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Abstract

Background: While there are a large number of bioinformatics datasets for clustering, many of them are
incomplete, i.e., missing attribute values in some data samples needed by clustering algorithms. A variety of clustering
algorithms have been proposed in the past years, but they usually are limited to cluster on the complete dataset.
Besides, conventional clustering algorithms cannot obtain a trade-off between accuracy and efficiency of the
clustering process since many essential parameters are determined by the human user’s experience.

Results: The paper proposes a Multiple Kernel Density Clustering algorithm for Incomplete datasets called MKDCI.
The MKDCI algorithm consists of recovering missing attribute values of input data samples, learning an optimally
combined kernel for clustering the input dataset, reducing dimensionality with the optimal kernel based on multiple
basis kernels, detecting cluster centroids with the Isolation Forests method, assigning clusters with arbitrary shape and
visualizing the results.

Conclusions: Extensive experiments on several well-known clustering datasets in bioinformatics field demonstrate
the effectiveness of the proposed MKDCI algorithm. Compared with existing density clustering algorithms and
parameter-free clustering algorithms, the proposed MKDCI algorithm tends to automatically produce clusters of
better quality on the incomplete dataset in bioinformatics.

Keywords: Density clustering, Matrix completion, Unsupervised multiple kernel learning, Dimensionality reduction,
Outlier detection

Background
Any non-uniform data contains an underlying structure
due to the heterogeneity of the data, the process of identi-
fying this structure in terms of grouping the data samples
is called clustering, and the resulting groups are called
clusters. The grouping is usually based on the similarity
measurements defined for the data samples. Clustering
provides a meaningful data analysis method concerning
data mining and data classification from large-scale data
samples, which is mostly used as an unsupervised learning
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method in a wide range of areas, for example, bioinfor-
matics, biomedicine and pattern recognition. It aims at
finding hidden structure, identifying clusters with simi-
lar characteristics in given datasets, and then grouping
the similar samples into the same cluster and classify
different data samples into different clusters. Thus, over
the past years, a number of clustering algorithms have
been proposed and improved. The most popular clus-
tering methods include partition-based (e.g., k-means [1]
and k-means++ [2]), density-based (e.g., DBSCAN [3],
DENCLUE [4] and CFSFDP [5]), graph-based (e.g., Spec-
tral [6]), and hierarchical (e.g., BIRCH [7] and ROCK [8])
methods.

Most of the proposed clustering algorithms assume that
the input dataset is complete during the past few years,

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12918-018-0630-6&domain=pdf
mailto: lkl@hnu.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Liao et al. BMC Systems Biology 2018, 12(Suppl 6):111 Page 100 of 128

they are not applicable directly if the input dataset is
incomplete, i.e., attribute values of some elements in the
datasets are missing. In reality, many large-scale datasets
are incomplete due to various reasons. Thus, it is essential
to make the proposed clustering algorithm to work on the
incomplete datasets, by recovering missing attribute val-
ues of incomplete samples in the input datasets. Besides,
compared with other clustering methods, the clusters
in the density clustering are the areas with a higher
density than their neighbors and a relatively larger dis-
similarity from other samples of the given dataset with
higher density; they also have an arbitrary shape in the
attribute space. However, most of existing density cluster-
ing algorithms are effective only when the human users set
appropriate parameters, for example, distance threshold,
the minimum number of samples to form a cluster, and
etc. The performance of clustering results is significantly
affected by these input parameters. Human users need to
guess them via several exploratory processes that make it
more inconvenient.

Traditional multiple kernel learning (MKL) methods are
supervised learning since that the kernel learning task
requires the class labels of training data samples. Never-
theless, class labels may not always be available in some
real-world scenarios beforehand, e.g., an unsupervised
learning task such as clustering and dimension reduc-
tion. Unsupervised Multiple Kernel Learning (UMKL) is
an unsupervised learning method. It does not require
class labels of training data as needed in a conventional
multiple kernel learning task. Then, it learns an optimal
kernel based on multiple predefined basis kernels and an
unlabeled dataset [9].

In a previous study, we have proposed a density clus-
tering approach with multiple kernels for high-dimension
bioinformatics dataset [10]. However, this initial study
did not provide detailed studies for the multiple kernel
density clustering approach on incomplete datasets. In
this work, we present a Multiple Kernel Density Cluster-
ing algorithm for Incomplete datasets in bioinformatics,
which is called MKDCI. In the MKDCI method, the
incomplete dataset is completed with matrix completion
method based on spare self-representation, then the clus-
ter centroids are automatically spotted with the Isolation
Forests method, and the clusters with an arbitrary shape
are easily obtained by the proposed multiple kernel den-
sity clustering method. Differing from existing density
clustering algorithms, the MKDCI algorithm functions
automatic determination of relative parameters for clus-
tering incomplete datasets, including the optimal value
of cut-off distance, the optimal combination of multiple
basis kernels, number of clusters and centroids. Besides
overcoming the limitation of determining many critical
parameters manually during clustering process, the pro-
posed MKDCI algorithm works on the high-dimensional

incomplete dataset and obtains clustering results with
improved accuracy and stability.

MKDCI clustering algorithm is evaluated by using an
extensive set of well-known bioinformatics datasets and
widely accepted clustering evaluation metrics that are
briefly described in the related section, with reasons why
these datasets are used. The excellent quality of the pro-
posed MKDCI algorithm arises from its key features. In
particular:

• It recovers the missing attributes values in the input
dataset by utilizing matrix completion based on
sparse self-representation, instead of directly fills the
missing attributes with average value or deletes the
data samples with missing attributes from the input
dataset.

• It learns an optimal kernel based on multiple
predefined basis kernels with a UMKL method, and
obtains the optimal value of cut-off distance dc with
entropic affinity, as opposed to adopt the strategy for
determining parameter dc as described in [5].

• It automatically detects cluster centroids of the given
dataset by using the Isolation Forests method [11],
which is based on the distribution of local density ρi
of each data sample and its minimum distance δi
from other data samples with higher density.

• It clusters high-dimensional data samples and
visualizes the results efficiently with Multiple Kernel
t-Distributed Stochastic Neighbor Embedding
(MKt-SNE).

The remaining parts of the paper are organized as
follows: In the next section, a brief overview of exist-
ing literature about matrix completion, density cluster-
ing algorithms and parameter-free clustering algorithms
are presented. Then, the proposed MKDCI algorithm is
discussed thoroughly, including formal definition of the
problem, steps, and mathematical properties. In the final
section, the selected bioinformatics clustering datasets
and their pre-processing approaches are introduced, the
tricks of the MKDCI implementation and quality evalu-
ation metrics, and discusses the extensive experimental
evaluation and its results.

Related work
It is a difficult task to perform clustering on the incom-
plete datasets in which some data samples contain missing
attribute values, but the missing value imputation can
be utilized to predict missing attribute values by rea-
soning from the observed attribute values of other data
samples. Consequently, the effectiveness of missing value
imputation is dependent on the observed attribute val-
ues of other data samples in the incomplete datasets, the
imputation of missing attribute values impacts on the
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clustering performance. To deal with k-means clustering
on the incomplete datasets, the similarity between two
incomplete data samples is measured with the distribu-
tion of the incomplete attributes [1]. Collective Kernel
Learning [12] collectively completes the kernel matrices
of incomplete datasets by inferring hidden sample sim-
ilarity from multiple incomplete datasets. However, it is
limited to deal with multiple incomplete datasets that
share common data samples and cover all data samples,
i.e., there are no missing data samples in the intersec-
tion set of data samples coming from all incomplete
datasets.

Matrix completion is to recover an incomplete matrix
where part of elements is missing. Linear matrix com-
pletion methods assume that the given data come from
linear transformations of low dimensional subspace and
the data matrix is low-rank. The property of low-rank
is utilized to recover the missing elements in the data
matrices by minimizing the matrix rank, and the missing
elements of a low-rank matrix can be recovered with high
probability under the constraints of missing rate, matrix
rank, and sampling scheme [13]. Matrix factorization and
rank minimization are two classic linear matrix complete
methods. For the matrix factorization based matrix com-
pletion methods, its main idea is that an m × n matrix
of rank-r can be factorized into two smaller matrices of
size m × r and r × n , where r < min(m, n), the missing
elements are predicted by finding such pairwise matri-
ces [14]. For rank minimization based matrix completion
methods, nuclear-norm is the sum of the singular values of
a matrix, and a number of extensions of nuclear-norm are
utilized to complete the matrices with missing elements.
For example, Schatten p-Norm [15] is used to recover
incomplete matrices, defined as the p-root of the sum of
singular values’ p-power.

Nuclear-norm is a special case of Schatten p-norm
when p = 1. Truncated nuclear-norm [16] refers to the
nuclear-norm subtracted by the sum of the largest few
singular values, and tends to get the better approxima-
tion than nuclear-norm for matrix rank since that the
largest few singular elements contain important informa-
tion and should be preserved. The iteratively reweighted
nuclear-norm algorithm [17] is proposed to deal with
Schatten p-Norm of the low-rank minimization problem,
and the evaluation results show that Schatten p-Norm
outperformed other non-convex non-smooth extensions
of rank-minimization. Besides, a spare self-representation
based matrix completion method is proposed for predict-
ing missing elements of the incomplete matrices drawn
from multiple subspaces [18].

Following the proposal of k-means clustering approach,
hundreds of new clustering methods have been intro-
duced in literature, especially in the last 20 years
many variants of classical clustering problems have been

studied, such as partition-based clustering, hierarchi-
cal clustering algorithms, graph-based clustering and
density-based clustering.

The key of partition-based clustering methods is that
they initially partition the dataset into k clusters and then
iteratively improve the accuracy of clustering by reas-
signing the data samples to a more appropriate cluster.
One of the most widely used clustering algorithms of
this kind is k-means [1], owing to its efficiency and log-
ical simplicity. The k-means algorithm randomly selects
k samples as initial k cluster centroids and assigns the
remaining samples to the nearest cluster regarding the
distance metric between them and the cluster centroids,
such as Euclidean distance and Mahalanobis distance.
Then, it iteratively updates the centroids as the new ini-
tial cluster centroids and reassigns the remaining samples
to the newly computed centroids, until the cluster reas-
signment no longer changes at each iteration. k-means
tends to generate approximately equal sized clusters for
minimizing intra-cluster distances and has the poor per-
formance when it is used to reproduce clusters for the
given dataset with the distribution of complex shape. k-
means++ [2] improves the performance of k-means by
optimizing the initial seeding, which reduces the vari-
ability of the cluster results by using the distance-based
probabilistic approach to selecting the k initial centroids.
However, most of the partition-based clustering methods
have a serious shortcoming that the clustering perfor-
mance relies heavily on the initial parameter k. They
tend to obtain a local optimum result rather than a
global one.

Hierarchical clustering algorithms can be classified into
two main categories: divisive clustering algorithms and
agglomerative clustering algorithms. The divisive cluster-
ing algorithms start from all samples as one cluster and
then recursively divides the cluster into many smaller
ones until the expected clusters are produced. Instead,
the agglomerative approaches, such as BIRCH [7] and
ROCK [8], initial every sample as a cluster and then iter-
atively merges pairs of clusters till obtaining the expected
number of clusters. Unfortunately, they are sensitive to
the clustering shape and slower than the partition-based
clustering methods.

The graph-based clustering algorithms represent the
non-uniform data samples as a graph, where a vertex
denotes a data sample, and the weight of an edge denotes
the similarity between the two data points connected by
the edge. Then a graph cut method is applied to cut the
whole graph into several sub-graphs, and each sub-graph
is a cluster. Spectral clustering is a widely used graph-
based clustering algorithm, and it can be implemented
efficiently with standard linear algebra methods [19]. The
main shortcoming of graph-based clustering algorithms is
the computational bottleneck.
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Density-based clustering algorithms find the points
with higher density as the cluster centroids over the distri-
bution of data samples [20]. The data samples having the
higher density over a region will form a cluster, such as
DBSCAN [3], DENCLUE [4] and CFSFDP [5].

DBSCAN algorithm uses the distance of data samples
to create a neighboring relation, implies prior information
of radius and minimum point number to form a clus-
ter, and it has shown good clustering performance on the
arbitrarily shaped distribution of data samples. However,
DBSCAN clustering algorithm has two shortcomings: (1)
Clustering results heavily depend on the maximum radius
of a neighborhood and the minimum number of the data
samples contained in this neighborhood. Nevertheless,
these two parameters are difficult to be determined by
human users. (2) Given the assumption that clusters have
similar densities, DBSCAN tends to obtain unintended
clustering results on varying densities of datasets. Com-
pared with DBSCAN, DBSCAN-GM [21] method tries to
find suitable parameters for DBSCAN, which uses Gaus-
sian Means to find a radial distance and a minimum
number of points to form clusters. Hierarchical Density-
Based Spatial Clustering (HDBSCAN) [22] forms clusters
of different densities with varying epsilon values and is
more robust for corresponding parameter selection.

DENCLUE [4] algorithm utilizes the Gaussian kernel
density estimation to define clusters and assigns the data
samples with the similarity local density maximum to
the same cluster. Owing to the hill climbing approach
is utilized, it may run unnecessary small steps in the
beginning and never exactly converges to the maximum.
DENCLUE 2.0 [23] introduces a new hill climbing method
for Gaussian kernels, which adjusts the step size auto-
matically at no extra costs, and the procedure converges
precisely towards a local maximum by reducing it to a
special case of the expectation maximization algorithm.
It needs fewer iterations and can be accelerated, but the
accuracy of clustering results is decreased.

“Clustering by fast search and find of density peaks
(CFSFDP)” [5] is a classic density clustering algorithm,
which can generate the clusters regardless of its den-
sity distribution and dimensions of data samples. This
method has efficient performance since that the whole
process of clustering only iterates the data points once,
and can correctly recognize clusters regardless of their
shape. However, this approach has several limitations as
follows: (1) It requires manual determination of a cut-off
threshold in the decision graph to determine the density
peaks. The cut-off threshold is a cut-off distance used to
calculate the local density of each data point. It is set by
users with respect to their experience. The choice of the
cut-off threshold for the given dataset is usually inefficient
and difficult in two special cases. One case is that the data
points with lower (or higher) local density and higher (or

lower) relative distance are hard to be determined whether
they are chosen as the density peaks or not. The other
case is that it results in one cluster is erroneously divided
into multiple sub-clusters when there is more than one
density peak in the same cluster. (2) The clustering results
are influenced by kernel functions used in dissimilarity
computation, such as Gaussian kernel, Exponential ker-
nel, Truncated kernel, Gravity kernel, etc. (3) The read
and write of the input distance matrix of CFSFDP algo-
rithm always exceeds the memory of personal computers
for clustering the large-scale dataset.

Kernel clustering algorithms can capture the non-linear
structure inherent in various datasets, such as kernel k-
means and spectral clustering, and usually achieve better
clustering performance and identify arbitrarily shaped
clusters. Spectral clustering is a weighted variant of kernel
k-means clustering algorithm. However, the performance
of the single kernel methods is largely determined by
choice of kernel functions. Unfortunately, the most appro-
priate kernel function for the target clustering task is often
unknown in advance, and it is time-consuming to search
exhaustively when the size of the user-defined pool of
basis kernels is large [24].

Besides, single kernel methods tend to fail to utilize
the heterogeneous features of the datasets fully, but most
data samples are represented by multiple groups of fea-
tures. Therefore, multiple kernel methods are proposed
to leverage the different features of the clustering datasets
fully. They can learn an appropriate kernel efficiently to
make the kernel k-means clustering robust and improved
in various scenarios [25]. Multiple kernel learning algo-
rithms attempt to optimize the combination kernel by
maximizing the centralized kernel alignment between the
combined kernel and the ideal kernel [26]. These mul-
tiple kernel clustering algorithms belong to supervised
kernel learning and require the class labels of training data
samples.

Differing from above clustering algorithm, Parameter
Free Clustering (PFClust) [27] can automatically cluster
data and identify a suitable number of clusters to group
them without requiring any parameters to be specified
by the human users. It partitions the input dataset into a
number of clusters that share some common attributes,
such as their minimum expectation value and variance
of intra-cluster similarity. However, its performance on
clustering high-dimensional datasets is poor.

Methods
Given an input dataset Xn×d = {x1, x2, . . . , xn} is a set
containing n data samples, and each data sample has
d attributes. The high dimensional dataset [28] means
that the number of attribute values for each data sam-
ple is larger than ten, i.e., d > 10. By predefin-
ing several basis kernel functions, e.g., Gaussian kernel,
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Exponential kernel, and Laplace kernel, the proposed
MKDCI algorithm aims to generate a cluster partition
D = {D1, D2, . . . , Dk} with 0 < k < n for the data samples
in the input dataset X, such that data samples in the same
cluster could have larger similarity than others in the dif-
ferent clusters. Thus, the proposed MKDCI algorithm is
illustrated in Algorithm 1.

Algorithm 1: The algorithm of MKDCI
Input: unlabeled dataset Xn×d, a set of basis kernel
{kt(·, ·), t = 1, . . . , m}
Output: k cluster partitions D = {D1, D2, . . . , Dk}
1) Learn an optimal kernel function k(·, ·) for the input
dataset Xn×d using the UMKL method.
2) Estimate the optimal value of cut-off distance dc
when entropy H is minimum.
3) Map the high-dimensional data samples xi to
2-dimensional space using the MKt-SNE algorithm.
4) Estimate local density ρi and relatively minimum
distance δi with the optimal kernel function k(·, ·) for
each data sample xi.
5) Cluster centroids for the input dataset Xn×d are
estimated by the intersection of the outliers of ρi and
δi, which are obtained respectively with the Isolation
Forests outlier detection method.
6) Fine cluster centroids by filtering false ones with the
initial cluster centroid and the value of cut-off distance
dc.
7) Assign the remaining data samples xi to the nearest
cluster Dq with higher ρi.

Completeness of incomplete datasets based on matrix
completion
A variety of bioinformatics datasets are naturally orga-
nized in matrix form since that the matrix provides a
convenient way for storing and analyzing a wide range
of bioinformatics data samples. However, a large number
of bioinformatics datasets are incomplete in many practi-
cal scenarios, in other words, there are missing values in
the matrix form of the dataset. The missing values usu-
ally raise from failures in data sampling processes. Matrix
completion [29] is an effective method to fill the missing
elements of an incomplete matrix and recover the entire
matrix format of bioinformatics datasets.

Conventional matrix completion approaches are based
on rank minimization, they are limited to process the
low-rank incomplete matrices, and the data samples are
sampled from a single low-dimensional subspace. The
approach of completing matrix based on sparse self-
representation [18], can recover matrices with following
properties: (a) the dimensions of each element in the

matrices are unknown; (b) the incomplete matrix is a
high-rank or full-rank matrix, and not limited to the
low-rank matrix.

Given an incomplete matrix Xn×d in which the observed
values are

{
Mi,j, (i, j) ∈ N

}
, each column of matrix X can

be represented by a linear combination of other columns,
matrix completion is to predict the missing values in
matrix X. Matrix self-representation refers to represent
the matrix X by itself multiplying a non-identity matrix S,
i.e., X = XS, and each element Si,j implies the contribution
of the i-th column to the j-th column of matrix X. Since a
set of basis vectors of X are defined by different subsets of
columns of X, S is not unique, an efficient representation
of X with a penalized S can be computed as follow:

min
S

‖ S ‖lS s.t. X = XS (1)

where ‖ S ‖lS denotes a specific regularization opera-
tor on S. To minimize the representation errors, Eq. (1) is
extended to

min
S

‖ S ‖lS +∂

2
‖ X − XS ‖2

F (2)

where ∂ is a regularization parameter, with a convex ‖
S ‖lS and a specific parameter ∂ , the solutions S of Eqs. (1)
and (2) are different. Assuming that the locations of the
elements of matrix X are N, and Xi,j = Mi,j, ∀(i, j) ∈ N , the
matrix completion can be finished by solving the following
optimization problems.

min
X,S

‖ S ‖lS s.t. X = XS,

Xi,j = Mi,j, ∀(i, j) ∈ N
(3)

min
X,S

‖ S ‖lS +∂

2
‖ X − XS ‖2

F

s.t. Xi,j = Mi,j, ∀(i, j) ∈ N
(4)

Thus, each element in an incomplete matrix is repre-
sented by a linear combination of values of other ele-
ments in the matrix, the angles among these data points
should be small enough, then the missing elements can
be recovered with matrix completion based on sparse
self-representation by solving the optimization problems
shown in Eqs. (3) and (4).

The sparse self-representation based matrix completion
is solved by applying l1 norm to the S in Eq. (3) as follow:

min
X,S

‖ S ‖1 s.t. X = XS, diag(S) = 0,

Xi,j = Mi,j, ∀(i, j) ∈ N
(5)

By applying Frobenius norm to S in Eq. (4) and get

min
X,S

‖ S ‖2
F +∂

2
‖ X − XS ‖2

F

s.t. diag(S) = 0, Xi,j = Mi,j, ∀(i, j) ∈ N
(6)
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which is least-square self-representation based matrix
completion. Setting the diagonal elements of S as zeros is
to avoid that a data sample is reconstructed by itself.

Learning an optimal kernel using unsupervised multiple
kernel learning
Kernel function
Kernel functions define a non-linear mapping � from the
input space X to a higher-dimensional Hilbert space H.
A function k(·, ·) : X × X → R is called a kernel over
X , denotes the similarity between input data samples x
and x′ . By applying a kernel function k(·, ·) to any two data
points x, x′ ∈ X , k(x, x′

) is equal to an inner product of
mapping �(x) and �(x′

) in the Hilbert space:

∀x, x
′ ∈ X , k

(
x, x

′) = �(x) · �
(

x
′)

(7)

For non-linear mapping � : X → H to a Hilbert space
H called a feature space. Since an inner product is a mea-
sure of the similarity of two vectors �(x) and �

(
x′), the

kernel function k(·, ·) is often interpreted as a similarity
measure between points of the input space X . An impor-
tant advantage of a kernel function k(·, ·) is efficiency:
the computation of k(x, x′

) is often significantly more effi-
cient than the computation of an inner product of the
non-linear mapping �(x) and �

(
x′) in Hilbert space H.

Kernel learning method
Kernel learning methods embed the input data into a
Hilbert space by specifying the inner product between
each pair of data points. They are formulated as convex
optimization problems, which have a single global opti-
mum and do not require heuristic choices of learning
rates, starting configurations or other parameters.

Let {xi}n
i=1 ⊆ X be a collection of n data samples, and

{�(xi)}n
i=1 ⊆ �(X ) be a non-linear mapping from the

input space X to its corresponding Hilbert space H, the
function k

(
x, x′) = �(x) · �

(
x′) is called a kernel k(·, ·).

A kernel matrix K = (Kij)
n
i,j=1 ∈ R

n×n is a square matrix,
where Kij = k(xi, xj) for the input data points x1, . . . , xn ∈
X and the kernel function k(·, ·). The kernel matrix stores
the inner product of features in the Hilbert space H so that
it is constrained by:

∑

i
�(xi) = 0 (8)

For the linear constraint on the elements of the kernel
matrix, Eq. (8) can be rewritten in terms of the kernel
matrix as follow:

0 =
∣∣∣∣∣

∑

i
�(xi)

∣∣∣∣∣

2

=
∑

ij
�(xi) · �(xj) =

∑

ij
Kij (9)

Thus, the kernel matrix is a symmetric positive semi-
definite matrix that contains its entries the inner products

between all pairs of input data points xi ⊆ X , and it deter-
mines the relative positions of those data points in the
Hilbert space H.

Unsupervised multiple kernel learning
Multiple Kernel Learning(MKL) methods [30] aim at
learning a linear combination of a set of predefined basis
kernels to identify an optimal kernel for the corresponding
applications. Compared with conventional kernel meth-
ods only using a single predefined kernel function, MKL
methods have the advantages of automatic kernel param-
eter tuning and capability of concatenating heterogeneous
data. To choose the most suitable kernel and exploit
heterogeneous features of input datasets, MKL methods
construct a few candidate kernels and merges them to
form a consensus kernel [26]. The traditional MKL algo-
rithms are supervised learning since that the optimal
kernel learning task requires the class labels of training
data samples. However, the class labels of training data
samples may not always be available prior to execute the
MKL task in some real-world scenarios, such as clus-
tering and dimension reduction. Unsupervised Multiple
Kernel Learning(UMKL) determines a linear combination
of multiple basis kernels by learning from unlabeled data
samples, and the generated kernel can be used in data
mining, such as clustering and classifying, as it is sup-
posed to provide an integrated feature of input datasets
[31]. Thus, to apply multiple kernels to clustering, MKDCI
obtain an optimal kernel by the UMKL method.

Consider a set of n training data samples D =
{(x1, y1), . . . , (xn, yn)}, where xi ∈ R

d is the feature vector
of input data samples with d attributes, yi is the unknown
class label of the input data sample xi, {kt(·, ·), t =
1, . . . , m} is a set of m predefined basis kernel functions,
and Kconv is the optimization domain of these candidate
basis kernels including Gaussian kernel, Exponential ker-
nel, Laplace kernel, etc. The goal of UMKL is to find an
optimal linear combination of the m basis kernel func-
tions, i.e., kw(·, ·) ∈ Kconv, and Kconv is defined as:

Kconv =
{

k(·, ·) =
m∑

t=1
μtkt(·, ·),

m∑

t=1
μt = 1, μt ≥ 0

} (10)

where each candidate kernel k(·, ·) is the combination of
m basis kernels {k1, . . . , km}, μt is the coefficient(weight)
of the t-th base kernel.

A simple choice for the coefficients μt is to set them all
equal to 1/m regardless of the input dataset feature. How-
ever, this choice treats all the basis kernels identically and
does not take into account the fact that some of the basis
kernels can be redundant or atypical. The better choice
is to solve an optimization problem so as to get a more
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suitably combined kernel for integrating all information of
the input dataset. Based on the above definition of Kconv,
the key task of UMKL is to obtain an optimal kernel k(·, ·)
for the input dataset according to the unlabeled training
data samples. Thus, the UMKL task can be formulated by
utilizing the following optimization principles:

1) A suitably combined kernel enables each training
data sample to be reconstructed from the localized
bases weighted by the kernel values, i.e., for each data
sample xi, the optimal kernel minimizes the
approximation error

∥∥∥xi − ∑
j xjk(xi, xj)

∥∥∥.
2) An idea kernel induces the kernel values that are

coincided with the original topology of the unlabeled
training dataset, i.e., the optimal kernel minimizes the
distortion over all training data samples∑

ij k(xi, xj) ‖ xi − xj ‖2.

Besides, a set of local bases Bi for each sample xi is
introduced to infer a local structure, which is used to
reconstruct data sample xi and compute its distortion.
According to the above two principles, the task of finding
an optimally combined kernel with UMKL illustrated in
Eq. (10) can be formulated as follows:

min
k∈Kconv,B

1
2

n∑

i=1

∥∥∥∥∥∥
xi −

∑

xj∈Bi

kijxj

∥∥∥∥∥∥

2

+ γ1

n∑

i=1

∑

xj∈Bi

kij ‖ xi − xj ‖2 +γ2|Bi|
(11)

where kij = k(xi, xj), the target kernel k and local bases set
Bi will be optimized by UMKL, the parameter γ1 controls
the trade-off between the coding error and the locality
distortion, and γ2 controls the size of local basis set Bi.

To simplify the formulation (11), a matrix D ∈ {0, 1}n×n

is introduced for each data sample xi, where each column
vector d ∈ {0, 1}n indicate its neighbors, i.e., Bi = {xj :
dj 	= 0}. Besides, by constraining the size of each local
base to certain constant, the optimization problem can be
further rewritten as follows:

min
μ∈�,D

1
2

‖ X(I − K ◦ D) ‖2
F +γ1trK ◦ D ◦ M(11ᵀ)

s.t. D ∈ {0, 1}n×n, ‖ di ‖1= B, i = 1, . . . , n
� = {

μ : μᵀ1 = 1, μ ≥ 0
}

(12)

where the optimal kernel matrix K is determined by
[ K]ij = ∑m

t=1 μtkt(xi, xj), 1 ≤ i, j ≤ n, B ≤ n denotes the
size of Bi for each data samples xi, ◦ denotes an element-
wise multiplication of two matrices, ‖ · ‖F denotes the
Frobenius-norm of a matrix, and tr denotes the trace of a
matrix.

To apply the UMKL method, the input dataset is split
into a training set and a test set with the ratio of 70:30 by
randomly sampling, i.e., they account for 70% and 30% of
entire input dataset respectively. According to each pre-
defined basis kernel, m kernel matrices are computed for
the training data samples, the parameters γ1 and B are
estimated by cross-validation on the training data sam-
ples, and the above optimization problem can be solved
with the algorithm discussed in [31]. Thus, by training on
the unlabeled input dataset with the UMKL method, an
optimally combined kernel k(·, ·) with the weights of the
predefined basis kernels μt are learned. The learned opti-
mal kernel can be utilized to compute the local density of
each data sample in the input dataset and dimensionality
reduction of high-dimensional datasets.

Computation of the optimal parameters
According to the filed theory, if a data sample is treated as
a physical object of the data field to diffuse its contribution
on the clustering task, the potential value of an object xi
in a data field is:

∅(xi) =
n∑

j=1

m∑

t=1
μtkt(xi, xj) (13)

where k(·, ·) is the kernel function learned by the UMKL
method and defines the rule that how an object diffuses its
contribution in the data field. The uncertainty of potential
distribution is usually measured by the entropy H for the
input dataset Xn×d defined as following:

H = −�n
i
∅i
Z

log
(
∅i
Z

)
, 0 ≤ H ≤ log(n) (14)

where ∅i is the potential value of each data point xi in the
scalar field, Z = ∑n

i ∅i is a normalization factor. Since
that the kernel k(·, ·) is learned based on Gaussian ker-
nel, Exponential kernel, Laplace kernel, etc., the values of
entropy H change with different σ for the input dataset
shown in Fig. 1. The value of H decreases quickly at first,
then increases slowly and finally maintains the similar
level when the parameter σ of basis kernels increases from
0 to ∞.

The radius of attenuation is regarded as the impact
scope for the optimal kernel function k(·, ·), the value of
the cut-off distance threshold dc is determined by the
radius of attenuation since that one data point only influ-
ence the other data points inside its radius. The most data
points stochastically distribute inside the interval between
the expectation plus threefold variances and the expec-
tation minus threefold variances in a normal distribution
[32], the radius of attenuation is 3σ√

2 for each point of
the data filed. Thus, the parameter σ obtained when the
entropy H reaches the smallest value, and 3σ√

2 is chosen as
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Fig. 1 Distribution of entropy H with the different values of σ for the DLBCL-B dataset

the optimal cut-off distance threshold dc in the proposed
MKDCI algorithm.

Dimensionality reduction of input data samples
Data samples in the Bioinformatics datasets usually con-
tain a lager number of attributes, and several applica-
tions require a clustering algorithm that can properly
treat this type of large-scale high-dimensional datasets
in terms of effectiveness and efficiency. To deal with
these limitations and enable the proposed algorithm to
be applied on the high-dimensional dataset effectively,
the high-dimensional data samples are first mapped into
two-dimensional space, for finding a non-linear mapping
between high-dimensional space and low-dimensional
space. The t-Distributed Stochastic Neighbour Embed-
ding (t-SNE) [33] is a popular method that creates a
two-dimensional map of data samples with hundreds
or even thousands of dimensions. By introducing opti-
mally combined kernel function k(·, ·) to t-SNE, called
Multiple Kernel t-SNE (MKt-SNE), dissimilarity of a pair-
wise data samples in high-dimensional space is defined
as joint probabilities pij illustrated as Eq. (15), and the
input matrix consists of distance between each pair data
samples in the given dataset:

pij = pj|i + pi|j
2n

,

pj|i = k(xi, xj)

�t 	=ik(xi, xt)
, pj|i = 0

(15)

where k(·, ·) is the optimally combined kernel function for
the input dataset which is obtained by the UMKL method.

In the low-dimensional space, the dissimilarity qij
between two data samples yi and yj is measured by a
normalized Student-t kernel is shown in Eq. (16):

qij =
(
1+ ‖ yi − yj ‖2)−1

�k 	=l
(
1+ ‖ yk − yl ‖2)−1 , qii = 0 (16)

The optimal locations of the data sample yj are deter-
mined by minimizing the Kullback-Leibler divergence
between the joint distributions P and Q:

C(Y ) = KL(P ‖ Q) = �i	=jpij log
(pij

qij

)
(17)

By minimizing C(Y ) over all data samples in the input
dataset, the objective function focuses on modeling sim-
ilar objects with higher pij and its neighbor points with
higher qij in two-dimensional space with the proposed
MKt-SNE method. Due to the objective function is non-
convex in low-dimension space, the objective function can
be minimized by descending along the gradient:

∂C
∂yi

= 4�i	=j(pij − qij)pijZ(yi − yj),

Z(yi − yj) = �i	=j
(
1+ ‖ yi − yj ‖2)−1

(18)

To approximate the MKt-SNE gradient, the gradient is
split into two parts of Fattr and Frep, which denote the sum
of all attractive forces and the sum of all repulsive forces
respectively.

∂C
∂yi

= 4(Fattr + Frep)

= 4
(
�i	=jpijqijZ(yi − yj) − �i	=jq2

ijZ(yi − yj)
)

(19)
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Thus, a faithful representation in the two-dimensional
space for each data sample in the input dataset can be
found with the MKt-SNE method. The method preserves
both local and global information of data samples in the
corresponding low-dimensional space [34] and is suit-
able to be applied on the large-scale datasets with several
attributes.

Calculation of local density and minimum distance
There are two critical parameters for each data samples xi
must be calculated for the proposed MKDCI algorithm,
i.e., its local density ρi and minimum distance δi from
other data samples with higher local density. Let the dis-
tance between each pair of data samples xi and xj be
denoted as d(xi, xj), the local density ρi of a data sample xi
denotes the number of data samples that are closer than
the cut-off distance threshold dc to itself and is defined as:

ρi =
n∑

j=1
X(d(xi, xj) − dc) (20)

The value of ρi is affected by statistical errors and the ker-
nel function that maps the data samples into new vector
spaces where the data samples become more easily sep-
arated or better structured, thus the optimally combined
kernel functions base on multiple basis kernels can be
carried into a new vector space without explicitly map-
ping the input data samples into this space. In the UMKL
method, each data sample has multiple features represen-
tations by learning an optimally combined kernel, and the
similarity between data samples can be estimated with the
optimal kernel function. Thus, the local density ρi with the
optimally combined kernel k(·, ·) is estimated by Eq. (21),
which utilizes the optimal cut-off distance dc as the input
parameter instead of the parameter σ in predefined basis
kernel functions:

ρi =
n∑

j=1
k(xi, xj; dc) (21)

Correspondingly, the minimum distance between the data
sample xi and other data samples with higher local density
denoted by δi , is defined as:

δi =

⎧
⎪⎨

⎪⎩

min
j:ρj>ρi

(dij), if∃ρj > ρi

max
j

(dij), if�ρj > ρi
(22)

Estimation of cluster centroids
To detect the suitable cluster centroids is the critical step
of the proposed MKDCI algorithm for generating the
optimum clustering results. In the MKDCI algorithm, the
cluster centroids are the set of data samples with higher

local density ρi and larger relative distance δi, the parame-
ter θi = ρi × δi transforms the local density ρi and relative
distance δi of each data sample into one parameter.

Since the outliers are few and different data samples
in the dataset, outlier detection methods can be used to
automatically detect cluster centroids based on the set of
local density ρi and parameter θi in the MKDCI algorithm.
Thus, cluster centroids with lager θi will be automatically
detected by searching for outliers in the set of variable θi
with the outlier detection method. Nevertheless, the data
samples both with high ρi and low δi, and with low ρi and
high δi will be assigned with high θi. Thus false cluster cen-
troids may be generated when the set of variable θi is only
searched. Therefore, the outliers in the set of variable δi
are also searched with the outlier detection method. Then,
the potential cluster centroids are determined by the inter-
section of the two sets of outliers detected from both θi
and δi.

There are several outlier detection methods, such as
Grubbs test, Dixon test, generalized Extreme Studen-
tized Deviate (ESD) test [35], Isolation Forests [11],
etc. Although generalized ESD test is much better than
Grubbs and Dixon test, it has the limitations that the
distribution of the univariate data samples approximately
follows a normal distribution and the number of data sam-
ples should be larger than 25. Isolation Forests method
detects outliers in the set of univariate data samples
regardless of the size of the dataset, and it detects outliers
purely based on the concept of isolation without employ-
ing any distance or density measure, i.e., fundamentally
different from other existing methods. It isolates samples
by randomly selecting a feature and then randomly select-
ing a split value between the maximum and minimum
values of the selected feature. To isolate anomaly samples
are easier as only a few conditions are needed to sepa-
rate those cases from the normal samples. Therefore, the
Isolation Forest algorithm constructs the separation by
firstly creating random decision trees. Then, the anomaly
score is calculated as the path length to isolate the given
dataset. To avoid issues caused by the randomness of the
decision tree algorithm, the process is repeated several
times, and the average path length is calculated and nor-
malized. Moreover, this method has the low linear time
complexity and a small memory requirement, and is more
effective and efficient than other ones using distance and
density measures. Therefore, the Isolation Forests method
is more suitable to detect the potential cluster centroids
in the MKDCI algorithm automatically. Figures 2a and b
show the distribution of potential cluster centroids for
the DLBCL-B bioinformatics dataset. It is found that the
delta (δ) against the rank of theta (θ ) is more suitable than
delta (δ) against the rank of rho (ρ) to detect potential
cluster centroids in the dataset. Figure 2c is the visual-
ization of the ground-truth clusters and potential cluster
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a b

c

Fig. 2 Illustration of potential cluster centroids automatically detected using the proposed MKDCI algorithm on the DLBCL-B dataset. a Scatter plot
of the distribution of potential cluster centroids in which plots of delta(δ) against the rank of rho(ρ), and potential cluster centroids have significantly
higher values of δ and ρ . b Scatter plot of the distribution of potential cluster centroids in which plots of delta(δ) against theta(θ ) are generated with
MKDCI’s automatic detection method, and potential cluster centroids are easier recognized in this region. c Scatter plot of the DLBCL-B dataset with
three ground-truth clusters, ground-truth clusters are color labeled, and potential cluster centroids are labeled by its data point index with a square

centroids for the DLBCL-B bioinformatics dataset with
the MKt-SNE method.

There might be multiple potential cluster centroids that
have short relative distance between each other. Thus,
the false cluster centroids should be deleted. First, the
potential cluster centroids are sorted in descending order
according to their local density, and the first cluster cen-
troid is considered as the first actual cluster centroid. If
the minimum distance between another potential cluster
centroid and the known actual cluster centroids is shorter
than the cut-off distance threshold dc, the potential clus-
ter center will be removed from the set of potential cluster
centroids, and become a member of the cluster. Other-
wise, the potential cluster centroid is recognized as a new
actual cluster center to form another cluster. Finally, the
actual cluster centroids will be generated by refining those
potential cluster centroids.

Assignment of data samples
For the proposed MKDCI algorithm, the last step is to
assign the remaining data samples to the corresponding
cluster according to its both ρi and δi of the nearest neigh-
bors. First, according to detected cluster centroids, the
remaining data samples are assigned to its nearest cluster
centroids with higher ρi as follows:

Dk =
{

xi, if i ∈ centroids
xj, otherwise, ρj > ρi ∧ dij < dc

(23)

Second, to recognize the noise points, a border region for
each cluster is defined as the set of data samples assigned
to the cluster Dk , but being within the cut-off distance
threshold dc from data samples assigned to other clusters
Dk:k 	=l. For the cluster Dk , the MKDCI algorithm searches
the lowest density ρb within its border region, the data
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samples with a local density higher than ρb and belong-
ing to the cluster Dk are assigned as the data samples
of this cluster. The other data samples in the cluster Dk
are determined as noise. Thus, the assignment of data
samples is completed only in a single step, in contrast
with other clustering algorithms where the generation of
correct clusters usually needs to be optimized iteratively.

Thus, the flowchart of MKDCI algorithm is concluded
in Fig. 3. To improve the performance of density clustering
with proposed MKDCI algorithm, datasets should be pre-
processed, such as to recover the missing attribute values
of data samples and to normalize attribute values.

Results
In this section, test datasets and corresponding pre-
processing methodology are described firstly. Then, the
implementation trick of MKDCI algorithm are explored,

Fig. 3 Flowchart of MKDCI algorithm

i.e., the input distance matrix is calculated by the split-
apply-combine strategy so that the proposed cluster-
ing algorithm can efficiently process high-dimensional
datasets with millions of data samples. Finally, the evalu-
ation metrics, extensive experiments and their results are
discussed in detail.

Datasets and pre-processing
To evaluate the quality of the proposed MKDCI algo-
rithm, the experiments on the following well-known
bioinformatics datasets have been carried out:

(1) Primary Biliary Cirrhosis (PBC) dataset contains the
follow-up laboratory data for each studied patient
with fatal chronic liver disease of unknown cause.
Between 1974 and 1984, a double-blinded
randomized clinical trial conducted in primary biliary
cirrhosis of the liver, recording a large number of
clinical, biochemical, serologic, and histologic
parameters. This dataset also records the survival
status of these studied patient in 1986.

(2) Anuran Calls (MFCCs) dataset is used to recognize
anuran species through their calls. It is a multi-label
dataset with three labels, and the records belong to 4
different families, 8 genera, and 10 species according
to 7195 syllables. In the following experiments, the
species labels severed as the ground truth labels.

(3) Diffuse large B-cell lymphoma (DLBCL-B) dataset
contains the data samples deriving from germinal
center cells, which can be distinguished from their
immunoglobulin gene rearrangements, morphologic,
molecular characteristics and clinical presentation.
Disease staging and choice of treatment, including
the type, number, sequence of chemotherapy agents
and the need for consolidative radiation therapy,
should be made base on these clinical factors, which
collectively determine response to therapy and
survival.

(4) The other four bioinformatics datasets derive from
UCI Machine Learning Repository (http://archive.ics.
uci.edu/ml) including Wine, Breast Cancer
Wisconsin Diagnostic (WDBC), Mice Protein
Expression (MPE) and Epileptic Seizure Recognition
(ESR) dataset. Wine dataset contains the results of a
chemical analysis of wines grown in the same region
but derived from three different cultivars, and the
analysis determines the quantities of 13 constituents
found in each type of wines. WDBC dataset consists
of features which were computed from digitized
images of FNA tests on a breast mass. MPE dataset
consists of the expression levels of proteins/protein
modifications that produced detectable signals in the
nuclear fraction of the cortex. ESR dataset is a
pre-processed and re-structured/reshaped version of

http://a rchive.ics.uci.edu/ml
http://a rchive.ics.uci.edu/ml
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a very commonly used dataset featuring epileptic
seizure detection.

First, attributes with missing values in datasets will
result in returning with error values during the pro-
cess of clustering. For instance, PBC dataset contains
72 incomplete data samples that account for 20.52% of
all data samples, they comprise 128 missing values in
total. MPE dataset contains 528 incomplete data sam-
ples that account for 48.89% of all data samples, they
comprise 1396 missing values in total. To compare with
the traditional method of filling missing values, prepro-
cessed datasets PBC and MPE are denoted as PBC-A and
MPE-A respectively when missing attribute values of data
samples are filled with the average value of correspond-
ing attributes. Otherwise, preprocessed datasets PBC and
MPE are denoted as PBC-R and MPE-R respectively when
missing attribute values are recovered with the method
of matrix completion based on spare self-representation.
Second, since the high-dimensional dataset contains sev-
eral attribute values of varying scale, these attribute values
of data samples in the training set and the test set are
normalized with z-scores normalization scheme shown
in Eq. (24), to avoid inappropriate assignment of data
samples during clustering.

Z = X − μ

σ
(24)

where X is values of one attribute for each data sample in
the input dataset to be normalized, μ is the mean value
of this attribute, and δ is the standard deviation of this
attribute. After pre-processing with above two steps, the
selected datasets are described in Table 1.

Computation of distance matrix for large-scale datasets
To compute and store the entire distance matrix for a
large-scale dataset with millions of data samples is mem-
ory intensive, and the matrix tends to beyond the memory
capacity of current personal computers. The split-apply-
combine strategy [36] breaks up a big matrix into man-
ageable chunks, operate on each chunk independently
and then pulls the chunks together. Thus, the proposed
MKDCI algorithm utilizes the split-apply-combine strat-
egy to calculate and store the distance matrix, in order to

make the algorithm applicable to the large-scale bioinfor-
matics datasets.

As illustrated in Fig. 4, the data samples in the given
dataset firstly are split row-wisely into k different chunks,
then the corresponding distance matrix for each chunk
is computed independently, in order to restrict the dis-
tance matrix in a limited size. Besides the local den-
sity ρi and relatively minimum distance δi, and a new
parameter called link-cell ID is calculated for each chunk,
which is the index of its nearest point with higher den-
sity to avoid duplicate calculations in the final assigning
step of the proposed MKDCI algorithm. Finally, these
parameters from all chunks are combined to automati-
cally detect cluster centroids and assign remaining data
samples to correct clusters. Thus, the split-apply-combine
strategy implied in the MKDCI algorithm reduces the
memory burden and also calculates distance matrix
to be accelerated on multi-core CPUs and many-core
GPUs [37–39].

Evaluation metrics of clustering quality
There are mainly three types of clustering evaluation met-
rics that are widely used, namely contingency table-based
measures, pairwise measures and entropy-based mea-
sures. Contingency table-based measures, such as accu-
racy, error rate and F-measure (F-m), assume that the
ground-truth clustering labels are known as a priori. Pair-
wise measures, such as Adjusted Rand-Index (ARI) and
Adjusted Rand Error (aRe), utilize the partition informa-
tion and the clustering labels over all pairs of data sam-
ples. Entropy-based measures, such as Adjusted Mutual
Information (AMI) and Normalized Mutual Information
(NMI), make use of entropy concept as well as ground-
truth clustering labels to evaluate the clustering results.

F-m and aRe are not suitable to describe a compari-
son among different clustering algorithms on the datasets
with numerous noisy data samples because they only
take already clustered data samples into account. Hence,
AMI and NMI are employed to quantify the amount of
shared information between the clusters obtained by the
clustering algorithm and the given ground-truth clus-
ters in the datasets. Thus, four different metrics are
jointly used in this section to evaluate the quality of dif-
ferent clustering algorithms, including F-m, aRe, NMI
and AMI.

Table 1 Summarizes the properties of the datasets

Properties PBC-A PBC-R MFCCs DLBCL-B Wine WDBC MPE-A MPE-R ESR

k 4 4 10 3 3 3 8 8 5

dim 18 18 22 643 13 30 80 80 178

N 624 624 7195 180 178 569 1080 1080 11500

k is the number of ground-truth clusters in each dataset, dim is the dimension of each data sample in the datasets, and N is the number of data samples in the datasets
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Fig. 4 Split-apply-combine strategy in MKDCI

To compute the metrics of clustering evaluation,
assume the set C is the distribution of the ground-
truth clustering labels in the input dataset, which con-
tains n data samples and is partitioned into t subsets
{C1, . . . , Ct}. Meanwhile, the distribution of cluster-
ing results is the set D = {D1, . . . , Dk}, which is
obtained by a clustering algorithm applied to the same
dataset.

F-m and aRe
Accuracy can be ambiguous, because it only evaluates the
exactness of individual clusters, regardless of the over-
all number of clusters. Thus the larger the number of
identified clusters is, the higher the accuracy will be.
Meanwhile, error rate only calculates the mispredicted
ratio of individual clusters, regardless of the total num-
ber of clusters, leading to the clusters with more mis-
predicted samples have the higher error rate. Whereas,
F-m takes the overall number of clusters into account
and keeps a balance between the overall number of
clusters and the accuracy (or error rate) of individual
clusters.

The F-m measures the success of retrieving the ground-
truth clusters C in items of the precision and recall
of clustering results D produced by the clustering algo-
rithm, whereby the prefect clustering result is denoted
by F-m = 1.

Let the parameters be denoted as follows:

• mi,j = |Ci ∩ Dj| is the number of data samples in the
ground-truth cluster Ci assigned to the generated
cluster Dj by a clustering algorithm,

• mi,all = |Ci| is the total number of data samples in
the ground-truth cluster Ci,

• mall,j = |Dj| is the total number of data samples in
the generated cluster Dj,

• mall,all = |C| is the total number of data samples in
the dataset except the data samples that are difficult

to clustering, i.e., the values of their ground-truth
clustering labels are -1.

Thus, for each pairwise cluster Ci and Dj, precision(i, j) =
mij

mall,j
and recall(i, j) = mij

mi,all
are computed, and F-m is

defined as:

F-m =
t∑

i

mi,all
mall.all

× max
j

{F(i, j)},

F(i, j) = 2 × precision(i, j) × recall(i, j)
precision(i, j) + recall(i, j)

(25)

aRe is derived from the ARI and measures the differences
between the ground-truth clusters and clustering results
produced by a clustering algorithm. ARI measures the
concordance between different clustering results, and is
defined as:

ARI =
(n

2
)
(mi,j + mall,j) − (u + v)

(n
2
)2 − (u + v)

,

u = (
mi,j + mall.all

) (
mi,j + mi,all

)
,

v = (
mi,all + mall,j

) (
mall,all + mall,j

)

(26)

The perfect clustering algorithm is that the predicted
clusters generated by the algorithm are identical to the
ground-truth clusters. Thus, aRe is defined as 1−ARI, the
prefect clustering clusters is denoted by aRe = 0.

NMI and AMI
By comparing clustering results with corresponding
ground-truth clusters directly based on the data sam-
ples, it is hard to decide whether the assignment of one
clustering result is right or wrong for the given dataset.
Therefore, an effective method to evaluate the quality
of the clustering results is to measure the relationships
of each pair of data samples in the dataset. For each pair of
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data samples that share at least one cluster in the overlap-
ping clustering results, pairwise measures try to estimate
whether the prediction of this pair as being in the same
cluster was correct with respect to the true underlying
categories in the dataset.

NMI evaluates the similarity between the ground-
truth labels of data samples and the clustering results
in an information theoretic sense that makes a trade-off
between the number of clusters and quality. It is com-
puted by regarding the ground-truth labels and clustering
results as the random variable X and Y respectively, and is
formulated as [40]:

NMI(X, Y ) = I(X, Y )√
H(X)H(Y )

(27)

Specifically, AMI is a variation of mutual information and
corrects the effect of agreement solely due to the changes
between two clusters, which is defined as Eq. ( 28):

AMI(X, Y ) = I(X, Y ) − E(I(X, Y ))

max{H(X), H(Y )} − E(I(X, Y ))

I(X, Y ) =
t−1∑

i=0

k−1∑

j=0
Nij log

( nNij

NiNj

)
,

H(X) =
t−1∑

i=0
Ni log

Ni
n

,

H(Y ) =
k−1∑

j=0
Nj log

Nj

n

(28)

where I(X, Y ) is the mutual information between the
ground-truth labels X and clustering results Y, it is a non-
negative quantity upper bounded by the entropies H(X)

and H(Y ). H(X) and H(Y ) are the entropy of X and
Y respectively, max{H(X), H(Y )} denotes the maximum
entropy of X and Y, and E(I(X, Y )) is the expected value of
I(X, Y ). Nij denotes the number of data samples belonging
to both cluster Ci and Dj, Ni and Nj denote the number
of data samples in the cluster Ci and Dj respectively. The
range of NMI and AMI is from 0 to 1. Their values are

Table 2 Quality comparison of different clustering algorithms on bioinformatics datasets

Dataset Measure
metrics

PBC-A PBC-R MFCCs DLBCL-B Wine WDBC MPE-A MPE-R ESR

MKDCI F-m 0.351 0.360 0.728 0.749 0.652 0.858 0.470 0.482 0.491

aRe 0.956 0.953 0.406 0.526 0.704 0.382 0.693 0.689 0.852

NMI 0.351 0.362 0.692 0.532 0.414 0.495 0.538 0.554 0.446

AMI 0.070 0.076 0.615 0.496 0.379 0.453 0.429 0.438 0.219

DBSCAN (MinPts = 4, ε1) F-m 0.660 0.665 0.509 0.510 0.576 0.811 0.448 0.452 0.350

aRe 0.999 0.998 0.858 0.956 0.772 0.602 0.796 0.794 0.967

NMI 0.023 0.026 0.221 0.054 0.361 0.395 0.492 0.499 0.060

AMI 0.005 0.005 0.124 0.039 0.269 0.295 0.347 0.347 0.003

HDBSCAN (MinPts = 4) F-m 0.623 0.627 0.785 0.565 0.620 0.853 0.265 0.271 0.332

aRe 0.998 0.998 0.260 0.985 0.715 0.386 0.926 0.923 0.989

NMI 0.029 0.032 0.686 0.174 0.386 0.469 0.518 0.523 0.082

AMI 0.019 0.020 0.613 0.115 0.353 0.373 0.335 0.337 0.020

DENCLUE2.0
(ε2, h = std(X)/5)

F-m 0.023 0.025 0.415 0.493 0.372 0.007 0.304 0.308 0.650

aRe 0.997 0.996 0.983 0.987 0.908 0.998 0.708 0.699 0.685

NMI 0.344 0.347 0.105 0.184 0.385 0.322 0.472 0.478 0.472

AMI 0.061 0.064 0.018 0.114 0.122 0.002 0.392 0.396 0.201

PFClust F-m 0.315 0.320 0.375 0.442 0.373 0.432 0.202 0.207 0.271

aRe 0.981 0.978 0.887 0.993 0.971 0.988 0.998 0.998 0.872

NMI 0.002 0.002 0.123 0.043 0.033 0.019 0.024 0.028 0.135

AMI 0.001 0.001 0.094 0.001 0.001 0.007 0.006 0.007 0.111

Parameters ε1 24.657 24.657 0.306 19.819 3.626 20.413 2.221 2.221 1.426

ε2 19.591 19.591 0.306 0.413 6.552 1.426 0.432 0.432 1.853

MinPts is the minimum number of data samples required to form a cluster, ε1 is the maximum distance between two data samples for them to be considered as in the same
neighborhood, ε2 is the convergence threshold for density attractors and h is the parameter of a Gaussian kernel. ε1 and ε2 are the corresponding parameters when the
better clustering results are obtained for F-m evaluation metric during clustering with ten random values of the parameters between 0.0 and 50.0
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larger denotes that the clustering results are better, and the
value equal to 1 denotes that the two clusters are identical.

Evaluation results
To evaluate the performance of the proposed MKDCI
algorithm on the seven bioinformatics clustering datasets
shown in Table 1, the selected basis kernels contain the
Gaussian kernel, Exponential kernel, and Laplace kernel.
Compared with three existing well-known density-based
clustering algorithms, namely DBSCAN, HDBSCAN,
DENCLUE2.0, and a parameter-free clustering algorithm
PFClust, the quality evaluation results on the seven bioin-
formatics clustering datasets are illustrated in Table 2.

Discussion
Compared with the PFClust algorithm, the proposed
MKDCI algorithm significantly improves the quality of
the parameter-free clustering. Meanwhile, MKDCI algo-
rithm also automatically generate clustering results of
higher quality on the most of high-dimensional bioinfor-
matics datasets. The reason is that the utilized UMKL
methods can obtain the optimal map between high-
dimensional data samples and the low-dimensional data
samples, and MKDCI algorithm automatically determines
the optimally combined kernel function and similar-
ity measure for dimensionality reduction and density
clustering respectively. Compared with the method of

a b

c

e

d

Fig. 5 Illustration of results for the proposed MKDCI algorithm and other density clustering algorithms on PBC-R dataset. The numbers in a denotes
cluster centroids obtained with the proposed MKDCI algorithm. b, c, d and e denote cluster results on PBC-R dataset generated by clustering
algorithm DBSCAN, HDBSCAN, DENCLUE 2.0, PFClust respectively
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filling missing attribute values of data samples with the
average value, the method of matrix completion can
improve slightly the performance of clustering algorithm.
But the improvement of performance of MKDCI algo-
rithm is mainly attributed to the optimization of com-
bined kernels learned with UMKL. However, for the
part of evaluation metrics on the PBC, MFCCs and ESR
datasets, such as F-m and aRe, the quality of the cluster-
ing results generated by the MKDCI algorithm is lower
than the ones generated by the HDBSCAN and DEN-
CLUE2.0 algorithms. This is because these evaluation
metrics only take already clustered data samples into
account. The other four density clustering approaches

need to determine parameters manually beforehand, and
the clustering results heavily depend on the user’s expe-
rience, while the advantage of MKDCI algorithm is free
from requiring determination of critical parameters by
users. Thus, the proposed MKDCI is an efficient unsu-
pervised learning algorithm. It is especially suitable for
analyzing the high-dimensional bioinformatics data sam-
ples in a wide variety of applications, since that it aims
to determine an optimally linear combination of multi-
ple basis kernels by learning from the unlabeled dataset
and automatically complete the clustering process with-
out critical parameters determined manually by users in
advance.

a b

c

e

d

Fig. 6 Illustration of results for the proposed MKDCI algorithm and other density clustering algorithms on MPE-R dataset. The numbers in a denotes
cluster centroids obtained with the proposed MKDCI algorith. b, c, d and e denote cluster results on MPE-R dataset generated by clustering
algorithm DBSCAN, HDBSCAN, DENCLUE 2.0, PFClust respectively



Liao et al. BMC Systems Biology 2018, 12(Suppl 6):111 Page 115 of 128

Meanwhile, to visualize the results of different clus-
tering algorithms, 2D figures of t-SNE for the proposed
MKDCI algorithm and other density clustering algo-
rithms on PBC-R and MPE-R datasets are shown in
Figs. 5 and 6.

Conclusions
The proposed MKDCI algorithm provides an automatic
density clustering approach with multiple kernels for
bioinformatics datasets. It is especially suitable for larger-
scale incomplete datasets in bioinformatics by combin-
ing the advantages of the density clustering method,
prediction of the missing attribute values of data samples
with the matrix completion method, the UMKL method
for unlabeled training data samples, detection of clus-
ter centroids based on the Isolation Forests method. The
quality of the proposed MKDCI algorithm is evaluated
with several well-known evaluation metrics, the results
on multiple bioinformatics datasets with missing attribute
values show that the MKDCI algorithm generates better
clustering results than most of density clustering methods
and the PFClust parameter-free clustering method. How-
ever, the optimal kernel used in the MKDCI algorithm is
only the combination of three pre-specified basis kernels,
the performance of the clustering can be improved by uti-
lizing more basis kernels to obtain more suitable kernel
function. Meanwhile, due to the sensitivity and privacy of
the bioinformatics datasets, the privacy-preserving clus-
tering method based on differential privacy is another
promising topic for the future research.
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