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Abstract

Background: Gene signatures are important to represent the molecular changes in the disease genomes or the cells
in specific conditions, and have been often used to separate samples into different groups for better research or
clinical treatment. While many methods and applications have been available in literature, there still lack powerful
ones that can take account of the complex data and detect the most informative signatures.

Methods: In this article, we present a new framework for identifying gene signatures using Pareto-optimal cluster
size identification for RNA-seq data. We first performed pre-filtering steps and normalization, then utilized the
empirical Bayes test in Limma package to identify the differentially expressed genes (DEGs). Next, we used a
multi-objective optimization technique, “Multi-objective optimization for collecting cluster alternatives” (MOCCA in R
package) on these DEGs to find Pareto-optimal cluster size, and then applied k-means clustering to the RNA-seq data
based on the optimal cluster size. The best cluster was obtained through computing the average Spearman’s
Correlation Score among all the genes in pair-wise manner belonging to the module. The best cluster is treated as the
signature for the respective disease or cellular condition.

Results: We applied our framework to a cervical cancer RNA-seq dataset, which included 253 squamous cell
carcinoma (SCC) samples and 22 adenocarcinoma (ADENO) samples. We identified a total of 582 DEGs by Limma
analysis of SCC versus ADENO samples. Among them, 260 are up-regulated genes and 322 are down-regulated genes.
Using MOCCA, we obtained seven Pareto-optimal clusters. The best cluster has a total of 35 DEGs consisting of
all-upregulated genes. For validation, we ran PAMR (prediction analysis for microarrays) classifier on the selected best
cluster, and assessed the classification performance. Our evaluation, measured by sensitivity, specificity, precision, and
accuracy, showed high confidence.

Conclusions: Our framework identified a multi-objective based cluster that is treated as a signature that can classify
the disease and control group of samples with higher classification performance (accuracy 0.935) for the
corresponding disease. Our method is useful to find signature for any RNA-seq or microarray data.
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Background

Detection of gene signatures from genomic data has
been an important topic in medical domain during the
last two decades. A “gene signature” can be stated as
a single or a group of genes in a cell having a unique
pattern of gene expression that is the consequence of
either changed biological process or altered pathogenic
medical terms.

Statistical analysis [1-7] is one of the most crucial tech-
niques to determine differentially expressed transcripts
[8-17] across a group of samples versus another group of
samples. For RNA-seq data, proper selection of normal-
ization and statistical test are very important, otherwise it
might generate wrong p-value for each transcript. Voom
normalization [18] is very useful for the RNA-seq data,
whereas Limma tool [2, 19-21] is also useful for this kind
of data.

Determining optimal cluster (module) number of the
data is a challenging problem. In general, we set the
number of clusters whenever we use any clustering algo-
rithm. Thus, that is not optimal. Hence, as a result, this
might increase the error-rate. Therefore, prior to use
any clustering algorithm, it is necessary to estimate the
Pareto-optimal cluster size using the combination of sev-
eral clustering algorithms and various cluster validation
indices as multi-objectives. It obviously reduces the error-
rate whenever clustering on the underlying data. Of note,
in case of the single-objective optimization problem [22],
the superiority of a solution over other existing solutions
can be produced very easily through the comparison of the
scores of their objective functions. However, in the case of
the multi-objective optimization problem [14, 15, 23-25]
the goodness of a solution is generally identified through
the dominance. The non-dominated solution set is basi-
cally a set of all the solutions which can not be dominated
by none of the members of the solution set. Interest-
ingly, the non-dominated set of the whole feasible decision
space is stated as the Pareto-optimal set [26], whereas
the boundary defined by the set of all the points that are
mapped from the Pareto-optimal set, is denoted as the
Pareto-optimal front [26]. MOCCA (Multi-objective opti-
mization for collecting cluster alternatives) [27] is a latest
robust estimator of Pareto-optimal cluster size through
aggregating the best cluster numbers of various clus-
tering algorithms and several cluster validation indices
as the multi-objectives. MOCCA provides the ranking
of the Pareto-optimal cluster sizes based upon their
domination.

There are many bioinformatics approaches available
for the gene signature identification. Mitra et al. identi-
fied gene-signature using a machine learning techniques
including the Random forest and random survival forest
algorithm for multiple myeloma [28]. Aziz et al. ana-
lyzed a microarray data using GeneSpring software and
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other existing R software and determined gene-signature
in colorectal cancer [29]. Chen et al. applied a decision-
tree analysis and survival analysis to identify gene sig-
nature on nonsmall-cell lung cancer [30]. Other related
research works were [31-43]. So far, a very few attempts
has been performed using through Pareto-optimal tech-
nique for gene signature identification. Basu et al. pro-
posed Strength Pareto Evolutionary Algorithm for gene
set selection [44]. Furthermore, neither pathway analy-
sis nor gene-ontology analysis was carried out by them.
Awad and Jong proposed another method of optimiza-
tion of Spectral Signatures Selection through MOGA
Multi-Objective Genetic Algorithm [45]. The overall per-
formance of these methods are not so satisfactory. Hence,
in this article, we developed a new framework of identi-
fying gene signature using Pareto-optimal cluster identi-
fication for RNA-seq data. In this regard, we conducted
some pre-filtering steps to remove the redundant feature
from the dataset. Next, we utilized Voom normaliza-
tion and then Limma tool to identify the differentially
expressed genes. Thereafter, we applied MOCCA R tool
on these differentially expressed genes using 12 objec-
tives (i.e., kmeans.MCA, kmeans.Jaccard, kmeans.FM,
kmeans.CQS, neuralgas. MCA, neuralgas.Jaccard, neural-
gas.FM, neuralgas.CQS, single. MCA, single.Jaccard, sin-
gle.FM and single.CQS) to estimate the Patero-optimal
cluster size, and then applied k-means clustering through
the optimal cluster size. The best cluster was obtained
through computing the average Spearman’s Correlation
Score among all the genes in pair-wise manner belong-
ing to the module. The best cluster is now treated as
a signature for the respective disease. There are many
ways to validate the gene signature. One of them is
classification of the features (genes) belonging to the
signature. For the purpose of validation, we applied
PAMR (prediction analysis for microarrays) [46] classi-
fier on all the features (genes) of selected best cluster,
and computed the classification performances. In this
work, we used TCGA cervical cancer dataset for exper-
iment. We obtained high classification accuracy in the
performance of the classifier. Finally, our method is use-
ful to find signatures for any RNA-seq or similar kind
of data.

Methods

In this article, we developed a framework for identifying
the significant gene module from a RNA-seq expression
dataset for a disease or specific cellular/physiological con-
dition. The resultant gene modules will be integrated to
obtain one final significant module. We used TCGA cer-
vical cancer gene expression data and the phenotype data
to test our method. The phenotype data was utilized to
obtain the subtype of cervical cancer samples according to
the Sample ID.
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Finding differentially expressed genes

First, we applied pre-filtering approaches (such as elimi-
nating the genes having “all zeros’, “NA value removal”).
After that, we carried out gene-wise standardization.
Thereafter, Voom normalization [18] and Limma R tool
[2, 47] were then utilized consecutively to identify the dif-
ferentially expressed genes. Limma used empirical Bayes
test. As a result, we obtained a set of statistically sig-
nificant genes. After that, we applied volcano plot using
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bi-filtering approaches (p-value filtering and fold change
filtering) consecutively. A up-regulated gene can be stated
as a gene that had p-value less than 0.05 and fold change
greater than 2, whereas a down-regulated gene be a gene
having p-value less than 0.05 and fold change less than 0.5.

Pareto-optimal cluster selection
Estimation of the Pareto-optimal cluster number of a
data-profile is a challenging problem. Cluster validity
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Fig. 1 Flowchart of the proposed framework
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Fig. 2 Voom normalization on the SCC and ADENO samples in TCGA cervical cancer dataset. SCC: squamous cell carcinoma. ADENO:

indices are basically developed to evaluate the perfor-
mance of a clustering and can be applied to rank various
cluster sizes. After finding the set of the differentially
expressed genes (up-regulated genes and down-regulated
genes), we applied a R package MOCCA [27] on the
data of the differentially expressed genes to determine
the optimal (robust) number of clusters. Bootstrapping
approach is utilized to identify the robust cluster numbers

depending upon several cluster validity indices. Of note,
these estimations will differ based on the employed clus-
tering technique as well as the cluster validation index.
The central idea of MOCCA approach is to evaluate the
robust (Pareto-optimal) cluster numbers through aggre-
gation of the best cluster numbers of various clustering
algorithms and various cluster validation indices in a
multi-objective environment. In details, firstly, MOCAA
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Fig. 3 Volcano plot for identifying up-regulated and down-regulated genes for ADENO vs. SCC subtypes in TCGA cervical cancer dataset
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Table 1 Twelve objectives in MOCCA and their values from the
TCGA cervical cancer RNA-seq dataset

Objective Objective value
kmeans.MCA 0.602
kmeans.Jaccard 0.509
kmeans.FM 0.608
kmeans.CQS 0978
neuralgas.MCA 0.602
neuralgas.Jaccard 0.518
neuralgas.FM 0613
neuralgas.CQS 0.979
single.MCA 0.551
singleJaccard 0.349
single.FM 0.520
single.CQS 0.977

conducts a multi-objective optimization to accumulate
cluster alternatives. Next, it extracts R number of boot-
strap samples from data-matrix. It computes the cluster-
ing for all specific cluster numbers K through the use of
three clustering techniques (kmeans, single-linkage and
neuralgas clustering). Thereafter, it utilizes various clus-
ter validation indices (MCA, Jaccard, FM and CQS) to
the clustering. Hence, a total of twelve objective func-
tions (i.e., kmeans.MCA, kmeans.Jaccard, kmeans.FM,
kmeans.CQS, neuralgas. MCA, neuralgas.Jaccard, neural-
gas.FM, neuralgas.CQS, single. MCA, single.Jaccard, sin-
gle.FM and single.CQS) were provided here to obtain
Pareto optimal (robust) number of clusters. However,
these outcomes (cluster validity indices) were then com-
pared through determining the Pareto-optimal cluster
sizes and ranking them depending upon their domina-
tion. Finally, a vector having the rank of Pareto-optimal
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cluster sizes had been provided based upon their domina-
tion along with the matrix whose each row was connected
with a specified Pareto-optimal cluster size, and each cell
entry referred to as how many objective functions it dom-
inates the clustering of the other remaining cluster sizes.
Specially, the Pareto-optimal cluster sizes were ranked
according to the lowest number of objectives for which
they dominated other remaining cluster sizes.

After determining the optimal number of clusters, we
identified the cluster information of each participated
gene through k-means clustering using the optimal cluster
size.

Ranking of the clusters

After that, we computed Spearman’s Correlation
Coefficient score among the participating pairwise genes
belonging to each individual resultant cluster and deter-
mined the average Spearman’s Correlation Coefficient
score of each cluster. The cluster whose average Spear-
man’s Correlation Coefficient score was maximum, was
chosen as best cluster. The combined gene set of the best
cluster was here treated as a gene-signature.

Signature selection and validation through classifier

For the validation of the gene signature, we conducted a
classification analysis containing all the features (genes)
and all the samples having two groups (SCC and ADENO)
using PAMR (prediction analysis for microarrays)
tool [46].

Here, in details, we carried out 10-fold cross-validation
and divided the data of all the genes belonging to
the signature into training set and test set. There-
after, we computed the threshold for which the error
of the cross-validation would be minimum. PAMR clas-
sifier in “e107” R package [48] was then utilized using
the training set and the resultant threshold for pre-
dicting the sample class of the test set. We repeat
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Fig. 4 Principal Component Analysis (PCA) of the clustering genes obtained from the comparison of ADENO with SCC subtypes in TCGA cervical
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the whole process for 10 times. We used four evalu-
ation metrics to compute the overall performance of
the classification. Finally, we computed average sensi-
tivity, average specificity, average precision and average
accuracy.

In addition to the classifier design, we performed
KEGG pathway and Gene-Ontology (GO) analyses for
the participating genes of the signature using DAVID
database. Here, we picked up the KEGG pathways or
Gene-Ontology terms whose enrichment p-values were
less than 0.05. Finally, we included a figure (Fig. 1) to
represent all the steps of our method.

Results

In this section, we firstly describe the source of the cervi-
cal cancer dataset and then demonstrate the experimental
results.

We used TCGA Cervical Squamous Cell Carcinoma
and Endocervical Adenocarcinoma (TCGA-CESC) gene
expression data (IlluminaHiSeq platform) using UCSC
Xena browser [49]. We used Endocervical type of ade-
nocarcinoma (ADENO) as control sample and cervical
squamous cell carcinoma (SCC) as diseased/experimental
samples. The number of control samples (ADENO) is
22, whereas the number of experimental samples (SCC)
is 253. The total number of genes is 20,530. We used
these types of samples for comparison, the method can be
applied to any pairs of samples (e.g. disease versus normal
samples).

First of all, we collected the data from the aforemen-
tioned TCGA cervical dataset covering a total of the
20,530 genes. We then eliminated the redundant features
using subsequent pre-filtering approaches as mentioned
in “Pareto-optimal cluster selection” section. After pre-
filtering steps, we obtained a total of 19,709 genes. After
that, we performed Voom normalization (in Fig. 2) and
then Limma software consecutively to identify the dif-
ferentially expressed genes. Thereafter, we utilized vol-
cano plot (in Fig. 3) using bi-filtering approaches (p-value
filtering and fold change filtering) consecutively. A up-
regulated gene can be stated as a gene that had p-value
less than 0.05 and fold change greater than 2, whereas a
down-regulated gene be a gene having p-value less than
0.05 and fold change less than 0.5. As a result, we obtained
a total number of 582 differentially expressed genes of
which 260 are up-regulated genes and remaining 322 are
down-regulated genes.

After finding the set of the up-regulated genes and
down-regulated genes, we applied a R package MOCCA
on the data of these genes to determine the Pareto-optimal
(robust) number of cluster. As a result, we obtained 5 as
Pareto-optimal cluster size. The objective values for the
twelve objective functions are here represented in Table 1.
After determining the optimal number of clusters (n=5),
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we collected the cluster information of each participated
gene through k-means clustering using the optimal cluster
size. Of note, the number of up-regulated genes in these
resultant five clusters are 0, 4, 95, 35 and 126, respec-
tively, whereas the number of down-regulated genes in
these resultant five clusters are 113, 209, 0, 0 and 0, respec-
tively. Of note, the modules might be detected in such
an iteration of k-means clustering using the fixed num-
ber of cluster numbers when the genes were likely to be
in convergence during the run of the k-means clustering.
Here it might be possible to obtain such clusters (mod-
ules) having imbalanced number of upregulated genes and
downregulated genes.

Next, we calculated Spearman’s Correlation Coefficient
score among the participating pairwise genes belonging
to each individual resultant cluster, and determined
the average Spearman’s Correlation Coefficient score of
each cluster. The average Spearman’s Correlation of the
five clusters were 0.312, 0.201, 0.309, 0.521 and 0.211,
respectively. The fourth cluster having highest average
Spearman’s Correlation Coefficient score (=0.521) was
selected as “gene-signature”. Of note, the gene-signature
contained 35 differentially expressed genes of which all
the genes were up-regulated. These up-regulated genes
are AKR1B10, ANXAS8, ANXAS8L2, BNC1, CLCA2,
CSTA, DSC3, FBXO27, FOXE1, GBP6, GJB6, GPR109A,
GPR115, GPR87, IVL, KRT6A, KRT6B, KRT6C,
LOC642587, NCCRP1, PKP1, PLAC2, RHCG, SBSN,
SERPINB13, SERPINB2, SERPINB4, SOX15, SPRRI1A,
SPRR2A, SPRR2D, TMEM40, TMPRSS11D, TP63 and
VSNLI1. Of note, we performed Principal Component
Analysis (PCA) plot on the resultant genes belonging to
the resultant clusters. The clusters are nicely visible in
Fig. 4.

Thereafter, as mentioned in “Signature selection and
validation through classifier” section, we performed 10-
fold cross-validation and then ran PAMR classifier on all
the features (genes) and all the samples having two groups
(SCC and ADENO) belonging to the resultant signature.
We repeat the whole process for 10 times. As a result, we
obtained very good average accuracy (=93.45%(10.297%))
in the classification study. For details about all the eval-
uation criteria (average sensitivity, average specificity,

Table 2 Classification performance of the resultant gene
signature having all the features and samples for the cervical
cancer RNA-seq dataset

Evaluation criteria Average(sd)
Sensitivity 0.934(0.27%)
Specificity 0.941(2.20%)
Precision 0.995(0.20%)
Accuracy 0.935(0.30%)




Mallik and Zhao BMC Systems Biology 2018, 12(Suppl 8):126

Page 27 of 115

Table 3 KEGG pathway and Gene Ontology (GO) enrichment analysis of the participating genes of the resultant gene signature for the

cervical cancer RNA-seq dataset

Gene set P-value Gene symbols

GO:BP?: GO:0030216 keratinocyte differentiation 1.01x10~7 SPRRI1A, SPRR2D, SPRR2A, TP63, CSTA, IVL

GO:CCb: GO:0001533 cornified envelop 8.06x10~7 SPRRIA, SPRR2D, SPRR2A, CSTA, IVL

GO:BP: GO:0018149 peptide cross-linking 9.91x10~/ SPRRIA, SPRR2D, SPRR2A, CSTA, IVL

GO:MF€: GO:0005198 structural molecule activity 1.30x1076 KRT6C, KRT6A, SPRR1A, SPRR2D, SPRR2A, CSTA,
L

GO:BP: GO:0031424 keratinization 544x107° SPRR1A, SPRR2D, SPRR2A, IVL

GO:CC GO:0070062 extracellular exosome 161x10~% KRT6C, KRT6A, GBP6, KRT6B, PKP1, NCCRPI,
RHCG, TMPRSST1D, AKR1B10, SBSN, SERPINB4,
SERPINB13, CSTA, IVL

GO:BP: GO:0008544 epidermis development 299x10~* SPRRIA, SPRR2D, SPRR2A, BNC1

GO:BP: GO:0010951 negative regulation of endopeptidase activity 841x10~4 SERPINB2, SERPINB4, SERPINB13, CSTA

KEGG pathway: hsa05146:Amoebiasis 0.002 SERPINB2, SERPINB4, SERPINB13

GO:MF: GO:0030674 protein binding, bridging 0.006 SPRR1A, CSTA, IVL

GO:MF GO:0004867 serine-type endopeptidase inhibitor activity 0.009 SERPINB2, SERPINB4, SERPINB13

GO:MF: GO:0002020 protease binding 0.010 SERPINB4, SERPINB13, CSTA

GO:CC: GO:0045095 keratin filament 0.011 KRT6C, KRT6A, KRT68B

GO:CC: GO:0005882 intermediate filament 0014 KRT6C, KRT6A, PKP1

GO:BP: GO:0045104 intermediate filament cytoskeleton organization 0.023 KRT6C, KRTEA

GO:BP: GO:0010466 negative regulation of peptidase activity 0.026 SERPINB4, CSTA

GO:BP: GO:0030162 regulation of proteolysis 0.032 SERPINB4, SERPINB13

GO:CC: GO:0030057 desmosome 0.038 PKP1, DSC3

GO:BP: GO:0031069 hair follicle morphogenesis 0.041 FOXET, TP63

GO:MF: GO:0004869 cysteine-type endopeptidase inhibitor activity 0.049 SERPINB13, CSTA

9 Biological Processing, © Cellular Components, ¢ Molecular Function

average precision, and average accuracy) are depicted in  (p-value 1.61x107%), GO:0045095 keratin filament

Table 2. (p-value 0.011), GO:0005882 intermediate filament

In addition, we performed gene set enrichment analysis ~ (p-value  0.014) and GO:0030057 desmosome

using KEGG pathway and Gene-Ontology (GO) terms
through DAVID online tool. As a result, we obtained
one significant KEGG pathway (hsa05146:Amoebiasis
having p-value 0.002) and nine significant GO:BP-
terms. These GO terms are GO:0030216 keratinocyte
differentiation (p-value 1.01x1077), GO:0018149 pep-
tide cross-linking (p-value 9.91x1077), GO:0031424
keratinization (p-value 5.44x107°), GO:0008544 epi-
dermis development (p-value 2.99x10~%), GO:0010951
negative  regulation of endopeptidase activity
(p-value 8.41x10™%), GO:0045104 intermediate filament
cytoskeleton organization (p-value 0.023), GO:0010466
negative regulation of peptidase activity (p-value 0.026),
GO:0030162 regulation of proteolysis (p-value 0.032)
and GO:0031069 hair follicle morphogenesis (p-value
0.041). We also identified five significant GO:CC-terms.
These GO terms are GO:0001533 cornified envelop
(p-value 8.06x1077), GO:0070062 extracellular exosome

(p-value 0.038). We found five significant GO:MEF-
terms. These GO terms are GO:0005198 structural
molecule activity (p-value 1.30x107°%), GO:0030674
protein binding, bridging (p-value 0.006), GO:0004867
serine-type endopeptidase inhibitor activity (p-value
0.009), GO:0002020 protease binding (p-value 0.010)
and GO:0004035 alkaline phosphatase activity (p-value
0.049). For details, see Table 3.

Discussion

There are a lot of group lasso techniques (sglasso [50],
flasso [50], etc.) available in the literature. But the objec-
tives of these lasso techniques are different from our
method. Lasso technique is basically a regression based
study, whereas our method is Pareto optimal based clus-
tering framework used only a single genomic or epigenetic
data. So, we cannot compare our method with lasso based
approaches. Furthermore, in the literature, there are a
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lot of co-expression based techniques for gene signature
identification. But, the majority of the existing methods
either follow a WGCNA module detection method or
something like that where the generalized modules are not
optimized [51, 52]. If the input threshold for the minimum
number of module is changed, the number of modules
is likely to change. To recover from the method, we first
optimized the number of clusters in our method, and
then used a standard clustering algorithm to find gene
modules. Finally, we computed average Spearman’s Cor-
relation Coefficient of each module, and obtained the top
ranked module as gene signature. Moreover, our method
produces very high classification performance for the sig-
nature in terms of sensitivity, specificity, accuracy and pre-
cision. Hence, our method is beneficial in various aspects
rather than other related existing methods.

Conclusions

Although there are many bioinformatics approaches avail-
able for the gene signature identification, the gene sig-
nature identification through Pareto-optimal technique
has never been tried before. Therefore, in this article, we
developed a new framework of identifying gene signature
using Pareto-optimal cluster identification for RNA-seq
data. In this regard, we conducted some pre-filtering
steps to remove the redundant feature from the dataset.
Next, we applied Voom normalization and then Limma
statistical tool to find the differentially expressed genes
consisting of up-regulated and down-regulated genes.
Thereafter, we applied MOCCA R tool on these differ-
entially expressed genes to estimate the Patero-optimal
cluster size, and then applied k-means clustering through
the optimal cluster size. The best cluster was obtained
through computing the average Spearman’s Correlation
Score among all the genes in pair-wise manner belonging
to the module/cluster. The best cluster is now treated as
a signature for the respective disease. For validation, we
applied PAMR classifier on all the genes of selected best
cluster, and computed the classification performances. In
this work, we used TCGA cervical cancer dataset for test-
ing, and we found a 35 gene signature. We obtained high
average classification accuracy (=0.935(+0.297%)). The
signature might be helpful for diagnosis of the disease.
Finally, our method is useful to identify gene signature for
any RNA-seq or similar kind of data.
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