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Abstract

Background: Evaluating the significance for a group of genes or proteins in a pathway or biological process for a
disease could help researchers understand the mechanism of the disease. For example, identifying related pathways
or gene functions for chromatin states of tumor-specific T cells will help determine whether T cells could reprogram
or not, and further help design the cancer treatment strategy. Some existing p-value combination methods can be
used in this scenario. However, these methods suffer from different disadvantages, and thus it is still challenging to
design more powerful and robust statistical method.

Results: The existing method of Group combined p-value (GCP) first partitions p-values to several groups using a set
of several truncation points, but the method is often sensitive to these truncation points. Another method of adaptive
rank truncated product method(ARTP) makes use of multiple truncation integers to adaptively combine the smallest
p-values, but the method loses statistical power since it ignores the larger p-values. To tackle these problems, we
propose a robust p-value combination method (rPCMP) by considering multiple partitions of p-values with different
sets of truncation points. The proposed rPCMP statistic have a three-layer hierarchical structure. The inner-layer
considers a statistic which combines p-values in a specified interval defined by two thresholds points, the
intermediate-layer uses a GCP statistic which optimizes the statistic from the inner layer for a partition set of threshold
points, and the outer-layer integrates the GCP statistic from multiple partitions of p-values. The empirical distribution
of statistic under null distribution could be estimated by permutation procedure.

Conclusions: Our proposed rPCMP method has been shown to be more robust and have higher statistical power.
Simulation study shows that our method can effectively control the type I error rates and have higher statistical power
than the existing methods. We finally apply our rPCMP method to an ATAC-seq dataset for discovering the related
gene functions with chromatin states in mouse tumors T cell.
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Background
Genetic association analysis has been widely used to
identify many associated genes with human complex dis-
eases [1, 2]. In recent decades, the advances on biolog-
ical techniques have made it possible to collect massive
amounts of high-throughput datasets such as SNP data
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and gene expression data, which are often high dimen-
sional, and have a large number of variables and a rel-
atively small number of samples. A typical problem is
to find out single nucleotide polymorphisms (SNPs) or
genes related to corresponding diseases. Single-marker
analysis could be done by two-sample test on each vari-
able such as Fisher’s exact test, or Chi-squared test for
categorical datasets, and two-sample t-test or Wilcoxon
test for numerical datasets. However, a major disadvan-
tage of single-marker based methods is that they do not
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consider the joint effects of multiple genetic variants
which may have weak or moderate signals individually.
The joint use of information from multiple markers
may be more effective to reveal association between a
genomic region and a trait than single marker anal-
ysis. In this scenario, gene-based, gene-set-based and
pathway-based association tests provides a more pow-
erful way in addition to the more widely used sin-
gle marker association analysis. For example, one may
want to test using SNP datasets whether a gene, includ-
ing several or many SNPs, is significantly associated
with a trait, or want to test using high-throughput
gene expression datasets whether a biological pathway,
including several genes, is significantly associated with
a trait.

One method to detect the association between a gene,
which may hosts a lot of SNPs, or a biological pathway,
which may have many genes, and human complex dis-
eases in large scale genetic studies is using the framework
of logistic regression to learn the odd ratios of SNPs.
However, this may not work due to the high-dimensional
problem. Especially when the SNPs are in high link-
age disequilibrium, the solution is not stable. Gene set
enrichment analysis algorithm [3] has been proposed for
the identification of disease related pathways by measur-
ing the overrepresentation of disease-gene associations
within a given pathway compared to a list of reference
genes. The underlying null hypothesis is that the set of
genes in a given pathway has no enrichment of associ-
ation signals compared to the rest. In contrast, in this
manuscript, we focus on testing for the effect of a spe-
cific pathway/gene set without reference to any larger
gene list. The underlying global null hypothesis is that
there is no association of the disease with any of the
genes in the given gene set. A more promising strategy is
to use univariate test which constructs marginal test for
each variable first and then combine the p-values together
by p-value combination methods to accumulate marginal
signals.

The earliest method to combine individual p-values is
Fisher’s combined probability test (FCT) [4], which is pop-
ularly used in many applications [5–7] or taken as part of
the statistic in other more complicated p-value combina-
tion methods such as [8–10]. FCT basically combines m
independent p-values into a test statistic, which is proved
to follow a chi-square distribution with 2m degrees of
freedom under null hypothesis. When the p-values are
not independent, empirical distribution is suggested to
use, otherwise the type I error rates may be inflated [8].
However, FCT method may lose power when the num-
ber of individuals in the gene set is large, or most of the
individuals are not significant. Zaykin et. al. [8] propose a
truncated product method(TPM) which takes the product
of only those p-values less than some specified cut-off

value ξ and to evaluate the probability of such a product
under the null hypothesis. 0.05 is usually adopt as the cut-
off in practice. Different from [8], Dudbridge et al. [9]
use an alternative strategy to take rank truncated product
(RTP) of the K most significant p-values as the statistic for
the testing. However, the two methods of TPM and RTP
are both sensitive to the parameters ξ or K, and an inap-
propriate truncation point can have a detrimental effect
on the power. In order to overcome this problem, espe-
cially when there are a large number of p-values to be
combined, [11] proposed adaptive rank truncated product
method (ARTP) to optimize the selection of the trunca-
tion point with a set of candidates. The defined statistic
is the minimum empirical p-value observed at different
truncation points.

An alternative method for testing the overall null
hypothesis is tail strength (TS) method. This TS test
statistic is a function of ordered p-values [12], which has
an asymptotic normal distribution with mean of 0 and
variance of 1/m under the null hypothesis if the m p-values
are independent. Similar to [8, 13] defines a new truncated
tail strength (TTS) statistic for testing the null hypothesis
by removing p-values larger than a cutoff. The TTS statis-
tic appears to have good properties, especially when there
are a large number of independent tests in one dataset.

More recently, [14] adopts a sequential method for com-
bining information from correlated p-values and presents
the SEQ algorithm for correlated p-values. Hu et al. [10]
defines a GCP statistic by using two functions log and
the cumulative distribution function of two degrees of
freedom to combine the p-values and show more power
than FCT when these p-values are correlated and few
p-values show significances. In GCP method, p-values are
divided to several groups first by thresholds, and then
constructed into a statistic with each group. However,
when the number of individual tests is large, the per-
formance of GCP is very sensitive to the selection of
thresholds.

In this work, we propose a more robust statistical
method called rPCMP to improve GCP method, by using
multiple partitions of p-values. Borrowing the idea from
ARTP, which takes several truncation points, our rPCMP
takes several sets of thresholds to divide p-values to
groups for several times. The defined rPCMP havs three-
layer structure, which could be empirically estimated by
a permutation procedure. Extensive simulations studies
show that our proposed rPCAMP test method perform
more powerful than some existing p-value combination
methods, with low type I error rates. Our method is
finally applied to a ATAC-seq dataset, to find the related
gene functions for chromatin states in mouse tumor cells.
The proposed method succeeds in detecting significant
gene functions for tumor-specific T cell dysfunction and
reprogramming.



Cai and Li BMC Systems Biology 2018, 12(Suppl 9):141 Page 23 of 134

Methods
Problem statement
Suppose we have gene expression dataset X ∈ Rm×N for
m genes g1, · · · , gm and N samples, and also a phenotype
y ∈ RN . The gene set S = {g1, · · · , gm} is often prede-
fined by a biological pathway or a group of genes with the
same gene function. For each gene i, a single null hypoth-
esis of interest could be H0i : the ith gene is not associated
with the phenotype, i = 1, · · · , m. We could calculate
m p-values {p1, · · · , pm} by a certain test statistic such
as two-sample t-test or Wilcoxon test, which tests H0i to
determine whether the corresponding single gene is sig-
nificantly associated with the phenotype or not. Our goal
is to test an overall null hypothesis H0: no gene in set S
is significantly associated with the phenotype, and thus
evaluate the association of the whole gene set S and the
phenotype by calculating a group p-value for S.

The methods of FCT, TPM, ARTP and GCP
Fisher’s combination test (FCT) [4]

Suppose the m p-values are generated from m statistical
tests based on m normally distributed random variables,
say, the m-th row of X, Xm. Fisher showed that for inde-
pendent p-values, the statistic

� = −2
m∑

i=1
ln pi

follows a χ2 distribution with 2m degrees of freedom.
Based on this theoretical result, a hypothesis testing can
be performed to calculate a combined p-value. If the orig-
inal p-values are independent, a permutation procedure
could be used to empirically estimate the null distribution
and thus calculate the combined p-value.

Truncated product method (TPM) [8]
Truncated product method uses the product of only

those p-values smaller than a specified threshold ξ . The
corresponding statistic is defined as

W =
m∏

i=1
piI(pi ≤ ξ),

where I() is an indicator function, I(pi ≤ ξ) = 1 if pi ≤ ξ

and I(pi ≤ ξ) = 0 otherwise.
Adaptive rank truncated product method (ARTP)

[11]
ARTP makes use of multiple candidate truncation inte-

gers K1, · · · , KL to adaptive combine the the smallest
p-values. The m p-values are first ordered as p(1) ≤
p(2) ≤ · · · ≤ p(m), where p(k) is the k-th smallest p-value.
A statistic which combines the smallest Kl p-values are
defined by

Wl =
Kl∏

i=1
p(i), l = 1, · · · , L.

Let sl be the p-value corresponding to Wl, which could be
estimated by a permutation procedure. The statistic based
on minimum p-value can be defined as

MinP = min
1≤l≤L

sl.

The adjusted combined p-value corresponding to MinP
is estimated by the permutation procedure.

Group combined p-value (GCP) [10]
Different from ARTP, which combines the smallest

p-values using different truncation integers, Group com-
bined p-value (GCP) method considers the p-values in
different specified intervals. Given J cutoff values 0 <

ξ1 < ξ2 < · · · < ξJ < 1, GCP defines a statistic

GCP =
J∏

j=1

[
1 − Fj

( m∑

i=1
−2 ln piI{ξj−1<pi≤ξj}

)]
(1)

where ξ0 = 0 and Fj is the cumulative distribution
function of

∑m
i=1 −2 ln piI{ξj−1<pi≤ξj} for j = 1, 2, · · · , J .

The permutation procedure is also used to estimate the
empirical p-value corresponding to GCP.

Algorithm rPCMP
Inputs:

X ∈ Rm×N for genes i = 1, · · · , m;
phenotype y ∈ RN ;
multiple partitions: 0 < ξ l

1 < · · · < ξ
Jl
l < 1,

l = 1, · · · , L;
number of permutations: B.

Outputs: p-value for rPCMP
1. Calculate the p-value p0

i for each gene using i-th row in X
and the vector y, for i = 1, · · · , m

2. For b from 1 to B, permute the original phenotype y
and re-calculate m p-values pb

1, · · · , pb
m as in step 1.

3. For ξ l
j−1 and ξ l

j in partition l : ξ , estimate the empirical
cumulative

distribution Fj,l, j = 1, · · · , Jl, l = 1, · · · , L,
using p0

i , · · · , pB
i ;

4. Compute the statistics

GCPl = ∏Jl
j=1

[
1 − Fj,l

(∑m
i=1 −2 ln piI{

ξ l
j−1<pi≤ξ l

j

}
)]

5. For each l, estimate the empirical cumulative
distribution Gl
6. For b from 0 to B, compute the corresponding rPCMP test
statistic rPCMPb;
7. The p-value for rPCMP is given by

p-value =
∑B

b=0 I(rPCMPb≥rPCMP0)

B+1 .

Combining p-values by multiple partitions
In GCP method, it is unclear how to choose cutoff val-
ues for calculating the group combined p-values. Note
that one choice of these cutoffs actually mean a partition
of the m p-values. Different partitions of these p-values
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will result in different testing results. In this work, we aim
to propose a robust method, which accounts for multiple
partitions of the p-values. Suppose we have L partitions of
the m p-values, say, 0 = ξ l

0 < ξ l
1 < ξ l

2 < ξ l
3 < · · · <

ξ l
Jl

< 1, l = 1, · · · , L. We borrow the ideas of both ARTP
and GCP, and define a rPCMP statistic by integrating the
multiple partitions of the p-values:

rPCMP=
L∏

l=1

⎛

⎝1−Gl

⎛

⎝
Jl∏

j=1

[
1−Fj,l

(
−2

m∑

i=1
ln piI{

ξ l
j−1<pi≤ξ l

j
}
)]⎞

⎠

⎞

⎠ ,

(2)

where Fj,l is the cumulative distribution function of
− 2

∑m
i=1 ln piI{

ξ l
j−1<pi≤ξ l

j

}, and Gl is the cumulative distri-

bution function of

GCPl =
Jl∏

j=1

[
1 − Fj,l

(
−2

m∑

i=1
ln piI{

ξ l
j−1<pi≤ξ l

j

}

)]
.

(3)

Note that there are three layers of the rPCMP statis-
tic. The inner-layer distribution Fj,l depends on both
the partition l and the cutoff values ξ l

j−1 and ξ l
j , the

intermediate-layer Gl depends only on the thresholds of
the l-th partition, and outer-layer statistics integrate all
the L multiple partitions. ARTP statistic takes two-layer
distributions, but both the two layers are different from
rPCMP. The three-layer structure of the rPCMP statistic
is shown in Fig. 1.

The distribution of the three-layer rPCMP statistic
under the overall null hypothesis could be both estimated
by generating permutation p-values under null distribu-
tion. Therefore, to obtain the adjusted p-value for the
defined statistic rPCMP, we need a three-level permuta-
tion procedure [15] with the inner level for estimating

Fj,l, intermediate-layer for estimating Gl, and the outer-
layer for rPCMP with multiple partitions. However, this
would be computationally expensive if m is relatively large.
Thus a single-layer permutation is used to determine the
significance level for rPCMP, which borrows techniques
originally designed for gene expression analysis [16]. By
this single-layer permutation procedure, we first calculate
p-values p0

1, · · · , p0
m for each test on the null hypothe-

sis based on the observed data {X, y}. We then generate
B permuted datasets {X, yb} by randomly permuting the
phenotype y to be yb, where 1 ≤ b ≤ B, under the null
hypothesis. Based on these B permuted datasets, we can
calculate p-values pb

1, · · · , pb
m. By using these p-values, we

can apply the rPCMP algorithm to obtain the adjusted
p-values for the rPCMP statistic. The detailed steps are
shown in the algorithm rPCMP.

Results
Simulation datasets
We generate N columns of X ∈ Rm×N by multivari-
ate normal distribution with zero mean and a covari-
ance matrix � ∈ Rm×m. For independent case, where
genes are assumed to be independent, we just set �

to be an identical matrix. For dependent case, we set
�ij = ρ|i−j|, where the parameter ρ is chosen from
the set {0, 0.1, 0.2, 0.3}. The number of genes m is cho-
sen from {100, 200, 300, 400, 500}, and the sample size N
is chosen as 100. We further generate y ∈ RN by the
following procedure. We first randomly select T1 rows
from X, which are assumed as the related genes, and
then randomly generate T2 row vectors by standard nor-
mal distribution. y is generated by the linear combination
of these T = T1 + T2 vectors, with the same coef-
ficient 1/T . In our experiments, we fix T = 30 and
vary T1 from 1 to 30. Note that T1 is the number of
related genes in X. The dataset {X, y} depends on three
parameters ρ, m and T1.

Fig. 1 The three-layer hierarchical structure of rPCMP statistic
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Simulation results
For all methods except FCT, there are parameters to
be set up. For TPM method, we use 0.5 as the cutoff
for all experiments. For ARTP method, the truncation
integers are set to be 1 to 10 in all experiments. For
GCP, we use the best parameter [ 0.001, 0.05] sug-
gested by [10]. In our method, 5 groups parameters
are used together in all experiments from the sets
{[ 0.01, 0.1] , [ 0.001, 0.05] , [ 0.01, 0.05] , [ 0.001, 0.01,
0.1] , [ 0.001, 0.01, 0.05] }, which are also used in [10].

For each simulation dataset {X, y}, we first compute m
p-values for the m genes by Student’s t test, and then
B = 1000 permuted ys are used to compute B p-values
for each gene. We use type-I error and power to mea-
sure the performance of the baseline methods and our
method. To estimate the type-I error, we set T1 = 0, calcu-
late 1000 group p-values by randomly generating 1000 ys.
The type-I error is estimated by the proportion of group
p-values less than 0.05 among these 1000 values. To esti-
mate the power, we randomly select T1 ≥ 1 rows of X
for 1000 times and thus can generate 1000 ys. With each
of these ys, we could perform different methods to cal-
culate a group p-value. The power for the method could
then estimated by the proportion of group p-values less
than α = 0.05.

We report the Type I error rates in Table 1 by differ-
ent methods for m ∈ {100, 200, 300, 400, 500} and ρ ∈
{0, 0.1, 0.2, 0.3}. We can see that all methods could obtain
very small type I error rates with slight differences.

In Fig. 2, we show the change of power with T1 var-
ied from 1 to 30, for m = 300 and different choices of
ρ = 0, 0.1, 0.2, 0.3. We can see that the four sub-figures
show the advantage of our rPCMP over all other methods.
To account for the overall performance for different T1,
we compute further an average area under curve (AAUC)
defined as the area under the power curve divided by

30. In Table 2, we report the AAUCs for different m ∈
{100, 200, 300, 400, 500} and ρ ∈ {0, 0.1, 0.2, 0.3}. We can
see that our method performs the best for almost all
the cases.

To check the robustness of our rPCMP on the number of
partitions L, we remove each partition set from the parti-
tion sets {[ 0.01, 0.1] , [ 0.001, 0.05] , [ 0.01, 0.05] , [ 0.001,
0.01, 0.1] , [ 0.001, 0.01, 0.05] }(denoted by set0) in turn
to generate 5 new parameter setting named set1, set2,
set3, set4 and set5. Note that these five parameter set-
tings all have L = 4 partition sets. In Fig. 3, we show
the power of rPCMP computed by average area under
curve for each ρ with different m, where ρ varies from
the set of {0, 0.1, 0.2, 0.3} and m is selected from the set of
{100, 200, 300, 400, 500}. We can see that our method can
perform stably in all cases.

Demonstration of three-layer statistic of rPCMP
Figure 4 demonstrates the three-layer structure of rPCMP
statistic by a simulation study with m=300, T=30, ρ=0.
The top layer shows the empirical distributions of Fj,l
for the j-th group in l-th partition. Each Fj,l could result
in a p-value, shown in title of each sub-figure by only
choosing the individual p-values in the corresponding
interval, We can see that these p-values are very unsta-
ble, and this implies that a statistic combining individual
p-values in a specified interval is very sensitive to the
interval parameters. The second-layer in the figure shows
the empirical distribution of Gl, for the l-th partition.
Each Gl actually integrates the information of F1,l, · · · , FJl ,l
from the top-layer. Note that the p-values obtained by Gl
is still unstable, which may have large p-values for some
ls, and small p-values for other ls. For the third-layer
of the figure, rPCMP integrates the optimized informa-
tion from the second-layer of Gl, and thus makes the
result stable.

Table 1 Type I error for rPCMP,GCP,ARTP,TPM and FCT

Methods m=100 m=200 m=300 m=400 m=500 m=100 m=200 m=300 m=400 m=500

ρ=0 ρ=0.1

FCT 0.1020 0.0980 0.1110 0.1110 0.1000 0.1210 0.0850 0.0990 0.1170 0.0860

TPM 0.0880 0.0920 0.1010 0.1020 0.1050 0.0980 0.1010 0.1010 0.0920 0.0910

ARTP 0.0770 0.1050 0.0870 0.1160 0.0920 0.1050 0.0980 0.0940 0.0950 0.0910

GCP 0.0880 0.0920 0.0920 0.1130 0.1000 0.0990 0.0930 0.0950 0.0960 0.0940

rPCMP 0.0880 0.1020 0.0800 0.1130 0.0970 0.1020 0.0940 0.0920 0.1010 0.1010

ρ=0.2 ρ=0.3

FCT 0.1300 0.1160 0.1200 0.1070 0.1140 0.1280 0.1460 0.1300 0.1350 0.1210

TPM 0.1060 0.1060 0.1010 0.0830 0.0930 0.0940 0.1010 0.1000 0.1020 0.0930

ARTP 0.1110 0.1030 0.1020 0.0910 0.0950 0.1000 0.1020 0.0930 0.1100 0.0950

GCP 0.1050 0.1030 0.1060 0.0850 0.1020 0.0970 0.0880 0.0830 0.1010 0.0880

rPCMP 0.1070 0.0970 0.0920 0.0880 0.1080 0.0970 0.0970 0.0870 0.1090 0.0930
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Fig. 2 The power of five methods for T1 genes selected from m=300 genes and varied from 1 to 30

Applications for identifying related pathways for
tumor-specific T cell dysfunction and reprogramming
Dysfunctional tumor-specific CD8 T cells (TST) in solid
tumors allow tumors to progress. Immune checkpoint
blockade and adoptive T cell therapy has been suc-
cessfully used in subset of cancer patients, and this
shows great potential of TST. However, it is still a
problem how to predict which patients will respond to
therapy, and it has important implications for cancer
immunotherapy to study the epigenetic regulation of T
cell dysfunction and therapeutic reprogrammability. Schi-
etinger et al. [17] points out that TST dysfunciton is
initially reversible but ultimately becomes irreversible,

even after removal of dysfunctional T cells from the
tumor. In the study of [18], “Assay for Transposase
Accessible Chromatin using Sequence” (ATAC-Seq) [19]
was used to assess genome-wide chromatin accessibility
changes during T-cell differentiation in tumors compared
to acute infection. T cells in mouse tumors are shown
in [18] to differentiate through two discrete chromatin
states: a plastic dysfunctional state from which T cells
can be rescued, and a fixed dysfunctional state in which
the cells are resistant to reprogramming. In their study,
some membrane proteins such as CD38, CD101, CD30L,
CD5, TCF1, IRF4, BCL2, CD44,PD1, LAG3 and CD62L
are identified as related to the two chromatin states. In
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Table 2 Power for rPCMP,GCP,ARTP,TPM and FCT computed by the average area under the curve

Methods m=100 m=200 m=300 m=400 m=500 m=100 m=200 m=300 m=400 m=500

ρ=0 ρ=0.1

FCT 0.7376 0.6198 0.5524 0.5096 0.4603 0.7570 0.6348 0.5749 0.5171 0.4286

TPM 0.7370 0.6376 0.5704 0.5247 0.4701 0.7491 0.6459 0.5927 0.5271 0.4587

ARTP 0.7642 0.6726 0.6115 0.5693 0.5190 0.7729 0.6823 0.6314 0.5699 0.5072

GCP 0.7363 0.6531 0.6004 0.5641 0.5183 0.7479 0.6646 0.6257 0.5647 0.5085

rPCMP 0.7601 0.6740 0.6174 0.5795 0.5325 0.7708 0.6851 0.6411 0.5804 0.5232

ρ=0.2 ρ=0.3

FCT 0.7862 0.6789 0.5960 0.5429 0.5210 0.8066 0.7146 0.6487 0.6059 0.5483

TPM 0.7768 0.6735 0.5959 0.5465 0.5186 0.7929 0.6945 0.6297 0.5836 0.5264

ARTP 0.7978 0.7035 0.6325 0.5893 0.5567 0.8093 0.7209 0.6620 0.6181 0.5670

GCP 0.7797 0.6907 0.6204 0.5881 0.5591 0.7954 0.7094 0.6588 0.6162 0.5661

rPCMP 0.7953 0.7056 0.6373 0.6016 0.5712 0.8089 0.7233 0.6721 0.6292 0.5760

The best results are marked in blodface

this application, we aim to use ATAC-Seq data to identify
related gene functions, which are sets of genes, associated
with T-cell dysfunction and reprogramming.

The preprocessed ATAC-seq dataset for mouse is down-
loaded from the Gene Expression Omnibus with GEO
Series accession number GSE89308. Totally 16917 genes
are assigned in the ATAC-seq data. The collected 22
mouse samples are labeled using their plastic or fixed

dysfunctional chromatin states identified in [18], i.e., they
are labeled as 1 for L5 and L7 representing the chro-
matin remodelling occurred by day 5 and 7, and labeled
as 0 for L14,L21,L28,L35 and L60 representing chromatin
remodelling occurred by day 14, 21, 28, 35 and 60. We also
collect mouse gene ontologies(GO) from http://baderlab.
org/GeneSets, and select 2446 GO terms with five to ten
genes to perform the analysis.

Fig. 3 Power for rPCMP computed by the average area under curve with different ρs and cutoff interval sets

http://baderlab.org/GeneSets
http://baderlab.org/GeneSets
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Fig. 4 An example of three-layer statistic by a simulation study with m=300, T=30, ρ=0. The top layer shows the empirical distributions of Fj,l for the
j-th group in l-th partition.The second-layer shows the empirical distributions of Gl , for the l-th partition. The third-layer shows the distribution of
rPCMP. The observations are marked by yellow in all cases

We apply our rPCMP method to calculate the group
p-values for all these GO terms, with the same param-
eters ξ

j
l as in the simulation study, and permuta-

tion time B = 10, 0000. We identify 13 GO terms
shown in Table 3 with smallest group p-values as
the related gene functions to tumor-specific T cell
dysfunction and reprogramming. Some of these iden-
tified gene functions are related with immune sys-
tem, including GO:0033007, GO:0002322, GO:0002923,
GO:0002921, GO:0002279 and GO:0061081. The gene set
GO:0033007 includes immune genes CD300a and CD84,
GO:0002322 includes CD180, GO:0002923 includes
CD55, GO:0002921 includes CD59b, CD46 and CD59a,
GO:0002279 includes CD300a, and GO:0061081 includes
CD74,CD36. These genes are highly related to the
identified CD family genes in [18]. Besides, another

gene set GO0030855 also includes CD family genes
CD37. We also found that other gene sets include
gene TCF1, which is another name of TCF7, and gene
BCL2. These two genes are also identified in [18].
The evidence shows that by our results are well sup-
ported by the results in [18], which identifies sev-
eral CD family genes as related to the chromatin
states.

To show the better performance of rPCMP than
GCP, we also apply GCP to obtain the group
p-values for all these GO terms with the best cut-
off interval suggested by [10]. The results show that
GCP could only find five GO terms involving the
genes identified by [18], or related to immune systems.
These GO terms include GO:0002765, GO:0002826,
GO:0002857, GO:0042092 and GO:0002566. Among
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Table 3 The identified Gene ontology terms related to chromatin states in mouse T cell

GO terms GO functions Genes

GO:0033007 NEGATIVE REGULATION OF MAST CELL ACTIVATION INVOLVED
IN IMMUNE RESPONSE

Cd300a,Rabgef1,Hmox1,Cd84,Fer

GO:0002322 B CELL PROLIFERATION INVOLVED IN IMMUNE RESPONSE Tlr4,Gapt,Cd180,Abl1,Plcl2

GO:0002923 REGULATION OF HUMORAL IMMUNE RESPONSE MEDIATED BY
CIRCULATING IMMUNOGLOBULIN

Tnf,Ptprc,Foxj1,Ptpn6,Lta,Susd4,Fcgr2b,Cd55,Nod2

GO:0002921 NEGATIVE REGULATION OF HUMORAL IMMUNE RESPONSE Foxj1,Ptpn6,Cd59b,Cd46,Susd4,Fcgr2b,Spink5,Cr1l,Cd59a,
Serping1

GO:0002279 MAST CELL ACTIVATION INVOLVED IN IMMUNE RESPONSE Chga,Cd300a,Nr4a3,Milr1,Btk,Ywhaz,Lyn,Snap23,Rasgrp1,Kit

GO:0030885 REGULATION OF MYELOID DENDRITIC CELL ACTIVATION Havcr2,Flt3l,Klrk1,Tspan32,Il10,Cd37

GO:0036037 CD8-POSITIVE, ALPHA-BETA T CELL ACTIVATION Ifng,Satb1,Otud5,Tnfsf8,Irf1,Gpr18,H2-T23,Eomes,Bcl2

GO:0061081 POSITIVE REGULATION OF MYELOID LEUKOCYTE CYTOKINE
PRODUCTION INVOLVED IN IMMUNE RESPONSE

Gprc5b,Tlr4,Mif,Nr4a3,Cd74,Tlr2,Spon2,Sema7a,Cd36,Fcer1g

GO:1990441 NEGATIVE REGULATION OF TRANSCRIPTION FROM RNA
POLYMERASE II PROMOTER IN RESPONSE TO ENDOPLASMIC
RETICULUM STRESS

Jun,Nck1,Ppp1r15a,Tmbim6,Nck2

GO:0061525 HINDGUT DEVELOPMENT Shh,Hoxd13,Gli2,Tcf7,Dact1,Tcf7l2,Ift172

GO:0044336 CANONICAL WNT SIGNALING PATHWAY INVOLVED IN
NEGATIVE REGULATION OF APOPTOTIC PROCESS

Ctnnb1,Apc,Wnt1,Tcf7,Mitf

GO:0006582 MELANIN METABOLIC PROCESS Tyrp1,Mc1r,Dct,Pmel,Myo5a,Vhl,Oca2,a,Cited1,Bcl2

GO:0060442 BRANCHING INVOLVED IN PROSTATE GLAND
MORPHOGENESIS

Hoxa13,Shh,Hoxd13,Fgfr2,Esr1,Fem1b,Cd44,Hoxb13,Frs2

them, GO:0002826 and GO:0002566 are also discov-
ered by our rPCMP, and only GO:0002857 contains CD
family genes while the others don’t have both CD family
and BCL2 family genes. This futher shows that rPCMP
outperforms GCP on this biological application.

Discussion
The rPCMP proposed in this work shows robustness and
higher statistical power than other existing p-value com-
bination methods in most scenarios of the simulation
studies. This is highly expected since the compared meth-
ods except ARTP only take a partition of p-values, while
rPCMP takes several partitions into account for combin-
ing p-values. Although ARTP also takes different trun-
cation points, it neglects the larger individual p-values,
and thus loses some information. Our rPCMP extends
the p-value combination technique of GCP by dividing
p-values to several groups for multiple times, and group-
ing them first in threshold level and then in partition level.
The strategy optimizes the different partitions and and
accumulates the advantages from different partitions to
improve the power of test significantly, and thus is more
robust than GCP with a fixed partition. Simulations stud-
ies show that rPCMP outperform other methods in most
scenarios, and the applications to ATAC-Seq data further
demonstrate its good performance.

The success of rPCMP mostly comes from its three-
layer statistical structure, which makes it more flexible

to choose the partitions for grouping p-values.The hier-
archical structure optimizes the inner-level information
and transfers it to the outer-level statistics. Similar struc-
ture has been used in ARTP, but it loses some statistical
power since it has two layers, and removes the large
p-values using the truncation points. Our method rather
keep all the p-values in different groups. Although theo-
retically it may increase the computational load due to the
requirement of three layers of permutation procedure, we
propose a single-layer permutation procedure to reduce
the complexity and shows its effectiveness in experiments.
Intuitively, the three-layer structure of the statistic could
be generalized to four-layer, by defining different sets
of partition sets. However, three-layer structure is good
enough in most scenarios, and increasing layer will intro-
duce more complicated parameter sets and computational
complexity.

In our experiments, the multiple partitions are defined
by five popular sets of thresholds: [ 0.01, 0.1] , [ 0.001,
0.05] , [ 0.01, 0.05] , [ 0.001, 0.01, 0.1] , [ 0.001, 0.01, 0.05].
Note that the thresholds are all very popular cutoffs used
in statistical field and these sets are also used in [10]. We
suggest to use these partition sets in the applications.
In prin76ciple, a large value of permutation time B is
preferred in the experiments because it can yield more
accurate null distribution and thus obtain more accurate
p-value. However, a very large B results in extensive
computational load. Thus in our experiments, we use
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B = 1000 in simulation studies and B = 10, 000 in
applications, to balance the tradeoff.

Conclusion
We propose a robust statistical method rPCMP by using
multiple partitions of p-values in this work, to reduce the
sensitivity of GCP method. The rPCMP statistic is a three-
layer statistic, which takes into consideration the differ-
ent partitions of the individual p-values. This three-layer
statistic could be empirically estimated by a single-layer
permutation procedure. Type I error rates and statisti-
cal power are used to evaluate our rPCMP method. The
simulations studies show that our proposed rPCAMP
test method perform more powerful than some existing
p-value combination methods, with low type I error rates.
Our method is finally applied to a ACTC-Seq dataset,
to find the related gene functions for chromatin states
in mouse tumor cells. The proposed method succeeds in
detecting significant gene functions for tumor-specific T
cell dysfunction and reprogramming. One future research
could be to further adapt the current rPCMP for highly
correlated individual genes.
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