
researchers have developed multiple websites for feature
extraction and selection. Our previous work proposed a
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new sequence-based model that combines physicochem-
ical features with the relative accessible surface area of
amino acid sequences for hot spot prediction [8]. Bin Liu
et al. developed a python package that can extract fea-
tures and implement model training [9], which can be
used to identify post-translational modification sites and
proire-protein binding sites. In addition, they also pro-
posed a server that can generat pseudo components of
biological samples, such as protein and DNA [10], which
yields different outputs for different modes, including
sequence types, heat vectors between feature vectors and
feature vectors. Furthermore, some researchers have sug-
gested that websites dedicated to feature selection can be
used for different models. Chen et al. proposed a Python
package for feature extraction and selection [11], which
properly processes the sequence and structural character-
istics of proteins and peptides, making these features more
suitable for training model.

Many machine learning methods have been developed
to identify hot spot residues. Some of them determined
hot spot residues by calculating the energy contribution
of each interfacial residue during protein-protein inter-
actions such as Robetta server [12]. It is worth noting
that most of the machine learning methods tried to train
data with extracting relevant features from the sequence
or structure information of proteins, and then test on
unknown hot spot data. For example, 8 ACVy4s4 inte-
grated water exclusion theory into B contacts to predict
hot spots [13]. Other methods used structure-based cal-
culations to predict hot spot residues. Wang et al. pro-
posed a novel structure-based computational approach to
identify hot spot residues by docking protein homologs
[14]. Furthermore, Xia et al. proposed APIS model based
on structural features and amino acid physicochemical
characteristics, and used SVM to train the model [15]. The
classification model worked well and yielded an F1 score
of 0.64. In addition, some researchers developed network
methods to predict hot spots. Ye et al. used residue-
residue network features and micro-environment feature
in combination with support vector machines to predict
hot spots, which yielded an F1 score value of 0.79 [16].
Although many methods have been developed to predict
hot spots, the prediction performance is still low and the
used structural features is difficult to obtain. Therefore, it
is important for us to improve hot spot prediction and find
more effective features.

Ensemble learning methods have been applied in var-
ious research fields. It is divided into feature fusion
and decision fusion, which can combine the advantages
and avoid the disadvantages of different classifiers, thus
optimize model and improve classification accuracy. For
example, He et al. developed an ensemble learning for face
recognition, which used KNN and SVM training features
with weighted summation decision matrices to obtain the
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optimal ensemble classifier. In general, combining multi-
classifiers performs better than single classifier [17]. For
example, Pan et al. used integrated GTB(Gradient Tree
Boosting), SVM and ERT(Extremely Randomized Trees)
to predict hot-spot residues between proteins and RNA,
which yielded an ACC of 0.86 [18].

In order to address the above issues in hot spot pre-
dictions, this paper proposed a novel ensemble machine
learning system with feature extraction to identify hot
spot residues. The method is based on protein sequence
information alone. First, our method obtained 46 inde-
pendent amino acid sequence properties from AAindex1
[19] and relative accessible surface area (relASA) [20] from
NetSurfP website to encode protein sequence. Then, the
method combined an auto-correlation function with slid-
ing window to encode these properties into amino acid
features. Last, a new ensemble classifier, which combined
the k-Nearest-Neighbours (KNN) [21] and SVM with
radial basis Gaussian function [22], was built to train and
test the curated data sets. Here, the publicly available LIB-
SVM software [23] was used to predict hot spot residues.
As a result, our model achieved good prediction perfor-
mance on different data sets. On the ASEdb training set,
our method achieved the highest F1 value of 0.92 and an
MCC value of 0.87 than state-of-the-art methods.

Methods

Data sets

There are many definitions of hot spot residues in pre-
vious studies. In alanine mutant scanning experiments,
hot spot is defined as the residue whose change value of
binding free energy is greater than 2 Kcal/mol, and non-
hot spot residue with less than 0.4 Kcal/mol, while the
rest ones are unnecessary, when the interface residues on
PPIs are mutated to alanine [24]. It has been confirmed
that most of the previous researchers used the criterion
[25]. The ratio of positive instances to negative ones under
this definition is basically close to 1, which is more cred-
ible when using the criterion for training one model [25].
According to this definition, two data sets were used in
this work, the train set from Alanine Scanning Energetics
Database (ASEdb) and the test set from binding interface
database (BID). The data in the two databases are all veri-
fied by alanine mutation scan experiments. The BID data
set is divided into four sub-groups: ’strong, 'intermediate,
‘'weak’ and ’insignificant’ interactions. Here, those residues
labeled with ’strong’ are considered as hot spots and the
rest residues are non-hot spots for our model.

In this study, ten-fold cross validation method was
adopted to train our model and test on BID data. In order
to verify the effectiveness of the model, three indepen-
dent test sets were applied. The first one was SKEMPI
(Structural Kinetic and Energetic database of Mutant Pro-
tein Interactions), which contains a lot of mutant data
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Table 1 Databases for hot spots prediction

Data sets Positive Negative Total
sample(HS) sample(NHS)

Train set(ASEdb) 58 91 149

Test set(BID) 70 115 185

Independent 120 234 354

test(SKEMPI)

Independent 106 384 490

test(dbMPIKT)

Independent 292 697 989

test(Mix set)

from scientific literature. Actually, a small amount of ala-
nine mutation data was used in this database [26]. The
second one was dbMPIKT (the kinetic and thermody-
namic database of mutant protein interactions), which is a
database of mutated proteins that we have collected from
scientific literature in recent years [27]. The last one is a
mixed set of the former datasets, where the same items in
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the two independent test sets were removed. In addition,
protein sequences in each database must have a sequence
identity less than 35% after the removal of redundancy
and homology bias. Detailed description of the data sets is
shown in Table 1.

Ensemble learning method

Feature selection

To identify whether residues are hot spots, protein
sequences have to be encoded into numerical sequences.
To better characterize protein sequences, AAindex1
database was used, which contains 544 physicochemical
and biochemical properties for 20 types of amino acids.
Since highly related properties may make the predictions
bias, relevant ones with a correlation coefficient more
than 0.5 were removed in this work [28]. First, the correla-
tion coefficients, CCp;, between a property, p;, i =1-544,
and the other ones are calculated. Then the number of rel-
evant properties, Np;, is counted for the property p;. The
calculation is repeated for all of the 544 properties. After

Protein sequence profile for protein
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46 descriptor for 20 amino acid from
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Fig. 1 Encoding schema for protein residues. The protein sequence was first converted to a numerical sequence using the 46 attributes of AAi2dex1.
Then, each residue is encoded using the autocorrelation function combined with the sliding window. Here, R; represents the 1st residue in the
protein sequence, R, represents the 2nd residue .., and R; represents the L-th residue, each of them belongs to the 20 common types of amino acids
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Remove coefficient > 0.5
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Relative accessible surface
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Fig. 2 The flowchart of our model

Results

Majority Voting

3

the process, 46 properties were obtained and used to char-
acterize protein sequences. The details of the properties
are listed in Additional file 1.

In order to reflect the importance of the order of
residues in protein sequence, auto-correlation function
was used to calculate the attribute correlation coefficient
of one residue and its neighbor residues in protein
sequence as a one-dimensional feature [29].

The auto-correlation function r; is defined as:
L—j
D hxhigj=1,23...M,
=1

1
= 1
T I-1 (1)
where /; is one amino acid property for the /-th residue,
L is the length of protein sequence and the M value is the

number of neighbors that needs to be adjusted.
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Fig. 4 Performance comparison of three classifiers on ASEdb
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To investigate the detailed role of amino acid in the
entire protein sequence, the auto-correlation function and
the property of each amino acid were integrated into the
encoding schema. Moreover, the sliding window was used
to calculate the auto-correlation coefficient of the protein
sequence in segments, and the auto-correlation coeffi-
cient of each amino acid was obtained for each property.
Every residue in a protein sequence was encoded by a set
of sequential auto-correlation coefficients derived from its
neighbor residues. Let’s set L be the length of the slid-
ing window, select a residue as the center residue and
calculate the correlation coefficient of the center residue
using the correlation coefficient between residues around
the central one in the window. Especially, it is worth not-
ing that the value of the void place is set to one when
the distance of the central residue and the end of the
sequence is less than L/2. As a result,(L-1)/2 features can
be obtained to represent each central residue. The details
of the encoding schema can be seen in Fig. 1.

In addition, the ASA value of each residue can be cal-
culated by web server NetsurfP (http://www.cbs.dtu.dk/
services/NetSurfP/) and then used as a feature in this work
[30]. In total, every residue is represented by an input
vector with 46*L features.

Classifier construction
Since the datasets used in this work are much small,
ensemble machine learning method was proposed.

Table 2 Prediction performance of top 83 classifier on training
and test sets

Data sets ACC SPE RECALL  PRE F1 MCC
Train(ASEdb) 09402 09627 09078 09426 09247 0.8759
Test(BID) 09150 09595 0.8471 09476  0.8941 08278

Ensemble learning is more popular in the current machine
learning field, it can integrate the advantages of differ-
ent classifiers and create models with good classification
performance [31]. KNN classifier and SVM classifier are
chose as the base classifiers of the ensemble learning
method. In the field of machine learning, support vector
machines have great advantages and good generaliza-
tion ability in problems with small sample datasets, and
KNN is based on statistically established classifier algo-
rithm [25]. Therefore, the two types of KNN and SVM
have chosen. The KNN-SVM joint classifier can make
up for the shortcomings between the two classifiers and
thus improve the classification accuracy [32]. Based on
the 46 descriptors from AAindexl, residue encoding vec-
tor with each descriptor is regarded as an input into
KNN and SVM training models. Then, the outputs of
all classifiers are sorted in terms of F1 scores. More-
over, majority voting is applied to integrate the classifiers
and the combination of the top n classifiers is explored.
Here, top n classifiers are chosen in that the classifica-
tion performance of the ensemble learner is the best.
In addition, the flowchart of our model is shown in Fig. 2
and the implementation of the mothed in MATLAB can
be referred to Additional file 2.

Evaluation criteria

There are many metrics to evaluate the quality of machine
learning model. Some of the most commonly used ones
include accuracy (ACC), specificity (SPE), recall, F1 score
(F1) and Matthews correlation coefficient (MCC). Fur-
thermore, the Receiver Operating Characteristic (ROC)
curves and area under ROC curve (AUC) values can be
also used as evaluation criteria. Among them, F1, MCC
and AUC are the important metrics to comprehensively
evaluate models [33, 34].
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Fig. 5 The ROC curves of the ensemble model with the top 83 classifiers on training and test sets

0.5 0.6 0.7 0.8 0.9 1

In this study, confusion matrix was adopted to calcu-
late evaluation index [35]. Especially, four values in the
confusion matrix, TP, FP, TN and EN, respectively, repre-
sent the number of true positives (correctly predicted hot
spots), the number of false positives (incorrectly predicted
hot spots), the number of true negatives (correctly pre-
dicted non-hot spots) and the number of false negatives
(incorrectly predicted non-hot spots). Specific calculation
formula are shown in Eq. (2).

ACC — TP + TN
TP+ FP+ TN + FN
TP
PRE= ———
TN + FP
SEN = — @)
" TP+ FN
Pl 2 % SEN % PRE
~ SEN + PRE
Mec — TP TN — FP x EN
~ J/(TPIP)(TP+EN)(IN+FP)(TIN+IN)
Results

Performance of ensemble classifiers on different M for
auto-correlation function

The experiments of our model are trained by ten-fold
cross validation on the ASEdb train set. That is to say, dur-
ing the training process, the dataset is randomly divided
into ten subsets with roughly the same number of samples,
nine of them are taken as training data and the other one

is used as test data. The concatenation of the ten out-
puts of experiments yields the whole training outputs. In
the training process, when we use autocorrelation func-
tion, the value of M needs to be adjusted that directly
determines the dimension of encoding feature vectors and
also affects the classification performance. Considering
the problem with too high feature dimension, a smaller
range of M values has to be chosen. The classification
effect is normally distributed by the selection of different
M values, which has to be chosen to make the model yield-
ing good prediction performance. In this study, the model
with five M values was investigated. The performance of
the model with different m values are shown in Fig. 3. It
can be seen from the Fig. 3 that the model achieves the
best F1 score on ASEdb when the M value is 11. Therefore,
the dimension of encoding vectors is set as 46*11.

Performance of different classifiers on ASEdb

Our proposed method is an ensemble learner, whose base
classifiers are KNN and SVM. In order to highlight the
advantages of the ensemble classifier, the performance

Table 3 Prediction performance of model with top 83 classifiers
on different test sets

Data sets ACC SPE RECALL  PRE F1 MCC

Test(SKEMPI) 0.9028 09268 08573 08590 08579 0.7843
Test(doMPIKT) 09322 09616 08364 08618 0.8472 0.8052
Test(Mix set) 0.9183 09491 08503  0.8802 08644 0.8069
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Fig. 6 The ROC curves of the ensembles of the top 83 classifiers for SKEMPI, doMPIKT and Mix sets

comparison with classifiers of KNN and SVM was also
investigated. The latter ones were implemented by default
parameters. Figure 4 shows the performance comparison
of the three classifiers. From the Fig. 4, it can be seen
that our ensemble classifier outperforms individual KNN
classifier and individual SVM classifier, while KNN out-
performs SVM in metrics of Pre, F1, AUC and ACC. Our
method achieves an ACC value of 0.94, an AUC value of
0.98 and an F1 scores of 0.92. In summary, our ensem-
ble classifiers model works well for predicting hot spot
residues.

Table 4 Prediction comparison of different methods on BID test

sets
Method Features ACC F1 PRE
Hot point Structural features 0.72 049 0.55
ppRF B-factor, 0.78 0.58 0.69
individual atomic
contacts and the
co-occurring contacts
HEP Physicochemical, 0.79 0.70 0.60
structural
neighborhood features
PredHS Structural 0.88 0.76 0.79
neighborhood features
Hu method Sequence features 0.76 0.80 1.0
Our method Sequence features 0.92 0.89 0.95

Performance of our model on train and test sets
After determining required parameters, the ensemble sys-
tem was trained on ASEdb by ten-fold cross-validation,
then tested on BID to obtain the prediction performance
of the model. To obtain good performance, ensemble
model with different numbers of base classifiers from 3 to
91 was investigated. The aim is to find out the best num-
ber of base classifiers for the ensemble model. Figure 3
demonstrates F1 scores of ensemble model with different
combinations of the top n classifiers, where # is in the
range of 3-91 in this study. As a result, the model with top
83 base classifiers yields the highest F1 score, whose pre-
diction performance on training and test sets are shown
in Table 2. From Table 2, it can be seen that the model
yields a good classification performance on the training
set and test set. In order to comprehensively evaluate the
classification performance of the model, ROC curves of
the model are illustrated in Fig. 5 and the corresponding
AUC values are calculated on the training and test set.

In order to verify the model’s generalization capability,
three independent sets were applied to test the model.
Table 3 lists the performance comparison of the three test

Table 5 Comparison of performance under different feature
selection on training set

ACC  SPE MCC
Our method 0.9402 09627 09078 0.9426 09247 0.8759
Hu's feature selection 0.9262 0.8959 0.9918 08174 0.8956 0.8494

Data sets RECALL PRE F1
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Table 6 The classification and quantity statistics of base classifiers

Classifier Number Features
KNN 46 1-46
SVM(RBF) 37 1-3,5-14,18-31,33, 34, 36, 37, 39, 40, 43-46

“The feature corresponds to the feature number in Additional file 1

datasets. Obviously, the ensemble model on mixed test
sets yields an slightly higher F1 score of 0.8657 than that
on the other two test sets. There may be two reasons
for the slight difference. One is that the numbers of data
sets are different, and the other is the different propor-
tions of the positive and negative samples for the three
test datasets. To sum up, our model has good performance
on different data sets and is applicable to other data sets.
Moreover, ROC curves and AUC values of the model for
different test sets were also investigated. Figure 6 shows
the ROC curves of the ensemble model with top 83 base
classifiers. The AUCs (area under ROC curve) are 0.9468,
0.9764 and 0.9646 for dbMPIKT, SKEMPI and Mixed
dataset, respectively. It can be concluded that our ensem-
ble model yielded good performance for different test
datasets.

Comparison with other methods

Several machine learning methods have developed to
predict hot spots. Based on BID, as independent test
dataset, our model was compared with five methods,
Hot Point [36], PPRF [37], HEP [38], PredHS [39] and
Hu'method [40]. The prediction comparison of these
methods is shown in Table 4. Among the six methods, our
model achieves the highest F1 score of 0.89 and an highest
MCC of 0.83, while the other three methods achieves an
F1 value of 0.80 and an MCC of 0.65. All in all, our model
performs better than other previous methods in hot spot
prediction.

5 10 15 20 25 30 35

Fig. 7 Correlation coefficient heat map of 37 features
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Discussion

Feature selection algorithm

In this work, the auto-correlation function was chosen
as the feature selection algorithm. The auto-correlation
function takes into account not only the characteristic
properties of amino acids but also the position infor-
mation of amino acids in protein sequence and the
influence between adjacent amino acids [41]. In order
to verify the advantages of choosing the algorithm, the
adopted feature selection algorithm was compared with
other algorithms, where Hu’s feature selection algorithm
selected pseudo-amino acid composition. The two algo-
rithms were respectively applied as feature selection and
then ran the ensemble learning model. The performance
comparison is shown in Table 5. As shown in the Fig. 5,
our method performs better than hu’s feature selection
method with an improvement of 0.029 in F1 measure.

Feature correlation analysis

In order to further study our model, we counted the num-
ber of base classifiers used in the model and the number
of features. The statistical results are shown in Table 6. For
KNN, all features are selected in our model, and only 37
features are selected for SVM. Next, we conducted a cor-
relation analysis of the shared features and the heat map
is shown in Fig. 7. From Fig. 7, it is obvious that the cor-
relation of all features is basically less than 0.4, and some
features are negatively correlated. This indirectly shows
that the features selected in our model have a certain
classification effect, and there is no redundancy between
features.

Descriptor cluster analysis

As we all known, our features were created from AAin-
dex1, which are all the characteristics of protein sequence.
According to the original classification of AAindex1, the
characteristics of our selected descriptors are divided
into six groups. Classification results for AAindexl
properties are shown in Table 7. Especially, most of these
descriptors are Alpha and Turn propensities, which is a
conformational index of amino acids. The amino acid con-
formational bias can affect the secondary structures of
protein interaction interface, and the frequency of occur-
rence of amino acids in different secondary structures
is also different [42]. A few descriptors are physcioem-
cial properties, such as pH. In addition, all of the 46
descriptors have been completely clustered in the hier-
archy [43]. The cluster dendrogram is shown in Fig. 8,
where the abscissa represents descriptor and the ordinate
represents the distance between two descriptors at cus-
tering. The distance is the correlation coefficient between
descriptors. When one ordinate value is negative, it indi-
cates that the two descriptors are negatively correlated.
It can be seen from the tree diagram that the distances
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Table 7 The classification and quantity statistics of AAindex1
properties

Alpha and Turn
propensities

GEIM800103, CHAM83102, QIAN880129,
ROBB760111, RICJ880114

RACS820104, QIAN880117, WOLS870103,
FASG760104, ISOY800106

ROBB760107, QIAN880139, QIAN880113,
RICJ880117, SNEP660104

VASM830101, BUAN790103

NAKH900113, QIAN880128, PRAM820101,
KHAG800101, SUEM840102

Hydrophobicity
WERD780103, RICJ880104, VASM830102,
ROSM880103, RICJ830105

ISOY800107, RACS820103, JOND750102,
TANS770108, KLEP840101, VELV850101

Physcioemcial
properties

JOND920102, QIAN880113

GERO01103, NADH010107, AURR980118,
AURR980120, WILM950104

Add properties

GEOR030107, GERO01103

“The second column represents the number of each attribute in AAindex1

between attributes of different categories reflect the non-
redundancy of the selected attributes in this work.

Case study

To show the results of models clearly, Pymol was used
to visualize our model’s predictions for a protein com-
plex [44]. First, protein complex (PDB ID: 1DVA) from
BID was chosen, as shown in Fig. 9, which consists of
chain H and chain X. Chain H is factor DES-GLA FAC-
TOR VIIA, and chain X is PEPTIDE E-76 peptide [45].
Experimental results verified that there are three hot spots
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and twelve non-hot spots on the interface of the chain H
and chain X. Second, we tested our model on the pro-
tein complex. For the E-76 peptide (chain X), our method
can correctly predict three hot spots and eleven non-hot
spots, only one non-hot spot was wrongly predicted. To
fully show the power of our model, the predictive visu-
alization results of Hu’s method have been investigated.
For Hu'method, three non-hot spots were wrongly pre-
dicted, although all the hot spots were correctly predicted.
In summary, our model perfoms good for predicting hot
spot residues.

Conclusion

This paper proposed a novel ensemble system that inte-
grates feature selection and two types of base clas-
sifiers to achieve the best performance in hot spot
prediction. It is worth mentioning that we only used the
amino acid sequence information of protein and the fea-
ture of relative accessible surface area (relASA). Here, 46
descriptors of amino acids were obtained from AAindex1
database. Next, auto-correlation function was combined
with the idea of sliding window to obtain amino acid
features for protein sequence. Finally, the encoded data
was respectively input into ensemble model containing
SVM and KNN base classifiers. The model has been fully
trained and tested, then the optimal ensemble model was
obtained by means of majority voting. To sum up, the
ensemble model with the top 83 classifiers yielded the
best performance on training and test datasets. On the
ASEdb and BID, the model achieved F1 scores of 0.92 and
0.89, respectively. Afterwards, based on different inde-
pendent test sets (SKEMPI, dbMPIKT and Mix datasets),
our model achieved good F1 scores of 0.8579, 0.8472
and 0.8657, respectively. In comparison with other the
state-of-the-art methods, our model performs the best.
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Fig. 8 The cluster dendrogram of the 46 descriptors
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Fig. 9 The visualization of prediction performance for PDB ID: 1DVA(chain H and chain X). Hot spots are represented in red color, and non-hot spots
are represented in blue color. a BID experimental verification data. b Prediction results of our model. Hot spots predicted correctly are colored in red,
while non-hot spots predicted correctly are colored in blue. The residues in yellow (E70 for our method) are non-hot spots wrongly predicted to be
hot spots. € Prediction results of Hu'method. Hot spots predicted correctly are colored in red, and non-hot spots predicted correctly are colored in
blue. The residues in yellow (G38, E70 and L153) are non-hot spots wrongly predicted to be hot spots
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