
RESEARCH Open Access

FMSM: a novel computational model for
predicting potential miRNA biomarkers for
various human diseases
Yiwen Sun1, Zexuan Zhu2, Zhu-Hong You3, Zijie Zeng2, Zhi-An Huang4* and Yu-An Huang5*

From 29th International Conference on Genome Informatics
Yunnan, China. 3-5 December 2018

Abstract

Background: MicroRNA (miRNA) plays a key role in regulation mechanism of human biological processes, including
the development of disease and disorder. It is necessary to identify potential miRNA biomarkers for various human
diseases. Computational prediction model is expected to accelerate the process of identification.

Results: Considering the limitations of previously proposed models, we present a novel computational model
called FMSM. It infers latent miRNA biomarkers involved in the mechanism of various diseases based on the
known miRNA-disease association network, miRNA expression similarity, disease semantic similarity and Gaussian interaction
profile kernel similarity. FMSM achieves reliable prediction performance in 5-fold and leave-one-out cross validations with
area under ROC curve (AUC) values of 0.9629+/− 0.0127 and 0.9433, respectively, which outperforms the state-of-the-art
competitors and classical algorithms. In addition, 19 of top 25 predicted miRNAs have been validated to have associations
with Colonic Neoplasms in case study.

Conclusions: A factored miRNA similarity based model and miRNA expression similarity substantially contribute
to the well-performing prediction. The list of the predicted most latent miRNA biomarkers of various human
diseases is publicized. It is anticipated that FMSM could serve as a useful tool guiding the future experimental
validation for those promising miRNA biomarker candidates.
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Background
Over the last decade, huge progress has been achieved in
understanding of a class of small (about 22 nucleotide),
single-stranded non-coding RNAs, known as microRNAs
(miRNAs) [1]. Since two members of the miRNA family
(i.e., the products of the Caenorhabditis elegans genes lin-4
and let-7) were firstly identified in [2–4], over 2000 miRNA
sequences have been reported in human genome [5]. miR-
NAs primarily get involved in the negative regulation of
gene expression. Their mediated regulation plays a key role

in a wide range of biological processes, such as metabolism,
apoptosis, developmental timing, neuronal gene expression,
stem cell maintenance, host-viral interaction, cardiac and
skeletal muscle proliferation [6, 7]. Increasing studies sug-
gest much diverse mechanisms of miRNA action, including
binding to the 5’UTR of ribosomal protein mRNAs and
coding region with functional consequences [8]. It is esti-
mated that about 50% protein coding genes are regulated
by miRNAs in mammals [7, 9–11]. It is realized that the
characterization of miRNAs is much more important than
previously thought in gene expression regulation, the evolu-
tion of species, the origin of life and, disease mechanisms
and development [10].
Further studies uncover not only their roles in diverse

cellular processes, but also the abnormal patterns of
miRNA expression in various human clinical diseases,
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such as inherited diseases (e.g. hereditary progressive
hearing loss [12] and skeletal and growth defects [13]),
heart disease [14], kidney disease [15], obesity [16], alco-
holism [17], nervous system (e.g. Alzheimer disease [18]
and schizophrenia [19]) and cancer (e.g. chronic
lymphocytic leukemia [20] and colorectal cancer [21]).
For example, a number of miRNAs have been regarded
as “tumor suppressive miRNAs” or “oncomiRs” [22]. In
malignant B cells, some miRNAs (such as miR-150,
miR-155, miR-21, miR-34a, miR-17-92 and miR-15-16)
are involved in pathways fundamental to B-cell develop-
ment like B-cell migration/adhesion, the production and
class-switching of immunoglobulins, B-cell receptor
(BCR) signaling, and cell–cell interactions in immune
niches [20]. By analyzing the miRNA expression levels
and the corresponding patients’ survival, these “onco-
miRs” are anticipated to be used as predictive and prog-
nostic markers. In 2009, a study on inhibiting the
metastatic nature of breast cancer suggested that five
members of the microRNA-200 family are down-regu-
lated in tumor development of breast cancer [23]. These
convincing evidences prove that miRNAs could serve as
master regulators of gene expression in multiple
disease-related signaling pathways. Specifically, miRNA
signatures or expression levels are emerging as promis-
ing biomarkers for disease therapy, diagnosis, prognosis
and prevention.
However, the mechanisms among the miRNA-disease

associations remain unclear. The traditional biological
experiments are costly, laborious and time-consuming.
There is a great need to develop an effective and effi-
cient way to facilitate the identification of latent disease-
related miRNAs. With the advances of high-through se-
quencing technology [24] and bioinformatics, re-
searchers shift the focus on the relationships between
miRNA dysregulation and human diseases from different
perspective. Dozens of publicly available databases or
webservers have been set up to archive diverse types of
biological information. For examples, miRBase [5] is the
primary repository providing miRNA sequence and an-
notation data. miRTarBase [25] has accumulated more
than 3500 miRNA-target interactions (MTIs). starBase
[26] was developed to comprehensively explore miRNA-
target interaction maps from CLIP-Seq and Degradome-
Seq data. MicroRNA.org [7] incorporates miRNA target
predictions and expression profiles. miR2Disease,
dbDEMC and HMDD are manually curated databases
collecting experimentally verified miRNA-disease associ-
ations with corresponding literature references [27–29].
The publicly available databases are essential to pro-

vide opportunity for developing computational models
of large-scale related relation inference. It inspires re-
searchers to preferentially conduct research on the bio-
logical interpretation of high-scoring candidate inferred

by the computational prediction [30–32]. In recent
years, a number of computational models have been pre-
sented to predict the most possible disease-related miR-
NAs. Based on the miRNA similarity derived from
various data sources, these models could be classified
into three main categories. The first category is mainly
based on the miRNA functional similarity. For example,
Jiang et al. [33] leveraged a functionally related network
to measure functional relatedness between any two in-
vestigated miRNAs. Based on the hypothesis that func-
tionally related miRNAs tend to have a close
relationship with phenotypically similar diseases, the po-
tential miRNA-disease associations can be prioritized by
integrating the phenome-miRNAome network. However,
the performance of Jiang’s model is limited because the
predicted miRNA-target associations they utilized inevit-
ably include a high rate of false-positive and false-nega-
tive samples. The second category was developed for
protein-driven inference. Mørk et al. [34] presented a
computational model of miRNA-Protein-Disease associ-
ations called miRPD by coupling protein-disease text
mined from the literature with known or predicted
miRNA-protein associations. They also devised a scoring
schemes to rank potential miRNA-disease associations
based on the reliability, so high- and medium-confidence
sets of associations could be created. The third category
was developed by introducing multiple data sources,
such as miRNA-lncRNA associations, miRNA
target-dysregulated network (MTDN), miRNA and
mRNA expression profiles. Liu et al. [35] established the
miRNA similarity network composed of the
miRNA-target gene, miRNA-lncRNA associations and
lncRNA-disease associations. Then they extended ran-
dom walk with restart to infer miRNA-disease associa-
tions in the heterogeneous network. Shi et al. [36] also
used random walk analysis to measure the potential
regulatory relationship between miRNA and disease by
exploiting the functional relatedness between disease
genes and miRNA targets in protein-protein interaction
(PPI) network.
To the best of our knowledge, no existing computa-

tional model has been presented considering the similar-
ity of expression distribution of diverse miRNAs in
human tissues. Moreover, most of the previous compu-
tational models were devised to prioritize the most la-
tent miRNA-disease associations among all unknown
pairs and thereby adopt the global scoring schemes,
which could not be suitable for top-N recommendation
for each disease. Actually, this research topic could be
considered as matrix filling problem, for which most al-
gorithms in recommender system work well. Kabbur et
al. [37] proposed an item-based model called FISM
allowing two matrices to learn the item similarities. The
product of these two matrices was used for yielding
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top-N recommendations. The effectiveness of this model
was demonstrated, especially for sparse datasets. Based
on this work, we present a novel computational model
named FMSM for predicting potential miRNA bio-
markers of various human diseases, rather than the
miRNA-disease candidate associations for all considered
diseases. FMSM is proposed to extend our previous
work (PBMDA [38]). Since the target is different from
the previous work, using local scoring scheme is more
suitable. FMSM is a Factored MiRNA Similarity based
Model. Based on the known miRNA-disease associa-
tions, FMSM learns the miRNA similarities as the prod-
uct of two latent factor matrices for certain disease using
a structural equation modeling approach. By integrating
miRNA expression similarity, disease semantic similarity
and Gaussian interaction profile kernel similarity, the ex-
perimental performance suggests that the proposed
model could manage sparse datasets effectively. It also
has been proved by the experiment result that PBMDA
performs worse in local LOOCV although works well in
global LOOCV. Since the local scoring scheme adopted
in the proposed model, FMSM obtained significant im-
provement over PBMDA and other state-of-the-art com-
putational models. Based on two validation frameworks
of leave-one-out cross validation (LOOCV) and 5-fold
cross validation (5-fold CV), FMSM obtained the highest
AUC values of 0.9433 and 0.9629+/− 0.0127 respectively.
To further assess the performance of FMSM, we also
implemented a case study of an important human dis-
ease. Moreover, the novel feature miRNA expression
similarity was introduced in this model and was demon-
strated to have better capability of characterizing the
miRNA function and nature via the contrast experiment.
We have publicly released the list of the most latent
miRNA biomarkers predicted for various human diseases
(see Additional File 1), which is expected to provide an
insight into the miRNA therapeutic modulation as
anti-disease agents with further experimental validation.

Results
Leave-one-out and 5-fold cross validation
Two validation frameworks, i.e., LOOCV and 5-fold CV
were employed to assess the predictive performance of
the proposed model based on the known miRNA-disease
associations derived from HMDD v2.0 database [29].
Since the proposed model aims to predict the potential
miRNA biomarkers for various human diseases, the pre-
dictive score of the test sample is only compared with
other candidate miRNAs’ in the scope of the same dis-
ease. This type of LOOCV is so called local LOOCV. In
the framework of local LOOCV, each known
miRNA-disease association is used as a test sample in
turns while other known miRNA-disease associations
are used to train the model. In the framework of 5-fold

CV, we randomly divided all known miRNA-disease as-
sociations into five uncrossed groups. Similarly, each
group serves as the test samples and the other four
groups serve as the training samples. To reduce bias
brought by sample divisions, we repeated experiments of
5-fold CV for 20 times and that the average value was
calculated as the final evaluation index representing the
performance of 5-fold CV. If the score of the test sample
is ranked higher than a specific parameter, the proposed
model makes a successful prediction.
The receiver operating characteristic (ROC) curve and

AUC are commonly used to evaluate the predictive per-
formance of binary classification problems. ROC curve
and AUC can be used to directly observe the experiment
results by visual picture and numerical value, respect-
ively. ROC curve can be drawn by simultaneously com-
puting the true positive rate (TPR, sensitivity) and false
positive rate (FPR, 1-specificity) according to the varying
parameter. Sensitivity and specificity are statistical mea-
sures formulated as follows:

SEN ¼ TP
TP þ FN

SPE ¼ TN
TN þ FP

ð1Þ

where TP, TN, FP and FN are abbreviations of the num-
ber of true positive, true negative, false positive and false
negative respectively. In this way, the ROC curve can be
plotted parametrically based on TPR versus FPR. Gener-
ally, AUC = 1 indicates a perfect prediction while AUC =
0.5 indicates an entirely random one.
A few state-of-the-art computational models [38–42]

have been proposed for miRNA-disease association pre-
diction based on HMDD v2.0, which is the same infor-
mation source of FMSM. Based on the hypothesis that
miRNAs with similar functions often have close associa-
tions with similar diseases, all of these tested models in-
ferred the pairwise miRNA functional similarity by
Wang’s method [43]. To evaluate the performance of
FMSM, five state-of-the-art models namely PBMDA
[38], HDMP [42], RLSMDA [39], WBSMDA [40], and
RWRMDA [41] were also tested and compared with
FMSM via local LOOCV (see Fig. 1). The results of
FMSM and all state-of-the art compared models were
tested on the same evaluation program in LOOCV for
ensuring the fair comparison. HDMP and RWRMDA
are both representational models in this domain. HDMP
uses the information of the most weighted similar neigh-
bors for inference. RLSMDA can be regarded as a good
trial in machine learning algorithm using Regularized
Least Squares (RLS). By fusing heterogeneous biological
information, WBSMDA leverages an efficient formula-
tion of calculating and combing within-score and
between-score for the prediction. PBMDA represents
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the current level in this domain and adopts an effective
path-based approach using a special depth-first search
algorithm. It means that test samples were only ranked
among other candidate miRNA-disease associations for
a given disease, rather than all investigated diseases. As a
result, PBMDA, HDMP, RLSMDA, WBSMDA, RWRMDA
and FMSM achieved AUC values of 0.8341, 0.7702, 0.6953,
0.8031, 0.7891 and 0.9433 respectively. In a word, FMSM
obtained the best prediction performance with the highest
AUC of 0.9433 in local LOOCV, which demonstrated the
reliable prediction of FMSM. The other compared methods
were all used for prioritizing the most likely miRNA-disease
associations based on the global measure-based scoring
scheme, which could weaken the power of disease-specific
prediction because of the disproportional coverage in
known miRNA-disease association network. Moreover, the
miRNA expression similarity we first introduced into
FMSM could better characterize miRNA function and na-
ture. We also implemented 5-fold CV on FMSM resulting
in an average AUC value of 0.9629 with standard deviation
of 0.0121. Since the competitors adopt global scoring
schemes, their 5-fold CV prediction performance in terms
of average AUC value was not provided in the literatures.

Therefore, we could not compare FMSM with the competi-
tors via 5-fold CV.
Since miRNA-disease association prediction could be

considered as a matrix filling problem, which is similar
to recommendation system and social network recom-
mendation. Some classical user-item based recom-
mended algorithms (including svd-based model [44],
latent factor model [45], neighbor-based collaborative fil-
tering, user-based collaborative filtering and item-based
collaborative filtering [46]) and social network prediction
method (i.e., Katz-based model [47]) were also involved
in the comparison with FMSM via local LOOCV (see
Fig. 2). To apply user-item based recommended algo-
rithms and social network prediction method, the solu-
tion should be converted into recommending the most
potential miRNAs to certain diseases, like recommend-
ing favorite items to certain users in recommendation
system and potential friends to certain users in social
network. The fairness of the comparative experiments
was ensured by using the same information source, i.e.
the known miRNA-disease associations, miRNA expres-
sion similarity and disease semantic similarity. As we
can see in Fig. 2, FMSM obviously outperforms the com-
petitors achieving the highest AUC value 0.9433. The
experimental result proves that other competing ap-
proaches fail to handle such sparse dataset and therefore
generate low quality predictions. Moreover, they usually
are used to make a faster recommendation but sacri-
ficing accuracy to a certain extent. In conclusion, the re-
liable prediction performance shown in local LOOCV
and 5-fold CV suggests that FMSM indeed improves the
prediction accuracy compared with other state-of-the-art
computational models.

Case study
As we have mentioned before, a few miRNAs work as
regulatory molecules in cancer, acting as tumor sup-
pressors. Based on HMDD database, we implemented a
case study of Colonic Neoplasms (CN) using the pro-
posed model to explore the potential relationship be-
tween miRNA and the mechanisms of digestive cancer.
The prediction list of CN in top 25 was validated via
the other two independent databases (i.e., dbDEMC
[28] and miR2Disease [27]). It needs to note that, all
predicted miRNA-disease associations are excluded
from HMDD database.
CN is the abnormal growth of cells that has the ability

to invade to other parts of human body from colon or
rectum [48]. Signs and symptoms could include feeling
tired all the time, blood in the stool and weight loss. CN
is the second leading cause of cancer death in the United
States with five year survival rates of around 65% [49].
Vogelstein et al. [50] described that epigenetic alter-
ations are much more frequent in CN than genetic

Fig. 1 The comparison results between FMSM and other five state-
of-the-art computational models in the framework of LOOCV
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(mutational) alterations and miRNA expression can be
epigenetically altered. For example, silencing of miR-137
has been demonstrated to affect expression of about 500
genes, which may cause an early epigenetic alteration in
CN [51]. Therefore, some miRNAs could be used as bio-
markers applicable to the early diagnosis and prevention.
As we can see in Table 1, 6 out of the top 10 and 19 out
of top 25 predicted miRNAs are verified by dbDEMC
and miR2Disease. It is anticipated that those uncon-
firmed miRNAs, especially which ranked in the 1st, 2nd,
4th and 6th, have a high probability to have a close rela-
tionship with CN and thereby deserve to be validated by
further biological experiments.

The effect of combining different miRNA similarities
In this section, both local LOOCV and 5-fold CV were
used to assess the effect of combining diverse types of
miRNA similarities, i.e., no extra miRNA similarity,
miRNA expression similarity, and miRNA similarity with
expression files and Gaussian kernel (see Fig. 3 and
Table 2). Except for the different input of miRNA simi-
larity, other information source inputs were kept consist-
ent, i.e., the known miRNA-disease associations and
disease semantic similarity integrated with Gaussian
interaction profile kernel similarity. As we can see the
red curve in Fig. 3, FMSM manages to achieved the
AUC of 0.8294 without any extra miRNA similarity,
which suggests that a factored miRNA similarity based
model has an ability to perform well on sparse data

using a structural equation modeling approach. By intro-
ducing miRNA expression similarity, it is observed that
FMSM obtains an incremental performance improve-
ment of 7.96 and 9.54% in local LOOCV and 5-fold CV
respectively. It suggests that miRNA expression similar-
ity yielded by direct expression profiling leads to less
prediction error. However, the miRNA expression simi-
larity is still not completely covered and that we further
introduced Gaussian interaction profile kernel similarity
to alleviate this issue based on the known miRNA-dis-
ease associations. Accordingly, the performance of
FMSM further increases 3.43 and 2.98% in local LOOCV
and 5-fold CV respectively.

Discussion
Several factors could be concluded as “silver bullet” solu-
tions for the well-performing prediction of the proposed
model. First, we directly extracted the miRNA expres-
sion similarity from the expression levels in 172 human
tissues and cell lines. It is useful to improve the quality
of miRNA similarity matrix instead of using the pairwise
miRNA functional similarity inferred by Wang’s method
[43]. Second, a factored miRNA similarity model is ap-
plied to learn transitive relations between miRNAs by
projecting the implicit information onto two latent fac-
tor matrices. Most importantly, this model is applicable
to sparse data. Third, a local scoring scheme is more
suitable for top-N recommendation for each disease, ra-
ther than the global one. We have found that the known

Fig. 2 The comparison results between FMSM and other six classical algorithms in terms of LOOCV
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miRNA-disease associations in HMDD v2.0 are dispro-
portional to some degree. It may bring up some misun-
derstanding that the diseases with less associations in
HMDD v2.0 could be considered as having a low prob-
ability to potentially interact with miRNAs. It is neces-
sary to prioritize the most potential miRNA biomarkers
for various human diseases, instead of the most latent
miRNA-disease associations among all unknown
miRNA-disease pairs. Finally, since disease semantic
similarity and miRNA expression similarity are still not
completely covered, Gaussian interaction profile kernel
similarity is effective to address this issue. Undoubtedly,
there are some limitations inhibiting the prediction per-
formance of FMSM. For example, it needs to take time
to optimize the parameters. The proposed model cannot
work on the new disease without known associated
miRNAs.

Conclusions
Increasing studies have demonstrated that miRNAs play a
significant role in a wide range of biological processes, es-
pecially disease mechanisms and development. A number
of miRNAs have been regarded as ideal biomarkers of dis-
ease therapy, diagnosis, prognosis and prevention. It is de-
sirable to identify more potential miRNA biomarkers for
various human diseases. However, traditional biological
experiments are costly, laborious and time-consuming.
Developing computational methods are anticipated to fa-
cilitate the process of miRNA biomarkers identification.
In this paper, we propose a novel computational model
called FMSM for inferring potential miRNA biomarkers

involving in the mechanism of various disease. FMSM im-
plicitly learns relationships between diseases and miRNAs
based on a structural equation modeling approach by pro-
jecting the values in a latent space of low dimensionality.
Based on the known miRNA-disease associations, miRNA
expression similarity, disease semantic similarity and
Gaussian interaction profile kernel similarity, all potential
miRNAs are ranked prioritizing the most likely latent bio-
markers for various human diseases via FMSM. The com-
parison experiments based on cross validation suggest
that FMSM outperforms other state-of-the-art competi-
tors and classical algorithms. In addition, the case study
further demonstrates the reliable prediction of FMSM.
The factored miRNA similarity based model and miRNA
expression similarity has been validated to make a great
contribution to an incremental performance improve-
ment. The reliable prediction of FMSM provides an
insight into the identification of potential miRNA bio-
markers and aids future research efforts toward miRNA
involvement in human disease mechanism.

Methods
MiRNA-disease association datasets
To investigate the roles of miRNAs in human disease,
Li et al. [29] presented the Human MicroRNA Dis-
ease Database named HMDD v2.0, (http://www.cui-
lab.cn/hmdd) collecting experimentally supported
miRNA and human disease associations. In this data-
base, 5430 non-overlapping entries are provided with
detailed annotations from genetics, epigenetics and
circulation. These associations are involved in 383

Table 1 FMSM was applied to Colonic Neoplasms to prioritize the latent disease-related miRNAs. Six of top 10 and 19 of top 25
predicted miRNAs have been validated via dbDEMC and miR2Disease

Top 1–25

Rank miRNA Evidence Rank miRNA Evidence

1 hsa-mir-1909 unconfirmed 14 hsa-mir-182 dbDEMC;
miR2Disease

2 hsa-mir-1183 unconfirmed 15 hsa-mir-27a miR2Disease

3 hsa-mir-196a dbDEMC;miR2Disease 16 hsa-mir-34c miR2Disease

4 hsa-mir-1273c unconfirmed 17 hsa-mir-30b dbDEMC

5 hsa-mir-133a dbDEMC;miR2Disease 18 hsa-mir-567 unconfirmed

6 hsa-mir-1179 unconfirmed 19 hsa-mir-34b dbDEMC;
miR2Disease

7 hsa-mir-206 dbDEMC 20 hsa-mir-15b miR2Disease

8 hsa-mir-148a dbDEMC 21 hsa-mir-124 dbDEMC

9 hsa-mir-218 dbDEMC 22 hsa-mir-1275 unconfirmed

10 hsa-mir-26a dbDEMC;miR2Disease 23 hsa-mir-222 dbDEMC

11 hsa-mir-212 dbDEMC 24 hsa-mir-181b dbDEMC;
miR2Disease

12 hsa-mir-23a miR2Disease 25 hsa-mir-429 dbDEMC

13 hsa-mir-210 dbDEMC
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human diseases and 495 miRNAs, whose respective
cardinalities are nd and nm. In this paper, all
miRNA-disease associations are represented by an ad-
jacency matrix U of size nd×nm. U is a binary matrix,
which means that if the disease d has been confirmed
to have association with miRNA m, the corresponding
entry in U denoted by U(d,m) is 1, otherwise 0. The
whole set of the known miRNA-disease associations
is denoted by R. Moreover, dbDEMC [28] and miR2-
Disease [27] are used as independent databases to val-
idate the prediction lists of case studies in Results
and Discussion section.

MiRNA expression similarity
Betel et al. [7] proposed microRNA.org database providing
miRNA expression profiles in 172 various human tissues
and cell lines. Based on the hypothesis that two miRNAs
tend to be closely related to the similar diseases if they have
similar expression level in human tissues, all investigated
miRNAs are represented by 172-dimensional vectors from
the expression profiles derived from microRNA.org.

To measure the miRNA expression similarity denoted
as ES, the Person correlation coefficient was simply
used as follows:

ES mi;mj
� � ¼

P
emi−emið Þ em j−em j

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

emi−emið Þ2P em j−em j

� �2q ð2Þ

where ES is the miRNA expression similarity matrix of
size nm×nm, the vectors of two miRNAs m

i
and m

j
are

denoted as emi and em j respectively, and �emi and �em j rep-
resents the mean values of emi and em j . In this way, the
entity ES(m

i
,m

j
) is measured between 0 and 1.

Disease semantic similarity
The National Library of Medicine (http://www.ncbi.nlm.-
nih.gov/) [52] provides specific MeSH descriptors to each
human disease for effective classification indicating the re-
lationship between diverse diseases. For example, the
MeshID of Bacterial Infections and Mycoses is C01, while
C01.252 is the counterpart of Bacterial Infections, which
is categorized into a subtype of Bacterial Infections and
Mycoses. In this work, we convert these relationships into
respective Directed Acyclic Graphs (DAGs) to measure
the similarity between any two diseases. Given a disease
D, its DAG can be represented as DAG(D) = (T(D), E(D)),
where T(D) is a node set of D and its ancestor nodes while
E(D) refers to the edge set of all direct edges from parent
nodes to child nodes. In this way, we assume that disease
D locates in the root layer, so the contribution score for
the semantic value of disease D itself is set to 1. Empiric-
ally, the contribution of any D’s ancestor disease d in

Fig. 3 The effect of combining different miRNA similarities was tested via LOOCV

Table 2 The performance evaluation of FMSM by introducing
different types of miRNA similarity in terms of 5-fold CV for 20
times

Types of miRNA similarity The average value of
AUCs

No extra miRNA similarity 0.8377+/−0.0084

MiRNA expression similarity 0.9331+/−0.0121

MiRNA similarity with expression files and
Gaussian kernel

0.9629+/−0.0127
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DAG(D) to the semantic value of D could be inversely de-
creased, as the path elongates from D to d. Based on
DAG(D), such kind of numerical calculation can be for-
mulated as follows:

CD dð Þ ¼ 1 if d ¼ D

CD dð Þ ¼ max Δ�CD d
0� �
jd0

∈children of d
n o

if d≠D

(

ð3Þ

where △ is a contribution decay parameter in the range
from 0 to 1. In this paper, △ is set to 0.5 according to
the previous work [38, 53]. We defined AC(D) as the ag-
gregate semantic value of disease D for further illustra-
tion, i.e. ACðDÞ ¼Pd∈TðDÞCDðdÞ . It is obvious that if

any two diseases share larger common parts of their
DAGs, the semantic similarity score between themselves
should be assigned a greater weight. Based on this as-
sumption, the disease semantic similarity matrix of size
nd×nd could be calculated as:

SS di; d j
� � ¼

P
t∈T dið Þ∩T d jð Þ Cdi tð Þ þ Cd j tð Þ� �

AC dið Þ þ AC d j
� � ð4Þ

Gaussian interaction profile kernel similarity
To alleviate the data sparsity problem of similarity
matrix, Gaussian interaction profile kernel similarity for
both miRNA and disease are calculated based on the hy-
pothesis [43, 54, 55] that any two miRNAs/diseases have
a greater opportunity to be potentially related if they
share more common diseases/miRNAs respectively. It
motivates us to introduce Gaussian interaction profile
kernel for the inference of miRNA- and disease- similar-
ity by exploiting the implicit topologic information of
the miRNA-disease association matrix, i.e. matrix U.
The process of the inferred disease similarity could be
roughly divided into two steps: (1) given any two dis-
eases di and dj, their interaction profiles are denoted as
two binary vectors IP(di) and IP(dj) respectively. They
represent the set of associations between di/dj and each
miRNA, i.e. the ith and jth column of matrix U. Then,
Gaussian interaction profile kernel similarity matrix KD
of size nd×nd could be defined as follows:

KD di; d j
� � ¼ exp −γd IP dið Þ−IP d j

� ��� ��2� �
ð5Þ

where parameter γd controls the kernel bandwidth. (2)
γd needs to be updated by normalizing a new bandwidth
parameter γ′d divided by the average value of associated
miRNAs for each disease.

γd ¼ γ
0
d=

1
nd

Xnd
i¼1

IP dið Þk k2
 !

ð6Þ

Here, γ′d is set to 1 for simplifying the calculation
based on previous research [56], rather than following
the original method [57].
For miRNAs, Gaussian interaction profile kernel simi-

larity KM of size nm×nm could be calculated in the
similar way as

KM mi;mj
� � ¼ exp −γm IP mið Þ−IP mj

� ��� ��2� �
ð7Þ

γm ¼ γ
0
m=

1
nm

Xnm
i¼1

IP mið Þk k2
 !

ð8Þ

where γ′m is also set to 1. It is worthwhile to note that
KD and KM should be recalculated when implementing
each cross validation.

Integrated similarity matrices for miRNA and disease
MiRNA expression similarity ES and disease semantic
similarity SS are effective to construct the respective
similarity matrices for miRNA and disease. However,
neither ES or SS cover all investigated miRNAs and dis-
eases. Accordingly, we utilized Gaussian interaction pro-
file kernel similarity for those uncovered miRNAs and
diseases (i.e. KM and KD) to fill in the missing values in
ES and SS. Therefore, the integrated similarity matrices
for miRNA and disease (Sm and Sd) can be defined as
follows:

Sm mi;mj
� � ¼ ES mi;mj

� �þ KM mi;mj
� �

2
ð9Þ

Sd di; d j
� � ¼ SS di; d j

� �
di and d j has semantic similarity

KD di; d j
� �

otherwise

�

ð10Þ

FMSM
Inspired by the idea of FISM [37] in user-item recom-
mender problem, we developed a novel Factored MiRNA
Similarity Model (FMSM) to predict miRNA molecules
involving in the mechanism of various diseases. FMSM
learns the miRNA-miRNA similarity matrix as a product
of two latent factor matrices. The flowchart of FMSM is
shown in Fig. 4. To allow readers more easily to follow
the model description, the parameter settings are tabu-
lated in Table 3. Using a structural equation modeling
approach leads to better estimators for generating high
quality prediction results even on sparse datasets (spars-
ity = 2.86%, 5430/nm/nd*100%).
Based on the known miRNA-disease association net-

work, we calculate the loss to measure the difference
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between the truth value rdm and the estimated value r^dm
by using the squared error loss function as follows:

L �ð Þ ¼
X
m∈M

X
d∈D

rdm− rdm
∧

� �2
ð11Þ

where D and M denote the sets of diseases and miRNAs,
respectively. rdm is the truth value, namely if disease d
has been confirmed to have association with miRNA m,
rdm=1 otherwise 0. r^dm , the estimated value, could be
calculated as

r∧dm ¼ bd þ bm þ 1

nþd −1
� �α X

j∈Rþ
d n mf g

pjqm
T ð12Þ

where bd and bm are floating points representing the
biases of disease and miRNA, respectively. nþd is the
number of miRNAs associated with disease d. α is a dis-
ease specified factor between 0 and 1. Rþ

d nfmg repre-
sents the set of miRNAs associated with disease d

Fig. 4 Flowchart of FMSM. Based on the known miRNA-disease associations, miRNA expression similarity, disease semantic similarity and
Gaussian interaction profile kernel similarity, the latent miRNA biomarkers for various diseases were prioritized based on the prediction
score (r^dim j

)

Table 3 The parameter settings of FMSM

Parameter Setting

Size of the known miRNA-disease
associations (R)

5430

Number of diseases (nd) 383

Number of miRNA (nm) 495

Regularization weights for latent factor
matrices P and Q (β, λ and γ)

Β = λ = γ = 0.1

Maximum number of iterations (T) 100

Regulation weights for average values of
R(di,m

′) and R(d′,mj) (Wd and Wm)
1

Learning rate (η) 0.01

Sample factor (ƿ) 3
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excluding the miRNA m, whose value is being estimated.
It is important to do this exclusion for conforming to re-
gression model according to the structural equation
modeling. pj and qm are two learned miRNA latent fac-
tors from matrices P and Q, respectively.
P and Q are two matrices of size nm×d (where d < nm)

and are originally initialized by miRNA similarity Sm.
Since FISM was proposed for the user-item recom-
mender problem involving three large datasets (sizes of
943*1178, 6079* 5641 and 7558*3951 respectively). Con-
sidering its practical application prospect, its authors
attempted to make a tradeoff between time consumption
and accuracy. For a fast recommendation, they set P and
Q as two low dimensional latent factor matrices. How-
ever, in this work, time consumption is no longer im-
portant. The dimensions of P and Q can be higher for
better estimating the similarity. And based on 5-fold CV,
FMSM with high dimensions of P and Q achieved higher
AUC value by around 2.6% than low randomized dimen-
sions’ did. Obviously, if we minimize the squared error
loss function L(∙), Eqs (11) and (12) can be converted
into Eq. (13) by minimizing the following regularized
optimization problem:

minimize
P;Q

1
2

X
d;m∈R∪A

rdm−r
∧
dm

��� ���2
F

þ β
2

Pk k2F þ Qk k2F
� �þ λ

2
bd

2 þ γ
2
bm

2 ð13Þ

where β, λ and γ are the regularization weights for latent
factor matrices P and Q, disease bias bd and miRNA bias
bm respectively (β = λ = γ∈{0.001, 0.01, 0.1}, we use 0.1 in
this work).
All entries of training set include R and the sam-

pled set of unknown miRNA-disease associations A.
It helps reduce the computational complexity for
optimization. To solve the optimization problem of
Eq. (13), we exploit a Stochastic Gradient Descent
(SGD) algorithm, whose detailed pseudo-code is pro-
vided in Algorithm 1. The training process is re-
peated until the maximum number of iterations has
reached a predefined threshold (default: 100). In this
way, the estimated score of each unknown pair in U
can be computed, i.e. r^dm . Finally, we need to aggre-
gate r^dm with the integrated similarity matrices for
disease and miRNA, i.e. Sd and Sm. Given an un-
known miRNA-disease association in U, e.g. U(di,mj),
a set of miRNAs associated with di and a set of dis-
eases associated with mj are denoted by R(di,
m′) and R(d′,mj), respectively. Empirically, we add
the average values of R(di,m

′) and R(d′,mj) to r^dim j

with regulation weights Wd and Wm, which could be
defined as follows:

r∧dim j
¼ r∧dim j

þ Wd

R d
0
;mj

� �		 		 X
d0;mjð Þ∈R

Sd di; d
0� �

þ Wm

R di;m
0ð Þj j

X
di;m0ð Þ∈R

Sm mj;m
0

� �
ð14Þ

where W
d
=W

m
= 1. r^dim j

represents the predicted score
for the potential association between d

i
and m

j
. Namely,

the higher value of r^dim j
they obtain, the more likely they

are related.

The FMSM algorithm can be summarized as following
steps:
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Additional file 1: The prediction list of most latent miRNA biomarkers for
various investigated diseases has been publicly released. (XLSX 3187 kb)
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