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Landscape reveals critical network
structures for sharpening gene expression
boundaries

Chunhe Li1,2* , Lei Zhang3,4* and Qing Nie5,6*
Abstract

Background: Spatial pattern formation is a critical issue in developmental biology. Gene expression boundary
sharpening has been observed from both experiments and modeling simulations. However, the mechanism to
determine the sharpness of the boundary is not fully elucidated.

Results: We investigated the boundary sharpening resulted by three biological motifs, interacting with
morphogens, and uncovered their probabilistic landscapes. The landscape view, along with calculated average
switching time between attractors, provides a natural explanation for the boundary sharpening behavior relying on
the noise induced gene state switchings. To possess boundary sharpening potential, a gene network needs to
generate an asymmetric bistable state, i.e. one of the two stable states is less stable than the other. We found that
the mutual repressed self-activation model displays more robust boundary sharpening ability against parameter
perturbation, compared to the mutual repression or the self-activation model. This is supported by the results of
switching time calculated from the landscape, which indicate that the mutual repressed self-activation model has
shortest switching time, among three models. Additionally, introducing cross gradients of morphogens provides a
more stable mechanism for the boundary sharpening of gene expression, due to a two-way switching mechanism.

Conclusions: Our results reveal the underlying principle for the gene expression boundary sharpening, and pave
the way for the mechanistic understanding of cell fate decisions in the pattern formation processes of development.
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Background
A persisting focal issue in developmental biology is how the
spatial pattern of gene expression is formed. During embry-
onic development, cells with different expression patterns
occupy different domains separated by sharp borders. It is
suggested that cell exploits the diffusive molecules and
morphogens to receive positional information [1–3].
Morphogens, by forming concentration gradients, specify
distinct cell fates and regulate patterns. So, cell fate deci-
sions are vital for the pattern formation in the developmen-
tal process [4–6]. The challenge is to understand how cells
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form sharp gene expression boundaries from light morpho-
gen gradients. Some mechanisms involve cell sorting result-
ing from cell movements and differential adhesion [7, 8].
Also, some cell-intrinsic boundary-forming mechanisms,
which transfer the differences in morphogen gradients into
sharp change in downstream gene expression, have been
proposed [9]. However, the mechanisms for boundary
formation and sharpening remain not fully described.
In cells, there are intrinsic fluctuations from limited

number of molecules and external fluctuations from
inhomogeneous environments [10–14]. Therefore, the
gene expression fluctuations need to be considered to
simulate the real cellular environments. Some noise
attenuation mechanisms have been suggested in cell fate
decision processes during developmental patterning [15,
16]. Recently, Zhang et al. proposed a noise induced cell
fate switching mechanism to explain gene expression
boundary sharpening in the zebrafish hindbrain [15]. In
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their work, noise has been shown to play some critical
roles in developmental pattern formation processes by fa-
cilitating gene expression state switchings. However, the
underlying mechanism for how the noise promotes the
sharpening of gene expression borders remains elusive.
In this work, we constructed a mutual repressed

self-activation (MRSA) model, which interacts with mor-
phogens. The involved two genes (X and Y) are both acti-
vated by a morphogen M. In particular, we introduce the
fluctuations to both morphogen gradients and gene expres-
sion levels. To explore the boundary sharpening mecha-
nisms related to gene state transitions, we resort to a
probabilistic landscape approach [17–19], which has been
employed to study the stability of attractors for the gene
networks and the switchings between the attractors. The
landscape was proposed by Waddington to characterize de-
velopment and differentiation of cells, as a metaphor [20].
From the landscape theory, different phenotypes can be
depicted as the basins of attraction on a potential landscape
surface, and the cell fate decision process can be viewed as
a ball rolling down from one basin to another on the land-
scape surface.
We mapped out the landscape for the mutual repressed

self-activation model at different spatial locations (corre-
sponding to different Morphogen levels). At the position
close to the gene expression boundary, the landscape dis-
plays an unbalanced bistable state, where one attractor is
much less stable than the other. The landscape view for
the system transforms the boundary sharpening problem
X Y

M

0 10 20 30 40 50
0

5

10
T=10

0 10 20 30 40 50
0

5

10
T=100

0 10 20 30 40 50
0

5

10
T=1000

a

c

Fig. 1 Diagram and two dimensional simulations for boundary sharpening
Two dimensional simulations show the boundary sharpening effects over t
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to the understanding of cell fate transitions between ba-
sins, and thus provides a natural explanation for the noise
induced boundary sharpening behavior. We compared
three common motifs - mutual repressed self-activation,
mutual repression, and self-activation - to see the effects
of network topology on the boundary sharpening ability.
We found that mutual repressed self-activation model has
the better boundary sharpening performance against fluc-
tuations, which is consistent with the results that mutual
repressed self-activation model possesses the shorter
switching time calculated from the landscape among three
models. Adding a second morphogen to the models pro-
vides more stable boundary sharpening ability due to a
two-way switching mechanism. Our results reveal the
underlying mechanisms for noise induced boundary
sharpening of gene expression, and shed light on the dee-
per understanding of spatial pattern formation in embry-
onic development.

Results
Landscape explains the gene expression boundary
sharpening from a mutual repressed self-activation model
We first investigate a mutual repressed self-activation
model (MRSA), interacting with a morphogen M (Fig. 1a).
In this circuit, gene X and gene Y mutually repress each
other and self-activate themselves. The morphogen M acti-
vates the expression of both gene X and gene Y. Figure
1b-d show the boundary sharpening effects over time at dif-
ferent gene expression noise level d (coefficient of variance)
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from two-dimensional simulations (A for d = 0, B for d =
0.01, C for d = 0.02). Here each cell is represented by a grid
square. The blue grids represent the cells with gene X
expressed, and the red grids represent cells with gene Y
expressed. For the system without gene expression noise
(Fig. 1b), the expressions for gene X and Y generate the
rough boundary, due to the fluctuations in the morphogen
M. If the noise level is too high (Fig. 1d), the gene expres-
sion boundary is also rough because the large fluctuations
in the gene expression level dominate the expression states
and blur the boundary. Surprisingly, when the noise level is
in a certain medium range, the boundary becomes sharpen-
ing over time (Fig. 1c). The gene expression noise induced
the state transition from X expressed state (blue) to Y
expressed state (red). Therefore, around the boundary area
most of cells are switched to Y state, which makes the
boundary sharpened.
To elucidate the mechanism of how noise induces gene

state switchings, we acquired the probabilistic landscape
at different spatial positions (corresponding to different M
level). Landscape is defined as U = − log (Pss) [17, 18, 21–
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23], and Pss is the steady state probability distribution (see
methods for how to obtain landscape). Figure 2a-c show
the probabilistic landscape for the expression level of gene
X and Y for the MRSA model at different M levels. Here,
the blue region represents the higher probability or lower
potential state (attractors), and the red region represents
the lower probability or higher potential state. Two stable
states (basins) appear on the landscape (bistability). One
of them is X expressed state (labeled by X) and the other
one is Y expressed state (labelled by Y). The shape of land-
scape determines the transition difficulty between attrac-
tors (X and Y). To quantify the transition difficulty, we
define the barrier height (Fig. 2a) as the potential differ-
ence from the local minimum (say X attractor) to the sad-
dle point between X attractor and Y attractor. The larger
the barrier height, the more difficult the system switches
from X state to Y state. Figure 2a-c show that the land-
scape shape changes as the morphogen M level increases.
When M level is 0.5 (Fig. 2a), the landscape exhibits a bi-
stable shape (two basins). As the M increases, the left
basin (X attractor) becomes shallower gradually relative to
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the right basin (Y attractor), and the barrier for X attractor
becomes lower, as shown in Fig. 2b. When M increases
further (Fig. 2c), the landscape eventually becomes a
monostable state (only the Y attractor exists).
The landscape change provides an explanation for the

boundary formation and the boundary sharpening effects
of MRSA circuit (Fig. 1). When M level is high (Fig. 2c),
only Y attractor is stable as indicated on the landscape,
so cells will end in the Y expression state (red grids in
Fig. 1c). When M level is low (Fig. 2a), gene expression
of X and Y form a bistable state, and cells will end in X
expression state when assuming gene X is initially
expressed [15]. For the medium M level (the central pos-
ition), landscape also exhibits a bistable state, but X at-
tractor is much less stable than the Y attractor. Induced
by certain level of fluctuations, cells will switch from X
attractor to Y attractor, which explains why the gene ex-
pression boundary will be sharpened. As shown in Fig.
1c, around the boundary position the blue grids change
to red grids as T increases from 10 to 1000, which
sharpens the boundary. The landscapes obtained here
also explain why the noise level has to be in certain
range for inducing the boundary sharpening. That is be-
cause if the noise level is low it is hard to trigger the
switchings from X attractor to Y attractor (cell can not
escape from X basin). But if the noise level is too high,
the switchings can happen in either direction, meaning
that cells can change state from X to Y (jump from X
basin to Y basin) but can also change from Y to X (jump
from Y basin to X basin). In that case, the boundary
sharpening will not take place.
During the development of rhombomeres in the

zebrafish hindbrain, the morphogen retinoic acid (RA)
induces expression of gene hoxb1a in rhombomere 4
(r4) and gene krox20 in r3 and r5. Fluorescent in situ
hybridization reveals rough edges around these gene
expression domains, in which cells co-express hoxb1a
and krox20 on either side of the boundary, and these
sharpen within a few hours [15]. It is found that the
boundary sharpening effects are not clear in the r3/r4
boundary from a similar mathematical model [15].
The landscape picture we acquired here provides an
explanation for this phenomenon. The r3/r4 boundary
is corresponding to the low level M position in our
model, which is corresponding to a bistable landscape
(Fig. 2a). Here, both two basins are stable, not like
the case in the Fig. 2b in which one basin is much
less stable than the other. The noise induced transi-
tion will not help the sharpening of the boundary be-
cause the switching is bidirectional. Cell can switch
from X basin to Y basin or from Y basin to X basin.
But from population level, the cell type switchings are
averaged out, and will not lead to sharpened
boundaries.
To further explore the gene state switching mecha-
nisms, we calculated the mean first passage time
(MFPT) from state X to state Y, characterizing the aver-
age switching time. Now that the boundary sharpening
problem has been transformed to a cell fate transition
problem, we suppose that the boundary sharpening time
should be correlated to the gene state switching time.
We calculated the MFPT from the trajectories based on
the solution of stochastic ordinary differential equations
(see methods). The parameter A represents the ratio of
the synthesis rate for the two genes, which measures the
asymmetry level of the system. The parameter R repre-
sents the strength of the mutual inhibition between gene
X and Y. Figure 2d-f show the average switching time
from X state to Y state at different noise level, separately
for different M, different A, and different R. Here, every
curve (color) represents one set of parameter value. Each
curve shows that given a noise level what is the average
switching time or given a time interval how large noise
is needed to trigger the switchings. As the noise level in-
creases, the average switching time declines (Fig. 2d-f ),
because larger noise promotes the transition between
attractors. Also, with M level increased the average
switching time decreases (Fig. 2d), i.e., the switching
from X state to Y state becomes faster. This is consistent
with the landscape analysis because, as M increases, X
(Y) attractor becomes less and less (more and more)
stable (Fig. 2c), making the transition from X to Y easier.
Figure 2e and f show that as the asymmetry level A in-
creases or as the mutual repression strength R decreases,
the switching from X state to Y state becomes faster.
This indicates that a stable gene state switching for the
MRSA model requires larger asymmetry between gene X
and Y, and smaller mutual repression strength between
gene X and Y. Therefore a natural prediction from these
results is that the boundary sharpening will be faster for
a circuit with more asymmetry or with weaker mutual
repression.
In Fig. 2g and h we compared the MFPT and the bar-

rier heights at different M level. The barrier height
quantifies the change of the landscape topography (Fig.
2a-c). The barrier height increases as the switching time
increases (Fig. 2h), because a larger barrier makes the
switching from X attractor to Y attractor more difficult
and thus a longer switching time.
We also calculated the results for different amplitude

ratio (L = ϵ/d) between morphogen noise level ϵ and
gene expression noise level d for MRSA model. As we
can see from Figs. 1 and 3, the gene expression noise
level d has to be in an appropriate range to generate
boundary sharpening effects. If the gene expression
noise level d is too big, the boundary sharpening effects
will not occur no matter how we choose the value of
morphogen noise level or the amplitude ratio L (Fig.
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Fig. 3 Two dimensional simulations for the boundary sharpening effects over time at different gene expression noise level d and different
morphogen noise level ϵ for the MRSA model. We define L = ϵ/d as the amplitude ratio between morphogen noise level and gene expression
noise level. a-c show the simulation results for fixed d = 0.01 but L increased (a for L = 0, b for L = 4 and c for L = 8). d-f show the simulation
results for fixed d = 0.02 but L increased (a for L = 0, b for L = 4 and c for L = 8). Blue: X is expressed, red: Y is expressed

Li et al. BMC Systems Biology  (2018) 12:67 Page 5 of 13
3d-f). Given an appropriate value of d (Fig. 3a-c, d =
0.01), the morphogen noise level or the amplitude ratio
L also needs to be tuned. If the morphogen noise level
or the amplitude ratio L is too big, boundary is not sharp-
ened (Fig. 3c). If the morphogen noise level or the ampli-
tude ratio L is too small, the boundary keeps sharpened
most of the time except for a quick transition period from
initial uneven distributions (Fig. 3a). We also provide the
quantitative comparisons of boundary sharpening effects
over time from sharpening index (SI), for MRSA models
at different morphogen noise level ϵ and gene expression
noise level d value (Additional file 1: Figure S1), which
provide quantitative support to our above conclusions.
To see how the vertical resolution influence the effects

of the boundary sharpening, we also double the number
of the vertical grids and made the simulations for the
MRSA model (Additional file 1: Figure S2). Our results
show that increasing the grid number in the vertical direc-
tion does not influence the major conclusions (Additional
file 1: Figure S2).

Mutual repressed self-activation (MRSA) model is more
robust for generating gene expression boundary
sharpening than self-activation (SA) model or mutual-
repression (MR) model
To explore how the boundary sharpening effects depend
on the topology of the circuit, we also investigated the
other two models, self-activation (SA) model (Fig. 4j)
and mutual-repression (MR) model (Fig. 5j). Simulations
show the boundary sharpening effects over time for the
self-activation model at different noise level (Fig. 4a-c).
When noise level is too low or too high, the system
tends to form rough boundary (Fig. 4a and c), whereas
for the medium level of noise the boundary is sharpened
with time (Fig. 4b). Similar to the case for the MRSA
model, the boundary sharpening effects of SA model can
be explained from the probabilistic landscape perspec-
tive. With M level increased (Fig. 4d-f ), the landscape
changes from a relative balanced bistable state (X and Y
attractor coexist) to a Y inclined bistable state, and fi-
nally to a monostable Y state. For the medium M level,
the noise-induced transitions make cells switch from X
state to Y state, and thus lead to the boundary sharpen-
ing. For self-activation model, a critical parameter is the
self-activation strength k. We calculated the change of
average switching time with noise level at different k.
When the self-activation strength k is larger, the switch-
ing is faster, indicating a stronger self-activation pro-
motes gene switching from X state to Y state, and
therefore leads to a faster boundary sharpening effect.
Figure 5a-c show the boundary sharpening effects over

time for the mutual-repression model (Fig. 5j) at different
noise level. We also observed the boundary sharpening ef-
fects at middle level of noise from simulations (Fig. 5b).
Similarly, the landscape (Fig. 5d-f) provides corresponding
explanations for the boundary sharpening mechanisms.
To make comparisons for three models, we define a

sharpening index (SI) to quantify the boundary sharpen-
ing effects of the systems. The sharpening index is de-
fined based on the number of the grid columns with
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mixed expression of X and Y around the boundary. A
smaller SI means a sharper boundary. For each of the
three models, we gave parameters a perturbation ampli-
tude (σ = 0.1), and obtained an average SI from multiple
simulations. Figure 6a shows the comparison results for
three models. For all three models (three curves in Fig.
6a), SI decreases with time and almost reaches a steady
value. This indicates all three models have the potential
with the boundary sharpening ability at certain param-
eter regions. However, we found that the SI for the
MRSA model reaches a lower value than the other two
models. To validate this result, we also calculated the
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switching time from the landscape at different noise
level and different parameter regions, and made compar-
isons for three models (Fig. 6b). In Fig. 6b, the red, blue,
green curves represent MRSA model, MR model and SA
model, separately. Three different style of curves repre-
sent three typical parameter choices for each of the three
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models. Although it is not easy to make comparisons
directly for three models due to the limit of specific par-
ameter choices, it appears that the MRSA model in gen-
eral has the shortest switching time (the red lines are
inclined to be lower than blue and green lines) among
three models.
From the landscape description of the system, the

boundary sharpening problem has been transformed to
the understanding of state switching from X basin to Y
basin, i.e. the boundary sharpening time should be
roughly correlated with the state switching time between
X basin and Y basin, and shorter switching time means
faster boundary sharpening. Our results show that the
MRSA model provides a better boundary sharpening
performance than the other two models (smaller sharp-
ening index as shown in Fig. 6a, and shorter switching
time as shown in Fig. 6b). From the topological perspec-
tive, this is because MRSA motif provides a stable struc-
ture for bistability, hysteresis, and ultrasensitivity, which
many biological systems employ to achieve different
functions. For example, MRSA motif has been exploited
in stem cell developmental system [24, 25], cancer stem
cell system [23], and EMT system [26], to generate
multi-stable states.

Gene expression boundary sharpening for cross
morphogen gradients
It was proposed that cells can also respond to multiple
morphogen signals. For example, a BMP-FGF interacting
morphogen system was shown to be critical to the pattern
formation in the development of forebrain [27]. Here we
ask how such morphogen gradients influence the bound-
ary sharpening effects. By adding a second gradient of
morphogen to the MRSA model (Fig. 7a and b), we
observed the boundary sharpening effects from simula-
tions (Fig. 7c and d).
We found that the boundary sharpening can take place

in two different situations (Fig. 7c and d). One of them is
gene expression boundary is sharpened because of the
switchings from state Y to state X (red to blue, Fig. 7c),
and the other is gene expression boundary is sharpened
because of the switchings from X state to Y state (blue to
red, Fig. 7d). The difference of these two cases is that they
have different initial conditions for X and Y expression.
The mechanisms for this two-way boundary sharpening
can be revealed from the landscape shown in Fig. 7e-g.
The landscape in the central position (Fig. 7f) displays a
bistable state, and two attractors have the similar stability,
whereas for the left position (Fig. 7e) the landscape ex-
hibits a bistable state biased to X attractor, and for the
right position (Fig. 7g) the landscape exhibits a bistable
state biased to Y attractor. So, if the initially Y is chosen to
be more expressed then X (initial condition is chosen
closer to Y attractor), the boundary will appear in a pos-
ition between Fig. 7e and g, generating the boundary
sharpening behavior as shown in Fig. 7c. On the contrary,
if the initial condition choice is X is more expressed than
Y (initial condition is chosen closer to X attractor), the
boundary will appear in between Fig. 7f and g, generating
the boundary sharpening behavior as shown in Fig. 7d.
For the case with single morphogen gradient, a require-

ment for the appearance of boundary sharpening effects is
the appropriate choice of initial conditions (X needs to be
more expressed than Y, Fig. 2) [15]. One advantage for the
system with cross morphogen gradients is that it can trigger
boundary sharpening effects regardless of the choice of ini-
tial conditions, i.e., the requirements for the initial condi-
tions can be relaxed. Therefore, the cross morphogen



X Y

M1 M2

0 10 20 30 40 50
0

5

10
T=10

0 10 20 30 40 50
0

5

10
T=30

0 10 20 30 40 50
0

5

10
T=200

0 10 20 30 40 50
0

5

10
T=10

0 10 20 30 40 50
0

5

10
T=30

0 10 20 30 40 50
0

5

10
T=200

a b

c d

0 10 20 30 40 50
0.1

0.5

0.9

1.3

1.7

Position

M
or

ph
og

en
 c

on
ce

nt
ra

tio
n

 

 

M1
M2

e f g

X X

XY

Y
Y

Fig. 7 Simulations and landscapes for the MRSA model with two gradients of morphogens. a Diagram for the MRSA model with two gradients
of morphogens. b Morphogen gradients for M1 and M2 with fluctuations. c, d Two dimensional simulations show the boundary sharpening
appears in two sides of the spatial position. e, f, g The landscape at different position (different M1 and M2 concentration). The gradients of M1
and M2 is set as: M1 = 1, M2 = 0.38 for (e), M1 = 0.61, M2 = 0.61 for (f), and M1 = 0.38, M2 = 1 for (g)

Li et al. BMC Systems Biology  (2018) 12:67 Page 9 of 13
system provides a more stable mechanism for the boundary
sharpening of gene expression domain.

Discussion
Cells employ morphogen gradients to control expression
of different genes and form distinct spatial patterns. One
key issue is how the boundary between gene expression
domains is generated and sharpened. Studies suggest that
morphogens interacting with downstream gene regulatory
networks lead to ultrasensitivity and border formation
[28–30]. We investigated such gene-morphogen inter-
action networks under fluctuations. Previous works
showed that fluctuations, commonly regarded as
detrimental to the robustness of regulatory networks, may
play a critical role in pattern formation process, and ap-
propriate noise level may promote the sharpening of gene
expression boundaries [15]. Here, we aim to disclose the
underlying mechanisms for noise to promote the bound-
ary sharpening. By uncovering the probabilistic landscape
of a morphogen-gene interaction network, we found that
as the morphogen level M increases, the landscape
changes from a relative balanced bistable state to a biased
bistable state, and finally to a monostable state. The
boundary appears in the position corresponding to the
biased bistable landscape. Starting from the less stable
state of the bistable states, noise will induce the state
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transition from the less stable state to the relative stable
state. This provides a natural explanation for the
noise-induced boundary sharpening mechanism.
From the analysis for the boundary sharpening ability of

three circuits, we propose that to possess the boundary
sharpening potential for a gene regulatory circuit with a
single morphogen gradient, three conditions need to be
met:

1. The system needs to form a bistable state system.
2. The bistable state needs to be asymmetric, meaning

that one of the two stable states (say X state) is less
stable than the other stable state (say Y state).

3. Gene X (corresponding to the less stable state)
needs to be expressed initially, i.e. the initial
condition should be chosen at a position closer to X
attractor rather than Y attractor.

As can be seen, some basic gene regulatory motifs such
as MRSA, SA, and MR, are all able to generate bistable
states with appropriate parameter choices. So, the condition
1 is easy to be satisfied. However, only bistability is not suf-
ficient to trigger boundary sharpening for the system. Only
if the bistability is inclined to one of the two states (parame-
ters need to be tuned), i.e. one of the two states is very un-
stable, the noise-induced switchings take place and lead to
the boundary sharpening for the pattern formation system.
To explore the influence of the topology on the boundary

sharpening ability of the network, we compared the bound-
ary sharpening ability for three models: mutual repression
with self-activation model, self-activation model, and mu-
tual repression model. We define the sharpness index (SI)
to quantify the boundary sharpening ability of the circuit.
We found that MRSA model possesses the most stable
boundary sharpening ability against parameter variations
among the three models, which is supported by the results
of average switching time indicating that the MRSA model
has the shortest average switching time among three
models. This might be because, compared to mutual re-
pression or self-activation, MRSA model is more robust to
generate bistable states or multiple states under perturba-
tions, and thus possesses better boundary sharpening abil-
ities. We also introduced a second morphogen gradient to
explore the effects of cross morphogen gradients on the
boundary sharpening of the system. We found that in the
cross morphogen gradients model the boundary sharpening
can appear independent on the initial concentrations of
gene X and gene Y, because of a two-way switching mech-
anism. For single gradient model, in order to induce the
boundary sharpening, gene X has to be expressed more
than gene Y. Therefore, adding second gradient can make
the boundary sharpening behavior more universal, provid-
ing a more stable mechanism for the sharpening of gene
expression boundary.
As suggested by recent studies, the gene expression
boundaries are formed and sharpened in vivo [31–33].
Our results provide possible explanations for these obser-
vations from a perspective of noise-induced cell fate
switching, and insights into how noise utilizes simple gene
regulatory network to perform meaningful biological func-
tions. Our unpublished work on the formation of the
cortex-dorsal midline border in the developing telenceph-
alon suggests that the mutually inhibitory BMP and FGF
signals can lead to the boundary refinement. This study
provides a simple explanation on the purpose of such
two-gradient system in boundary sharpening.
Our results help elucidate the critical network structures

for noise attenuation and pattern formation in develop-
ment. Our method is general, and can be applied to other
pattern formation or spatial relevant biological systems.
With more biological regulatory data available, some more
realistic morphogen-gene regulatory networks can be con-
structed. We anticipate that, by investigating these more
realistic networks, more intricate mechanisms for the
boundary formation and sharpening can be discovered.
This will further our understanding of boundary sharpen-
ing, pattern formation, and other spatial related issues.

Conclusions
In this study, we discovered the probabilistic landscape for
three motifs (MRSA, SA, and MR), interacting with mor-
phogens, and investigated their boundary sharpening ef-
fects. The landscape results, along with the average
switching time between attractors, provide a natural ex-
planation for the boundary sharpening behavior depending
on the noise-induced gene state switching. The MRSA
model displays more robust boundary sharpening ability
against parameter perturbation, compared to the MR or SA
model. This is supported by the results of switching time
between attractors, because the MRSA model has shortest
switching time among three models. In addition, introdu-
cing cross gradients of morphogens provides a more stable
mechanism for the boundary sharpening of gene expres-
sion, due to a two-way switching mechanism. Our results
reveal the critical network structures for noise-induced
boundary sharpening effects of gene expression, and pro-
mote the understanding for the critical network structures
of spatial pattern formation in embryonic development.

Methods
From the topology of the network for three models, we con-
struct dynamic models to describe the temporal evolution
for the expression level of different genes in the network.
We first construct an ordinary differentiation equation
(ODE) model based on Hill cooperativity form representing
activation or repression [22]. The ODE model include three
terms: basal synthesis rates, activation or repression regula-
tions from other genes, and self-degradations. The three
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models (parameters can be found in Additional file 1: Tables
S1-S4) are represented by the following equations:

1. The mutual repressed self-activation model (MRSA)

dX
dt

¼ a
b
A
þ Xn

Sn þ Xn

� �
1−Rþ R

Sn

Sn þ Yn

� �

þa1
Mn

Sn þMn −kX

dY
dt

¼ a bþ Yn

Sn þ Yn

� �
1−Rþ R

Sn

Sn þ Xn

� �

þa1
Mn

Sn þMn −kY

ð1Þ

2. The self-activation model (SA)

dX
dt

¼ ab1 1−Rþ R
Sn

Sn þ Yn

� �
þ a1

Mn

Sn þMn −kX

dY
dt

¼ a b2þ Yn

Sn þ Yn

� �
þ a1

Mn

Sn þMn −kY ð2Þ

3. Mutual-repression model (MR)

dX
dt

¼ a
b
A

1−Rþ R
Sn

Sn þ Yn

� �
þ a1

Mn

Sn þMn −kX

dY
dt

¼ ab 1−Rþ R
Sn

Sn þ Xn

� �
þ a1

Mn

Sn þMn −kY ð3Þ

4. The mutual repressed self-activation model with
cross morphogen gradients

dX
dt

¼ a
b
A
þ Xn

Sn þ Xn

� �
1−Rþ R

Sn

Sn þ Yn

� �

þ a1
M1n

Sn þM1n
−kX
dY
dt

¼ a bþ Yn

Sn þ Yn

� �
1−Rþ R

Sn

Sn þ Xn

� �

þ a1
M2n

Sn þM2n
−kY ð4Þ

Here, the ODE systems describe the temporal evolu-
tion of expression levels of X and Y genes. S represents
the threshold of the sigmoidal function, and n is the Hill
coefficient, which determines the steepness of the
sigmoidal function [22]. The parameter A represents the
ratio of the synthesis rate for the two genes, which mea-
sures the asymmetry level of the system. The parameter
R represents the strength of the mutual inhibition be-
tween gene X and Y. In addition, a is the basal synthesis
rate and k is the degradation rate for gene X and Y (see
Additional file 1 for the descriptions of parameters, and
Table S1 for the values of parameters). Take Eq. (1) as
an example, the first term represents the regulation
effect from gene X and Y, the second term represents
the regulations from morphogen level M, and the last
term represents the degradation of gene X or Y.
To generate the morphogen gradient with fluctuations,

we used the model from [15], and made the spatial
simulations (Eq. 5). Here [RA]out and [RA]in denote
separately extracellular and intracellular RA concentra-

tions. ½RA�out ∂
2Woutðt;xÞ

∂t∂x and ½RA�in ∂2Woutðt;xÞ
∂t∂x represent

standard white noise for extracellular and intracellular
RA concentrations. RAin is the morphogen M we used
in the simulations, and ϵ quantifies the noise level in
morphogen M. For spatial simulations, no flux boundary
conditions are applied along the y axis (medial-lateral
direction). Along the x axis, a no-flux boundary condi-
tion is applied at the anterior margin and a leaky bound-
ary condition is used at the posterior margin on the
assumption that extracellular RA only leaves the embryo
by diffusing through cells. We have varied ϵ to see it’s in-
fluence on the simulation results.

∂ RA½ �out
∂t

¼ DRA
∂2 RA½ �out

∂x2
þ VRA x; tð Þ− 1þ βð ÞkA RA½ �out

þkA RA½ �in þ ϵout RA½ �out
∂2Wout t; xð Þ

∂t∂x

∂ RA½ �in
∂t

¼ kA RA½ �out− kA þ Cyp RA½ �in
� �� �� �

RA½ �in
þϵ RA½ �in

∂2Wout t; xð Þ
∂t∂x

ð5Þ
For the simulations from stochastic ODEs, the initial

conditions are specified as (X0, Y0) = (0.5+ sN(0,1),
0.01), as we require the system starts from a location
close to X attractor, i.e. X is much larger than Y. Here N
is a random variable obeying standard norm distribution,
and s = 0.05 is the magnitude for the fluctuations. For
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each model, we ran multiple simulations (100 times) to
get the average results (Figs. 1, 4, 5 and 7).

Probabilistic landscape
In the cells, there exist intrinsic noise from statistical
fluctuations of the finite number of molecules, and ex-
ternal noise from highly dynamical and inhomogeneous
environments. Both of them can be significant to the dy-
namics of the system [11–13]. Therefore, one needs to
study the cellular network dynamics in fluctuating con-
ditions in order to model the cellular inner and outer
environments realistically. The dynamics of a gene net-
work in fluctuating environments can be addressed by: _x
¼ FðxÞ þ d � x � ζ , where x = (x1(t), x2(t),…, xn(t)) repre-
sents the vector of gene expression levels. F(x) is the
vector for the driving force of gene regulations. ζ is
Gaussian noise term satisfied with: <ζi(x, t) > = 0 and
<ζi(x, t)ζj(x, t

′) > = 2Dijδijδ(t − t′) (δij = 1 for i = j, and δij =
0 for i ≠ j), where δ(t) is Dirac delta function and D is
diffusion coefficient matrix. Here, d is the amplitude for
white noise. So, the above ODEs (Eqs. 1, 2 and 3) can be
transformed to stochastic ordinary differential equations
(SODE).
The probability evolution for a stochastic dynamical

system can be captured by the diffusion equations [34,
35]. For a 2-dimensional system, the diffusion equation
has the form:

∂P x1; x2; tð Þ
∂t

¼ −
∂
∂x1

F1 x1; x2ð ÞP½ �− ∂
∂x2

F2 x1; x2ð ÞP½ �

þ D
∂2P
∂x21

þ ∂2P
∂x22

� �

ð6Þ

Here, F1and F2 represent the driving force for the sys-
tem from above ODEs. D is the diffusion coefficient
matrix.
By solving the diffusion equations for the long time

limit, we obtained the steady state probabilistic distribu-
tion of the system. We used COMSOL Multiphysics
(version 4.3) to solve the diffusion equations. In this
way, we mapped out the potential landscape for the sys-
tem by U = − ln(Pss) [17, 18, 22, 23, 36]. Here, Pss repre-
sents the probability distribution of the steady state, and
U is the dimensionless potential.
We calculated the mean first passage time (MFPT)

from the temporal trajectories of the variable X and Y.
Starting from a random initial state at X attractor, fol-
lowing the temporal evolution of the system trajectory,
we are able to find the time when the system first
switches to the Y attractor. The time difference between
initial time and the final time is defined as the first pas-
sage time (FPT) for the transition process from X at-
tractor to Y attractor. Repeating this process we can
obtain the average of the FPT, defined as the MFPT for
the transition process from X attractor to Y attractor.
Additional file

Additional file 1: Figure S1. Comparisons of boundary sharpening
effects over time quantified by sharpening index (SI), for MRSA models at
different morphogen noise level ϵ and gene expression noise level d
value. Figure S2. Two dimensional simulations show the boundary
sharpening effects over time at different vertical resolution (A for 10 grids
and B for 20 grids). Blue: X is expressed, red: Y is expressed. Table S1.
Parameters of the mutual repressed self-activation (MRSA) model. Table
S2. Parameters of the self-activation (SA) model. Table S3. Parameters of
the mutual repression (MR) model. Table S4. Parameters of the cross
morphogen gradients model. (PDF 3832 kb)
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