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Extracting proteins involved in disease
progression using temporally connected
networks
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Abstract

Background: Metabolic disorders such as obesity and diabetes are diseases which develop gradually over time in
an individual and through the perturbations of genes. Systematic experiments tracking disease progression at gene
level are usually conducted giving a temporal microarray data. There is a need for developing methods to analyze
such complex data and extract important proteins which could be involved in temporal progression of the data
and hence progression of the disease.

Results: In the present study, we have considered a temporal microarray data from an experiment conducted
to study development of obesity and diabetes in mice. We have used this data along with an available
Protein-Protein Interaction network to find a network of interactions between proteins which reproduces the
next time point data from previous time point data. We show that the resulting network can be mined to
identify critical nodes involved in the temporal progression of perturbations. We further show that published
algorithms can be applied on such connected network to mine important proteins and show an overlap
between outputs from published and our algorithms. The importance of set of proteins identified was
supported by literature as well as was further validated by comparing them with the positive genes dataset
from OMIM database which shows significant overlap.

Conclusions: The critical proteins identified from algorithms can be hypothesized to play important role in
temporal progression of the data.
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Background
High throughput technologies like Microarray [1, 2] or
RNAseq [3] allows to systematically study a disease con-
dition or how organism is responding to different condi-
tions of the experiment [4]. There are many diseases
that progress slowly and develop over time. To study
such disease progression, it is important to capture high
throughput data at different time points of disease devel-
opment. Several studies have been done capturing the
temporal changes in genes expression in the context of
such slowly developing diseases [5–8]. Such temporal
data gives the expression of genes at each time point of
the experiment. Next step is to find the gene/protein

targets which are important in the temporal progression
of such data. We recently published a similar work [9]
tracking disease progression where the biological
processes perturbed at each time point were found and
connected using a network of connected biological pro-
cesses The work analyses progression of data by finding
processes perturbed temporally and connecting them
resulting in paths, giving proteins of processes of the
paths as gene/protein targets. A more precise assessment
of importance could be firstly quantitatively defining
progression and then quantifying the effect of removal
of the protein from the network on progression, which
was missing in the previous work [9]. Here, we address
this limitation by making a novel algorithm giving a
more detailed quantitative assessment of the importance
of the protein in question. Knowledge of such targets
could aid in the understanding the effect of disease
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condition at gene/protein level. A related work looking
at temporal progression have been done which only uses
the expression data to infer the interactions among indi-
vidual genes such that given initial data, subsequent data
could be reproduced but failed to determine such inter-
actions [10].
Here, we hypothesized that finding a matrix of interac-

tions between proteins which reproduces the next time
point data from the previous time point data could help
in for finding targets important in temporal progression
of the data. Systematic deletion of proteins and connec-
tions from such a matrix and recalculating the effect of
perturbation on later time point data could help in find-
ing proteins whose perturbation had maximal effect.
Such proteins could be our desired targets.
We therefore, in this study, used a published temporal

microarray data from mice liver progressing towards
obesity as it is fed with high fat diet to look at proteins
perturbed at different time points [11]. Along with this,
we used a database of protein-protein interactions
already available in the literature [12] . The use of
protein-protein interaction networks to aid the analysis
of dynamical biological data have been reviewed [13].
This method to overlay gene expression data on the PPI
networks has been used in many studies [5, 7, 14, 15].
For example, a study by Liu et al. [14] uses differential
PPIs from PPI network in control and disease states to
find differential interactions used as diagnostic bio-
markers for disease. Another study by He et al. [15] uses
information transmitting from the annotated disease
genes to differentially expressed genes to decompose the
PPI network into modules to be evaluated as biomarkers
for diseases.
We hence used such protein-protein interaction

network along with temporal expression data to find
a matrix of interactions between proteins. This matrix
was found such that it reproduces the next time point
data from the previous time point data accurately not
done in earlier studies. We then used such connectiv-
ity matrix to find protein targets deletion of which re-
sulted in maximal effect on later time points through
loss of data reproduction. We then ranked proteins
based on their effect. We also applied other published
algorithms on our connectivity matrix to find protein
targets to compare our gene ranking with those ob-
tained from other algorithms. We further validated
our gene ranking using a set of positive protein tar-
gets from an independent study.

Results
Network traversing to obtain fully connected directed
time point specific networks
To find the protein targets important in progression of the
temporal data, we constructed a matrix of interactions

between proteins which reproduces the next time point data
from previous time point data. For this, we used a base
protein-protein interaction (PPI) network consisting of 9358
proteins with 126,245 interactions from a database of known
interactions between proteins (Materials and Methods:
String Database). Along with this, we used a published tem-
poral microarray dataset from the mouse liver after feeding
with high fat diet for different time durations spread over a
period of 140 days, with mouse fed normal diet as controls
(Materials and Methods: Microarray Dataset).
Now, our aim is to prune the interactions of the base

PPI network such that given the first time point expres-
sion (discretized) data, one can reproduce the next time
point data and so on accurately. To find such a matrix
of interactions, we hypothesized that the proteins
present in consecutive time point specific networks (sub
networks from base PPI network such that both proteins
of the edges present in the specific network are per-
turbed in respective time point) could be used as shown
in Fig. 1a. That is, starting with proteins perturbed in 1st
and 2nd time point, one could traverse the 2nd time
point specific network to reach proteins perturbed in
2nd and 3rd time points and again traversing the 3rd
time point specific network (Fig. 1a) and so on to reach
proteins perturbed at 10th time point and hence making
the network. Thus we can obtain a directed network
representing the flow of perturbations by connecting the
perturbed proteins with their next time point perturbed
proteins. Hence, this network can give us an idea of how
a perturbed protein at a given time point influences the
next time point protein perturbation and hence might pre-
dict on a possible mechanistic possibility of perturbations.
Since, traversing a network starting with a set of proteins

to reach its first interactors could be represented in matrix
multiplication form as (Additional file 1: Text S1. Mathem-
atical representation of traversing a directed network):

bint ¼ aTb; ð1Þ
with a being the adjacency matrix of the network to be
traversed, b being a vector containing zeros and ones,
ones signifying the position of starting proteins and bint
being a vector containing zeros and nonzeros, nonzeros
signifying the position of interactors of starting proteins.
Thus, the whole network traversing as given in Fig. 1a,

could be represented as:

B t þ 1ð Þ ¼
XDtþ1

n¼0
AT
tþ1

� �n
B tð Þ; t ¼ 1 : 9 ð2Þ

Where B(t)is a vector of size m X 1, with position of
non zeros representing that the corresponding proteins
are present in network till time t, m is the total number
of proteins in all the ten networks, At is a m X m matrix
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of zeros and ones with ones representing interaction be-
tween proteins pre-sent at t time point taken from the
adjacency matrix of network at time t, Dt + 1is the diam-
eter of the network at time t + 1.
Now, we aimed to find the matrices At + 1for each t = 1 :

9. For this, first of all, we discretized the expression data
by applying a fixed cutoff of 2 log fold change to obtain
proteins significantly perturbed at each time point. This
choice of cutoff is discussed in Discussion section and also
to the fact that we were limited by the number of samples
leaving no choice for statistical significance test. Since, the
input of the algorithm can be the interaction network and
differentially expressed genes, so we chose the 2 log fold
change cutoff to start our algorithm. Now, we overlaid the
proteins perturbed in 2nd time point on the base PPI net-
work to extract the edges whose both proteins are per-
turbed in 2nd time point. This gave us the 2nd time point
specific network. Similarly, we found all the time point

specific networks. The 2nd time point specific network
helped us to start with proteins present in 1st and 2nd
time points and traverse the network to reach the proteins
perturbed in 2nd and 3rd time points to get the traversed
proteins as 2nd time point perturbed proteins. We could
then use the 2nd time point traversed proteins and
traverse the 3rd time point specific network and so on.
The adjacency matrices of these time point specific net-
works are At + 1 with t = 1 : 9.
We observed that some time point specific networks

were well connected i.e. starting with proteins perturbed
at t-1,t time points, we were able to traverse the t time
point specific network to reach the proteins perturbed in
t,t + 1 time points (example in Fig. 1b). However, for
some networks, we were not able to reach the proteins
perturbed in t,t + 1 time points starting with proteins
perturbed in t-1,t time points (example in Fig. 1c). Such
networks were present in 3rd, 4th, 5th, 7th and 8th time

a

b

d

c

Fig. 1 Network Traversing to obtain fully connected directed time point specific networks. a Linking time point specific networks using proteins
perturbed at consecutive time points. b Illustration of giving temporal direction to a time point (say t) specific network, starting from proteins
perturbed at t-1,t and reaching proteins perturbed at t,t + 1. c Another illustration for a different time point specific network where starting from
proteins perturbed at t-1 and t time points, we were not able traverse and reach proteins perturbed at t and t + 1 time points. d Resulting fully
connected temporally directed time point specific networks
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points (not shown). For these networks, we added add-
itional nodes as described below so that in those net-
works, we can start from proteins perturbed at t-1,t time
points and reach proteins perturbed at t,t + 1 time
points. For this, we used our base PPI network and a list
of total proteins made by taking the union of proteins
perturbed at each time point. From this, we constructed
a time point independent network by extracting edges
from the base network such that both proteins of the
chosen edge are present in our list. Then, for the net-
works at 3rd, 4th, 5th, 7th and 8th time points (say at t
time point), we started with proteins perturbed at t-1
and t time points (called source nodes) and traversed the
network until there was no further interactor to go to.
Then, we took all the traversed proteins of the time
point specific network at t time point as source nodes
and traversed the time point independent network three
times i.e. starting from source nodes, we found its first,
second and third interactors. Then, we took these tra-
versed proteins from time point independent network as
source nodes and traversed the t time point specific net-
work until there was no further interactor to go to. This
exercise gave fully connected time point specific net-
works i.e. proteins perturbed at t-1 and t time points are
connected directly or indirectly to proteins perturbed at
t and t + 1 time points. We also gave direction to the
edges as we traversed the time point specific networks
resulting in 9 fully connected temporally directed time
point specific networks shown in Fig. 1d with number of
proteins (time point specific perturbed proteins plus a-
dditional proteins) and number of edges shown in Table 1.
High resolution version is shown as Additional file 2:
Figure S2. Some self-interactions could be observed in the
figures which were introduced by the algorithm and does
not affect our downstream analysis.

Identifying critical nodes/edges from the directed
temporal networks
The above methodology allows us to start with proteins
perturbed at 1st and 2nd time point and traverse
through the 2nd time point network to reach proteins
perturbed at 2nd and 3rd time point, which then are fur-
ther used to traverse through the 3rd time point network
to reach proteins perturbed at 3rd and 4th time point.
The procedure is continued until we reach proteins per-
turbed at 10th time point. We then calculated the

fraction of total perturbed proteins that were able to
traverse at each time point and found this fraction to be
0.86 averaged across time points (Table 2). This high
fraction implies that we are able to accurately represent
the temporal data using our PPI networks. Next, we
used these time point specific networks to find critical
links/nodes involved in progression of our whole data
from initial to last time point. For this, we developed an
algorithm to find critical links/nodes deleting which we
could bring down this fraction of total perturbed pro-
teins traversed. The links/nodes which could block the
flow of perturbation from initial to later time point
could be important links/nodes in the progression of
disease.

Identifying critical edges
We first attempted to find critical links involved in pro-
gression. To find such links, we deleted each link one by
one and again traversed the whole networks from proteins
perturbed at 1st and 2nd time point and checked the
number of proteins we are able to traverse and calculated
this fraction again. This fraction is plotted in Fig. 2a as a
function of the edge deleted. Some edges affect the down-
stream (later time point) proteins more than others. One
such edge is circled in Fig. 2a, is present in the 4th time
point network as shown in Fig. 2b. The network is shown
without additional nodes for clarity. Network with add-
itional nodes is shown in Additional file 2: Figure S2 third
network. A high resolution version of Fig. 2b is uploaded
as Additional file 3: Figure S3. The effect of the deleted
edge clearly affects its downstream node which has a sin-
gle incoming edge and further downstream group of pro-
teins which are perturbed in 4th and 5th time points.
These affect proteins in network at 5th time point and so
on resulting in much large effect compared to deleting
other edges. However, the magnitude observed in effect
was very less i.e. from initial ~ 0.86 to ~ 0.80. This could
be due to the well connectivity of the network and so
many proteins will have multiple incoming edges. Thus,
deleting a single edge might not be sufficient as the pro-
tein downstream of the deleted edge might get traversed
through alternative paths. To get a larger effect, we
attempted to delete multiple edges simultaneously. Due to
large number of edges in each time point specific network,
Table 1, even combinatorial searching of edges taking two
at a time would be computationally time consuming. So,

Table 1 Total number of proteins and edges at each time point specific network

Time Point 2 3 4 5 6 7 8 9 10

Number of Proteins (perturbed+additional) 152 111 443 686 139 160 1196 78 10

Number of perturbed proteins 152 58 230 463 139 72 1105 78 10

Number of edges 188 257 1543 1938 266 399 2585 214 12
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we attempted to delete each node by one; deleting a node
would simultaneously lead to deletion of all its incoming
and outgoing edges potentially having a pronounced effect
than single edge deletion. This is described below.

Identifying critical nodes
Next, we attempted to delete each node in the network
one by one. The fraction of proteins affected after node

deletion is shown in Fig. 2c and suggests three proteins
(encircled) whose deletion have a large effect than delet-
ing single edge (See Figs. 2a,c). One of the three protein’s
outgoing edge was also significant (showing lowest ef-
fect) in our edge deletion analysis (Fig. 2b) as expected.
For the other two proteins, the time point specific net-
work where their affect is maximum is shown in Fig. 2d.
As can be seen in Fig. 2d left panel, deleting Gngt1

a

c

e

b

d

f g

Fig. 2 Effect of node and edge deletion on network traversing. a Fraction of proteins traversed on deleting each edge with topmost edge
(having lowest effect) present in 4th time point network shown in (a). (c) Fraction of proteins traversed on deleting each node with top 3 nodes
(having lowest 2 effect) encircled and the corresponding time point specific network where these are present shown in (d) and (b). e Fraction of
proteins traversed on deleting topmost proteins from our ranking with zoomed in plot of deleting top 80 proteins from ranked list shown in
inset. Bottom inset shows the distribution of fraction proteins traversed on deleting randomly selected 12 proteins (distribution) and effect when
proteins from our ranked list are deleted (red arrow). f Single connected network obtained by connecting the 9 time point specific networks.
g Sub network obtained by overlaying the top 12 proteins on single connected network with the time point where these are perturbed in
right panel

Table 2 Total perturbed, total traversed proteins and the fraction of traversed to total perturbed proteins at each time point

Time Point 2 3 4 5 6 7 8 9 10

Total Perturbed Proteins 199 58 236 471 174 74 1149 78 36

Total Traversed Proteins 152 58 230 463 139 72 1103 78 10

Fraction 0.76 1 0.97 0.98 0.80 0.97 0.96 1 0.27
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would affect all its downstream proteins (which have a
single incoming edge), one of downstream proteins is
also present in the 3rd time point, thus potentially af-
fecting 3rd time point proteins also. Similar affect is also
seen for the other protein Cyp2c38. A high resolution
version for these networks is present in Additional file 2:
Figure S2 (two leftmost networks). However, here also,
not much decrease in fraction is observed (only from
the initial ~ 0.86 to ~ 0.78). This again could be due to
the fact that many proteins have multiple incoming
edges. Thus, deleting single protein also might not be
sufficient as the protein downstream to the deleted pro-
tein might get traversed through alternative paths. Here
also, to increase the effect, we attempted to delete mul-
tiple proteins simultaneously. Due to large number of
proteins in each time point specific network, Table 1,
combinatorial searching of proteins two at a time would
be computationally time consuming.
To mitigate this, we ranked the proteins in increasing

order of the fraction (total traversed by total perturbed
proteins) obtained on node deletion; topmost protein
being one with lowest fraction upon its deletion
(Additional file 4: Sheet 1). Then we used this ranking to
delete topmost proteins simultaneously from the network
and calculate the effect. The number of affected proteins
on deletion of topmost proteins simultaneously is shown
in Fig. 2e and shows that we are able to attain a large de-
crease in fraction (from ~ 0.86 to ~ 0.20) by just deleting
the top 12 nodes simultaneously (see top inset Fig. 2e). To
see the significance of the obtained ranking of proteins,
we randomly permuted the ranked list 1000 times and de-
leted the top 12 nodes each time. A histogram of effects is
shown in bottom inset Fig. 2e and the effect from our
ranking shown in red arrow. This clearly suggests that
proteins chosen randomly, upon deletion, do not give a
significantly decreased effect as compared to our originally
ranked proteins.

Analyzing ranked list of nodes/proteins obtained
To look at how these 12 proteins are together involved in
progression, we now extracted the sub networks connecting
the 12 proteins. For this we connected the individual time
point networks by using the proteins perturbed at consecu-
tive time points (Materials and Methods: Connecting the in-
dividual time point networks). This resulted in a single
connected network representing all 9 time point specific net-
works containing 2620 nodes and 7402 edges, Fig. 2f. A high
resolution version is shown in Additional file 5: Figure S4.
We next overlaid our 12 proteins on this network and found
that these proteins were not directly connected with each
other (not shown). We checked whether we could connect
these 12 proteins by their common interactors and found
that through first interactors, we could connect 11 out of
these 12 proteins. This implies that these proteins are very

closely connected in the network and thus there is a possibil-
ity that they have some common functional role. The net-
work is shown in Fig. 2g with 12 proteins along with their
time point information in large font for easy readability.
The time profile of these 12 proteins is shown in right panel
and shows that most of these proteins are perturbed in
multiple time points. A high resolution version is shown in
Additional file 6: Figure S5.
We also checked whether proteins perturbed in a spe-

cific time point are present in the top of our ranked list
or not. If specific time point perturbed proteins are
present in the top of our list, this could possibly give im-
portant time point/s where gene perturbations have a
large effect on progression. For this, we checked the
position of proteins present in each time point and con-
secutive time points in our ranked list and quantified
the clustering of these proteins towards the top of our
list by a nes score [16]. A high nes score would mean
that the given set of proteins is statistically significantly
concentrated at the top of the ranked list. The distribu-
tion of nes values among the time points is shown in
Table3 with each element in the table representing total
proteins present in t to t + s time points and the nes
score of presence of these proteins in top of the ranked
list. High nes set of proteins is shown in bold and shows
that proteins perturbed at consecutive time points are
majorly present at the top of the list. This suggests that
proteins perturbed consecutively have a large effect upon
their deletion and thus could be important in terms of
progression.
Since, our method checks whether removal of a pro-

teins alters the connectivity of network, we wanted to
check if there is a degree bias towards topmost proteins
or not. For this, since a protein, if perturbed multiple
times, might be present multiple times in the network,
we found the interactors of each instance of the given
protein in the network, took the union of their interac-
tors and used the number of unique interactors to be
the total degree of the given protein in the network. The
total degree of each protein is given in Additional file 4:
Sheet 1. We found that proteins with different degrees
varying from low to high degree were present among the
top proteins in our ranked list. This suggests the import-
ance of low degree proteins also in giving a large effect
upon deletion. These low degree proteins cannot be cap-
tured by just using high degree proteins and suggests
the importance of our algorithm in capturing such pro-
teins with large effect.

Applying other network approaches on the temporal
network
We further analyzed our single connected network using
other existing tools of networks analysis to find targets
and checked whether the targets obtained are overlapping
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with our targets or not. For this, we used two recently
published methods for gene target finding: ‘Controllability
algorithm’ [17] and ‘collective influence algorithm’ [18].
The ‘controllability algorithm’ takes a directed network as
input and finds key dispensable, indispensable and neutral
nodes defined as those whose deletion cause a decrease,
increase or no change respectively in the minimum num-
ber of driver nodes needed to control the PPI network.
Driver nodes being those whose control are sufficient to
fully control the dynamics of the whole network. Indis-
pensable nodes being more important as these were ob-
served to be overlapping with existing drug targets [19].
Since our network is dynamical, this algorithm, when ap-
plied to our network could also identify the proteins in-
volved in progression. The ‘collective influence’ algorithm
also takes a single network as input and ranks the proteins
in decreasing order of influence such that removing top
few proteins disconnects the network. To find such influ-
encers, the algorithm uses percolation theory in random
networks to find nodes which minimizes the energy of a
many-body system. These top ranked proteins are those
which have maximum influence on the network through
information flow. The application of this algorithm to our
dynamical network could help identify significant proteins
involved in maintaining the connectivity of our dynamical
network. Hence these proteins could be significant in dis-
ease progression.
We first applied the ‘controllability algorithm’ on

our directed network to find indispensable nodes, dis-
pensable and neutral nodes. On applying the algo-
rithm, we found that out of total 2620 nodes in our
network, 211 (8.05%) were indispensable nodes, 1207
(46.07%) were dispensable and the remaining 1202
(45.88%) were neutral nodes. We next checked the
distribution of indispensable nodes among time
points. The distribution is shown in Table 4, with each
element in the table representing total proteins, indis-
pensable proteins present in t to t + s time points and
the hypergeometric probability of the overlap between
these proteins. In the table, columns are the time
points and rows are the number of consecutive time
points perturbed, given by s values. The elements con-
taining p-value less than 0.001 and non-zero indis-
pensable nodes are kept in bold. As can be seen, the
most significant were proteins perturbed in 4th time
point, 4th and 5th time points, and 7th and 8th time
points with 10 out of 295 proteins indispensable in
4th time point, 19 out of 100 proteins indispensable in
4th and 5th time points and 17 out of 41 indispensable
in 7th and 8th time points. This suggests that these
proteins and the corresponding time points where
they are perturbed are most important in the network.
The indispensable protein names are given in Additional
file 4: Sheet 2.

We next applied the ‘Collective Influence’ algorithm
on our network. The algorithm gives a ranked list of
proteins sorted in decreasing order of their influence
such that on removing topmost proteins from network,
the networks gets disconnected. We applied the algo-
rithm and chose a value of L = 5 for the analysis and ob-
tained the ranking of proteins. The ranking is given in
Additional file 4: Sheet 3. We then sequentially removed
the topmost proteins of the ranked list from the network
and calculating the size of the giant component and
shown in Additional file 7: Figure S6. As can be seen, on
removing approximately top 100 proteins the size of the
largest connected network becomes half. To check
whether there is a statistically significant clustering of
proteins perturbed in specific time points in our ranked
list, we checked the position of proteins perturbed in
specific time points in our ranked list by a nes score.
The nes values are shown in Table5 with each element
in the table representing total proteins present in t to t
+ s time points and the nes score of presence of these
proteins in top of the ranked list. High nes set of pro-
teins is shown in bold and shows that proteins perturbed
at consecutive time points are majorly present at the top
of the list.

Concordance between outputs from three algorithms and
validation of ranking
Since the three algorithms were applied on the same sin-
gle connected network and gives different lists as output,
we wanted to find if there is any concordance between
the outputs from these three algorithms. Since, the con-
trollability algorithm gave a list of proteins as output
and other two: collective influence and combined effect,
the algorithm made in this paper, gave ranking of pro-
teins, to check concordance; we checked whether the
proteins from controllability algorithm were present in
top ranked proteins from two algorithms.
We found an overlap of 37 proteins between 126 pro-

teins from controllability algorithm and top 174 ranked
proteins (out of total 1379) from collective influence al-
gorithm which is statistically significant with a p-value
of 7*10− 8 (from hypergeometric distribution). Similarly,
we found an overlap of 45 proteins between the 200 pro-
teins from controllability algorithm and top 174 ranked
proteins from the algorithm made in this paper which is
also statistically significant with a p-value of 2.7*10− 11.
This suggests that the topmost proteins from both the
lists were overlapping significantly with proteins from
controllability algorithm.
We finally validated our ranking using external data.

Since these proteins have been obtained from a liver
microarray data from an experiment tracking obesity over
time, we tested the overlap of our list with a positive data-
set of obesity disease genes. For this, we used the OMIM
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database (Hamosh, et al., 2005). From the database we se-
lected genes from ‘obesity’ category resulting in a list of
107 genes and treat them as positive dataset. We found
that out of 107 genes, 38 genes were present in our list of
2096 genes. Next, we looked for statistically significant
overlap of our topmost genes with positive gene set. For
this, we used different topmost gene sets from our list and
calculated the significance of overlap of our topmost genes
with positive gene set. We found that, for many different
topmost genes used up to top 150, we obtained a statisti-
cally significant overlap (with p-value of less than 10^-3)
of our gene sets with positive gene set, see Additional file 8:
Figure S7A. This high statistically significant result thus
validates our ranking and shows that our ranked proteins
may be involved in the progression of disease thus disease
causing.
To see the biological importance of our result, we per-

formed a literature search on out top ranked proteins.
Among our top proteins, we found CYPS (Cyp2c38, Cyp7a1,
Cyp3a44 and Cyp4a12a) involved which are Cyto-chrome
P450 enzymes known to catalyze many reactions involved in
synthesis of cholesterol, steroids and other lipids (http://
www.genecards.org/cgi-bin/carddisp.pl?gene=CYP1B1) and
found that these are mostly perturbed in earlier time points.
In addition, we found a protein Cdkn1a perturbed continu-
ously from 6th to 10th time point. The gene encodes a po-
tent cyclin-dependent kinase inhibitor. It binds to and
inhibits the activity of cyclin-cyclin-dependent kinase2 or
-cyclin-dependent kinase4 complexes, and thus functions as
a regulator of cell cycle progression at G1. The protein was
shown to be instrumental in the execution of apoptosis
following caspase activation. Mice that lack this gene
have the ability to regenerate damaged or missing
tissue (http://www.genecards.org/cgi-bin/carddisp.pl?-
gene=CDKN1A). Also mice lacking p21, a protein
encoded by Cdkn1a gene were healthy but spontan-
eous tumours developed and G1 checkpoint control
was compromised in cells derived from these mice
[20, 21]. We found a protein Foxo1 interacting with
both Cyp7a1 and Cdkn1a in the network. Foxo1 is a
transcription factor which is a negative regulator of
Cyp7a1 transcription [22] and also induces Cdkn1a
[23]. The expression of Cyp7a1 was upregulated at
6th time point and expression of Cdkn1a was down-
regulated at the same time point in our study. This
suggests the activation of Foxo1. The activation of
Foxo1 usually triggered by insulin [22] and suggests
its role in cholesterol metabolism (through upregulation
of Cyp7a1) as well as inducing cancerous cells (through
downregulation of Cdkn1a) in diet induced obese mice at
6th time point in our study. This validates our top ranked
proteins by a match between already known role of these
proteins in obesity and the diet induced obesity experi-
mental condition of our data. And this also proivdes a

temporal dimension to the mechanisms involved in obes-
ity development.

Discussion
To study the mechanism of disease development for
a disease such as obesity which develops gradually
over time, it is important to measure the perturba-
tions of genes of different tissues over time with dis-
ease development. However generating such data is
not enough and comprehensive analysis of such data
is required to capture mechanisms. We aimed here
to study a temporal microarray data and develop
tools to find critical genes involved in disease devel-
opment. We developed methods to calculate network
of interactions between proteins which reproduces
the next time point data from previous time point
data. To capture critical proteins involved in disease
development from such network, we developed our
in-house algorithm, combined effect, and then com-
pared its output with existing algorithms.
Various algorithms are available for extracting crit-

ical proteins from a directed or undirected PPI net-
work which does not contain temporal information.
However, as discussed above, from measurements of
proteins/mRNA at multiple time points, it is import-
ant to connect the time point specific networks made
with each proteomic/ transcriptomic time point spe-
cific data. There is no tool to connect such temporal
networks to make a single network that we term as
dynamical network. We have attempted here to de-
velop a method to connect time point specific net-
works made from temporal transcriptomic data as
well as giving directions to the edges based on tem-
poral connectivity assumption. This assumption helps
making connected directed network amenable to ap-
plication by algorithms which takes directed network
as input. For making the time point specific networks,
we used a log fold change of 2 on the expression data
to find perturbed proteins mostly because we were
getting very dense time point specific networks using
log fold change of 1 and prohibited us from getting
any block in the flow of perturbations in our perturb-
ation study to rank proteins. Using a log fold change
of 2 mitigated this problem and also helped us in
working with proteins with high perturbation levels.
The connected directed network allowed us to start

with proteins perturbed at 1st and 2nd time point
and traverse the network again and again to reach
proteins perturbed at last time point and thus calcu-
late the fraction of proteins traversed. We hypothe-
sized that finding nodes/edges deletion of which
causes this fraction to become low could block the
flow of perturbations from initial to later time point
and thus could be important in the progression of
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disease. To find such nodes/edges, we developed a
method that involves removing each node one by one
and calculating the fraction of proteins traversed to
get a ranking of proteins: top protein being the one
whose removal caused maximum decrease in fraction.
We further calculated the properties or our ranking, for

example we found that the top ranked proteins are mostly
perturbed in multiple time points (Tables 3, 4, 5) and also
found both high and low degree proteins towards high
ranking proteins. Thus our algorithm captured the low de-
gree proteins also in top ranking proteins which could not
be captured by high degree algorithm.
We also applied other published algorithms: ‘Control-

lability algorithm’ and ‘collective influence algorithm’ on
the single connected network. The ‘controllability al-
gorithm’ takes a directed network as input and finds
key ‘indispensable nodes’ shown to be overlapping
with existing drug targets. The ‘collective influence’
algorithm also takes a single network as input and
ranks the proteins in decreasing order of influence
such that removing top few proteins disconnects the
network. Since both the algorithms take a single net-
work as input, as such these algorithms could not be
applied directly on the time point specific networks
obtained from the temporal data. Since, our method-
ology connected the time point specific networks to
give a single dynamical connected network, now such
algorithms could be applied on our network to find
important proteins involved in progression. Other al-
gorithms were applied on our network to check the
concordance between gene raking from our algorithm
and these algorithms. We found a concordance be-
tween the three algorithms outputs: the algorithms
gave statistically significantly overlapping lists as out-
put while taking top 174 proteins from ranked lists.
We further validated the significance of our ranking
using an external database of OMIM genes involved
in obesity and showed significant overlap of OMIM
genes with genes present in the top of our list.
Whereas the top 174 proteins, when taken gives

large overlap between different algorithms tested

here, might be large for experimental testing, a
much smaller list of proteins (~ 12) from our algo-
rithm could be used initially for experimental test-
ing. These small set of proteins when deleted shows
a sharp decrease in fraction proteins traversed as
compared to decrease in size of giant component
when topmost proteins from collective influence al-
gorithm are removed:12 proteins needed for 60% de-
crease in effect compared to > 100 proteins required
for same decrease in giant component size. We were
able to obtain a much smaller list of proteins by the
assumption of temporal connectivity: proteins per-
turbed first are connected to proteins perturbed at
later time points in a directed way. This assumption
gave a framework to study temporal flow of gene
perturbations through the protein networks and gave
a quantitative approximation of disease progression.
This is in line with ideas from dynamical systems
theory where initial gene perturbations give rise to
later perturbations through gene/protein interactions
[10]. This assumption of temporal connectivity
helped us to look at the effect of deleting multiple
proteins together on downstream proteins; an affect
not seen by deleting single/multiple proteins in an
undirected network. Deleting one protein would not
allow affecting its downstream protein in PPI net-
work as downstream protein could be reached by
other alternative paths in network. However, deleting
multiple proteins simultaneously could target mul-
tiple paths together and thus observed large effect in
our simulations.
We wanted to apply our algorithm to a dense network

and hence choose the protein interaction network from
the STRING database. The database consists of interac-
tions between proteins from various sources such as
coexpression, binding etc. Moreover, the algorithm uses
the information of mRNA perturbation of proteins and
if there is an association (binding, coexpression etc.) be-
tween them, it joins them. Then, it uses such network to
mine important edges/nodes. Then, one can go back to
STRING database to find what exactly the type of

Table 3 The number of proteins perturbed in t:t + s time points and their nes value of the clustering among top of our ranked list
are shown. Nes values with > = 1.3 are italicized

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

s = 0 – 113,0.86 57, 1.06 295, 1.02 531, 0.91 80, 0.98 90,1.05 1102,0.84 32,1.09 6,1.23

s = 1 19,1.14 8,1.22 22,1.14 100,1.04 29,1.01 7,1.28 41,1.12 35,1.07 2,1.32 –

s = 2 7,1.24 2,1.22 10,1.23 6,1.23 3,1.30 7,1.14 5,1.30 – – –

s = 3 2,1.3 – 1,1.34 1,1.28 – – 1,1.34 – – –

s = 4 1,1.37 – – 2,1.25 1,1.43 1,1.36 – – – –

s = 5 – – – – – – – – – –

s = 6 – – 1,1.40 – – – – – – –
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interaction these mined edges represent to design small
scale studies. Moreover, the applicability of our algo-
rithm is general in nature and independent of the choice
of network.
Our analysis of relevant literature on our top ranked

proteins and their temporal profile point to a mechan-
istic model where initially cholesterol metabolizing en-
zymes are perturbed and in later time points cell
check point control is compromised in mouse level
progressing to obesity condition. Thus, apart from
already known functions of these proteins, our
method, using the dynamical data, correctly priori-
tized these proteins to shed light on the time points in
which these are perturbed (and hence functional)
which was not known earlier. To confirm the general-
ity in the application of our algorithm, we analyzed
two more temporal datasets from mouse brown
adipose tissue and epididymal infiltrating macrophages
obtained from GEO database GSE63168 and GSE63171
generated from diet induced obese mice similar to disease
conditions of liver tissue analyzed in our study. The result-
ing ranked gene list is given in Additional file 4 and shows
statistically significant overlap with obesity related
genes from OMIM database and have biological
function related to obesity condition of our experi-
ment (Additional file 1: Text S1. Validation of
ranked lists from other temporal datasets). This
shows the ability of our algorithm to analyze other
gene expression datasets to give a ranking of genes
based on importance. Our algorithm can be applied
to any temporal high-throughput datasets to find im-
portant proteins mediating progression.

Conclusion
Our methodology takes a temporal transcriptomic re-
sponse of mouse liver to high fat diet and a PPI network
as input to give a raking of proteins. The top ranked
proteins from our analysis could be important mediators
driving the temporal response of liver to high fat diet.
These proteins could be checked in knock out mouse

model in high fat diet conditions. Our methodology is
generic and could be applied to any temporal transcrip-
tomic/proteomic response from invitro/invivo system.

Methods
String database
The base protein-protein interaction network was down-
loaded from string database version 9.1 taking links with
a score greater than 7000 [12].

Microarray dataset
The microarray data was obtained from an experi-
ment where one group of mice were fed with high fat
high sucrose diet (treated group) and another group
with normal diet (control group). Both groups of mice
were fed respective diets for following days: Day1,
Day 6, Day 10, Day 14, Week 0, Week 3, Week 6,
Week 9, Week 12, Week 15 and Week 18 before tak-
ing tissue samples from both groups of mice. This ex-
periment was repeated for three times. Further details
of the experiment are given in [11]. Then, microarray
experiment was performed on tissue samples and
after suitable normalization of the signal intensities of
each probe using Agilent Genespring GX software,
three values of log fold change for control sample
and treated sample were obtained for each probe and
at each time for each tissue. The data used in this
study was from liver tissue and downloaded from the
NCBI repository under GEO accession number
GSE63175 and suitable processing was done. Briefly,
out of total ~ 29,411 genes measured, data was proc-
essed to filter out genes not perturbed 2 fold even in
one time point resulting in a matrix of 19,303 genes
across 10 time points. Further details of the process-
ing are given in [9].

Connecting the individual time point networks
To connect the individual time point networks, we first
tagged the proteins uniquely present in different time point
specific networks by the time point in which they are

Table 5 The number of proteins perturbed in t:t + s time points and their nes value of the clustering among top of the ranking
from ‘Collective Influence’ algorithm are shown. Nes values with > = 1.3 are italicized

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

s = 0 – 87,0.92 24,0.51 162,0.95 253,0.87 41,a 44,0.91 570,0.91 18,-1.26 2,-0.14

s = 1 12,1.28 2,0.57 9,1.03 67,1.21 13,1.18 4,1.49 23,1.25 8,1.22 – –

s = 2 4,0.92 2,1.38 9,1.24 4,1.38 3,1.33 3,1.61 5,1.40 – – –

s = 3 2,1.47 – 2,1.82 1,1.25 – – 2,1.61 – – –

s = 4 2,1.30 – – 2,1.48 2,1.80 2,1.75 – – – –

s = 5 – – – – – – – – – –

s = 6 – – 2,1.77 – – – – – – –
anegative nes values not obtained on randomizations
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perturbed. For proteins present in consecutive time points,
the tag contains information about all the respective time
points. For example if a protein ‘X’ is perturbed at ‘t’ time
point, then it is tagged as ‘X_t’ and ‘Y’ is perturbed at time
points t-1,t and t + 1, then the tag contains ‘Y_t-1,t,t + 1’.
Following this, we stacked the edge lists of each time point
specific network. This way, since the proteins perturbed at
consecutive time points have the same tag in time point
specific networks, the time point specific networks get con-
nected through the proteins perturbed at consecutive time
points in the final edge list. This gives a final tagged
network containing 2620 nodes and 7402 edges. The final
network is shown in Fig. 2f. A high resolution version is
shown in Additional file 5: Figure S4.

Additional files

Additional file 1: Text S1. Mathematical representation of traversing a
directed network. Validation of ranked lists from other temporal datasets.
(ZIP 302 kb)

Additional file 2: Figure S2. High Resolution version of Fig. 1d.
(PDF 644 kb)

Additional file 3: Figure S3. High Resolution version of Fig. 2b.
(PDF 108 kb)

Additional file 4: Ranking of proteins using algorithm made in the
paper and collective influence algorithm and results from controllability
algorithm. (XLSX 140 kb)

Additional file 5: Figure S4. High Resolution version of Fig. 2f.
(PDF 817 kb)

Additional file 6: Figure S5 High Resolution version of Fig. 2g left panel.
(PDF 172 kb)

Additional file 7: Figure S6. Effect of removal of influencing proteins
on size of giant component. Size of the giant component of single
connected network on removal of topmost proteins from the ranked list
sorted in decreasing order based on their influence obtained by applying
‘Collective Influence’ algorithm on single connected network.
(PDF 2365 kb)

Additional file 8: Figure S7. Significance of overlap of topmost genes
with positive gene set. The p-value of significance of overlap between
topmost genes and positive gene set (fraction of times overlap from
random permuted ranked list is greater than actual observed overlap) is
plotted against topmost proteins used. (PDF 118 kb)
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