
Park et al. BMC Systems Biology 2018, 12(Suppl 2):20
https://doi.org/10.1186/s12918-018-0547-0

RESEARCH Open Access

BTNET : boosted tree based gene
regulatory network inference algorithm using
time-course measurement data
Sungjoon Park1†, Jung Min Kim4†, Wonho Shin2, Sung Won Han5, Minji Jeon1, Hyun Jin Jang3,
Ik-Soon Jang3* and Jaewoo Kang1,2*

From The 28th International Conference on Genome Informatics
Seoul, Korea. 31 October - 3 November 2017

Abstract

Background: Identifying gene regulatory networks is an important task for understanding biological systems. Time-
course measurement data became a valuable resource for inferring gene regulatory networks. Various methods have
been presented for reconstructing the networks from time-course measurement data. However, existing methods
have been validated on only a limited number of benchmark datasets, and rarely verified on real biological systems.

Results: We first integrated benchmark time-course gene expression datasets from previous studies and reassessed
the baseline methods. We observed that GENIE3-time, a tree-based ensemble method, achieved the best performance
among the baselines. In this study, we introduce BTNET, a boosted tree based gene regulatory network inference
algorithm which improves the state-of-the-art. We quantitatively validated BTNET on the integrated benchmark
dataset. The AUROC and AUPR scores of BTNET were higher than those of the baselines. We also qualitatively validated
the results of BTNET through an experiment on neuroblastoma cells treated with an antidepressant. The inferred
regulatory network from BTNET showed that brachyury, a transcription factor, was regulated by fluoxetine, an
antidepressant, which was verified by the expression of its downstream genes.

Conclusions: We present BTENT that infers a GRN from time-course measurement data using boosting algorithms.
Our model achieved the highest AUROC and AUPR scores on the integrated benchmark dataset. We further validated
BTNET qualitatively through a wet-lab experiment and showed that BTNET can produce biologically meaningful results.
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Background
A gene regulatory network (GRN) is a biological network
representing relationships between genes and their reg-
ulators. One representative regulator is a transcription
factor that regulates a target gene’s expression. Recon-
structing the gene regulatory network is important for
understanding the biological system. The gene regulatory
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network could identify causal relationships among molec-
ular interactions, help to prioritize experimental design,
or be considered as network biomarkers [1]. Its applica-
tions are extended to elucidate disease processes [2] or to
identify drug targets [3]. With the development of high-
throughput technologies such as microarray and RNA-
Seq [4, 5], gene expression data has become prevalent and
a reliable source for reconstructing the gene regulatory
network.
A good deal of research on reverse-engineering has been

conducted using the gene expression data [6–9]. In the
DREAM (Dialogue for Reverse Engineering Assessments
and Methods) Challenges, methods were employed to
construct a benchmark dataset that can be used to
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validate various inference algorithms [10, 11]. However,
these methods rely on mostly steady-state expression data
which is a snapshot of a biological process in a specific
moment. To fully understand the dynamic properties of
biological processes, it is essential to monitor their activity
using time-course data [12]. Analyzing time-course data
can help us to understand not only developmental and
time-course biological processes but also mechanism of
perturbation [1, 12].
Various GRN inference methods using time-course data

have been developed [13–18]. Currently, the model-based
and model-free approaches are the two main approaches.
Model-based methods tend to formulate the expression
of a target gene as a function of its regulators. Then,
model-based methods use the learned parameters (coef-
ficients) of regulators as regulatory interaction scores.
Ridge regression, LASSO and Bayesian Model Averaging
(BMA) are some of the representative methods of model-
based methods [14, 15, 18, 19]. BGRMI, a recently
developed GRN inference method, computes regulatory
interaction scores using posterior probabilities obtained
by BMA [18].
In contrast, model-free methods compute the degree

of regulation based on information-theoretic criteria.
TD-ARACNE [16] obtains time-delayed dependency
between two genes by mutual information. Similarly,
time-delayed ND [20] extracts dependencies based on
cross-correlation instead and filters the indirect depen-
dencies using network deconvolution method [21]. To
deal with the dynamicity of regulatory delay induced by
noisy environment, DDGni [22] captures the dynamic
delay by applying the gapped local alignment algorithm.
One of the state-of-the-art methods used in model-

free methods is GENIE3-time, a time-lagged version of
GENIE3 [8, 13]. Basically, GENIE3 applies a tree-based
ensemble method to compute scores of regulatory
interactions. GENIE3 won both the DERAM4 in-silico
multi-factorial challenge [10], and the DREAM5 network
inference challenge [11] both in which various expres-
sion data were used for validating inference algorithms
submitted by the participants of the challenges. GENIE3-
time is an extended version of GENIE3 and used to infer
networks from time-course expression data [13].
However, we found it difficult to objectively compare

the performance of the current state-of-the-art methods
because they were quantitatively validated on a small
amount of dataset or different benchmark datasets. To
address this problem, we integrated eight time-course
gene expression benchmark datasets from the previous
studies. Then, we re-evaluated the baseline methods
[6, 8, 15, 17, 18, 20, 22, 23] on the integrated dataset.
We found that GENIE3-time performed more robustly
among the baseline methods (see Additional file 1:
Table S1–S4).

In this article, we propose BTNET which is a boosted
tree based gene regulatory network inference algorithm
that is employed to reconstruct the network using time-
course measurement data. The boosted tree is used to
compute regulatory interaction scores between candidate
regulators and target genes. To the best of our knowl-
edge, this is the first study to use the boosted tree to infer
GRNs using time-course measurement data. We evalu-
ated BTNET on the integrated benchmark dataset and
showed that ourmethod outperformed 9 baselines includ-
ing the current state-of-the-art method, GENIE3-time.
Furthermore, to verify if BTNET actually produces bio-

logically meaningful networks, we qualitatively assessed
the GRN inferred by BTNET using time-course data
obtained from our experiments with antidepressant
treated neuroblastoma cells. We treated SK-N-SH neu-
roblastoma cells with fluoxetine, an antidepresseant, and
measured the transcription factors’ change in activity over
time. From this data, BTNET inferred that brachyury, a
transcription factor, was regulated by fluoxetine and this
inference was validated by immunoblot assays.

Methods
Problem definition
In this section, we describe our inference model that
reconstructs a gene regulatory network from time-course
measurement data. Ourmodel takes an n T×P expression
matrix E as an input where n is the number of exper-
iments, T is the number of times points and P is the
total number of genes. Then, BTNET outputs a weighted
adjacency matrix W ∈ R

p×p where wi,j is the regula-
tory interaction score that indicates how strongly gene i
regulates gene j. We use only high confidence regulatory
interactions where its scores are above the threshold to
reconstruct a gene regulatory network.

Tree-based ensemble method for inferring gene
regulatory networks
The tree-based ensemble method, GENIE3 is one of the
state-of-the-art approaches for inferring regulatory net-
works [8]. The method won the DERAM4 in-silicoMulti-
factorial Challenge [10], and DREAM5Network Inference
Challenge [11]. In GENIE3, the gene regulatory network
inference problem is decomposed by p different subprob-
lems where p denotes the number of genes in expression
data. In each subproblem, one gene is considered as a
target gene and other genes except the target gene are
regarded as candidate regulators. Then, a bagging based
ensemble tree method which is Random Forest [24] or
Extra Tress [25] can compute the regulatory interaction
scores between genes by measuring how strongly the
expression values of candidate regulators contributed to
predict expression values of a target gene. Computing the
regulatory interaction scores and finding the regulators of
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a target gene can be viewed as a feature selection problem
in machine learning.
GENIE3-time modifies GENIE3’s original regulatory

interaction scoring method to compute the scores of can-
didate regulators for time-lagged expression value of a
target gene [13]. Formally, t+ 1 time point expression val-
ues of a target gene are modeled by t time point values of
candidate regulators as follows.

eit+1 = fi
(
e−i
t

)
+ εt ,∀t, (1)

where eit+1 represents the expression value of gene i at
time point t + 1, e−i

t the vector of expression value at time
point t of genes except gene i, and εt indicates random
noise at time t. A weighted adjacency matrix is then con-
structed after obtaining regulatory interaction scores of
candidate regulators for each target gene i in total P genes.
In a bagging procedure of GENIE3-time, regression trees
are fitted to independent bootstrapped samples. Then,
the ensemble score is obtained by averaging importance
scores of all independently trained regression trees.

BTNET
In this article, we introduce a new ensemble tree
based gene regulatory network inference algorithm that
uses time-course measurement data when inferring the
network. The ensemble tree we used for inferring the
network is boosted tree. The boosted tree differs from
bagging based tree applied in GENIE3-time in that while
GENIE3-time aggregates multiple independent estima-
tors for constructing the final ensemble method, boosted
tree continuously updates estimator itself to make it
stronger by compensating for the weakness of previ-
ous estimators [26]. We propose BTNET-AdaBoost and
BTNET-GraBoost, both of which are based on popular

tree-based boosting algorithms that use a regression tree
as a base estimator, adaptive boosting (AdaBoost) and
gradient boosting, respectively [27, 28]. The overview of
BTNET is shown in Fig. 1. We first discuss each boosted
tree algorithm and how we used the algorithms to com-
pute regulatory interaction scores. Then, we will briefly
describe the implementation and computational complex-
ity of our method.

BTNET-AdaBoost
A brief explanation of the AdaBoost algorithm is given
below. Let f be a base estimator, T the number of boost-
ing iterations, xi the feature vector of sample i, N the total
number samples, and L be a loss function; then, AdaBoost
is run using the following steps [27]

1. Assign initial sample weights where each sample i
has a sample weight wi where wi = 1/N .
This means all samples start with the same weight.

2. Build a training set size N by sampling with
replacement according to the sample weights. The
weight represents the probability of the samples
being selected.

3. Train f on the sampled training set.
4. Make predictions on every training sample and

compute normalized sample loss erri by
erri = |L(f (xi),Yi)|

max(|L(f (xi),Yi)|) .
Here, we use a linear loss function where
L(f (xi),Yi) = (Yi − f (xi)).

5. Calculate average loss L̄ with L̄ =
∑N

i=1 erriwi.
6. Update the sample weights using β where

β = L̄
1−L̄ .

The new sample weight is then, wi = wiβ(1−erri).
7. Repeat steps 2 to 6 until boosting iteration becomes T.

Fig. 1 Overview of BTNET. a BTNET takes time-course measurement data as input. b Boosted tree (Adaboost or gradient boosting) is used to
compute regulatory interaction scores for all pairs of genes. c BTNET outputs a weighted adjacency matrix which contains the regulatory interaction
scores. d A gene regulatory network is reconstructed by only using high confidence regulatory interactions
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Basically, a current estimator is fitted to “difficult” samples
on which previous estimators obtained poor prediction
performance. Prediction performance on difficult sam-
ples improved at the end of training. One characteristic of
AdaBoost is that the weight of an estimator at each iter-
ation can be obtained. The estimator weight is calculated
as follows.

estimator_weightt = learningrate × log
1
βt

(2)

where t indicates the stage of boosting from 1 to T.
Usually, the algorithm is used for solving prediction

problems. However, for inferring regulatory network
problems, we are more interested in what genes can be
used to most accurately predict the expression values of
target genes rather than how well the target gene expres-
sions were predicted. The prediction accuracy is repre-
sented by the regulatory interaction score. To calculate it,
we use variable importance scores from boosted tree that
was trained to predict a target gene’s time-lagged expres-
sion from candidate regulator’s. The variable importance
score of a single regression tree is calculated by howmuch
a variable contributed to variance reduction after split-
ting training samples using the variable [29]. The Variable
Importance Score (VIS) of gene G in one regression tree
is calculated by the following equation.

VIS(G) = |S|Var(S) − |Sleft|Var(Sleft)
− |Sright|Var(Sright)

(3)

where S is the set of samples in the current node and |S|
refers to the size of S; Var(S) is the variance of the tar-
get values in the set S; Sleft and Sright refer to the sets of
samples in the left and right child nodes after splitting,
respectively.
After obtaining VISs from all trees, the ensemble vari-

able importance score is computed by aggregating of the
scores. In AdaBoost, the ensemble importance score is
calculated by the weighted average of VISs. Thus, the
equation for computing ensemble VIS of a variable G is as
follows.

VIS_ensemble(G) =
T∑
t=1

estimator_weightt × VISt(G)

(4)

By taking all the genes in the expression data as target
genes and obtaining VISs for candidate regulators of the
target genes, we could obtain regulatory interaction scores
for all pairs of genes. The regulatory interaction scores are
represented as a weighted adjacency matrix W where the
value in i-th row and j-th column indicates the regulatory
interaction score from gene i to gene j.

Once the adjacencymatrix is obtained, only interactions
that satisfy a certain threshold are represented by edges in
the inferred gene regulatory network.

BTNET-GraBoost
We use gradient boosting, another boosted tree based
ensemble inference method, for scoring regulatory inter-
actions. Gradient boosting was also successfully used for
inferring gene regulatory networks from steady-state gene
expression data [9, 30]. The gradient boosting algorithm
follows the gradient descent procedure that is employed
to minimize the loss L of an estimator f by adding resid-
ual fitted estimator h [28]. The loss function L used here
is based on squared error as follows.

L
(
f (xi),Yi

) = (Yi − f (xi))2

2
(5)

Then, residual R is obtained by derivative of L by f.

R
(
f (xi),Yi

) = ∂L
(
f (xi),Yi

)

∂f (xi)
= Yi − f (xi) (6)

where f (xi) denotes a prediction value of i-th sample and
Y denotes a target value of the i-th sample. In Gradient
boosting, a base estimator f0 produces its prediction by
simply averaging the target values.

f0 = Ȳ (7)

At each stage t, a new estimator ht is fitted to the resid-
uals R of previous estimator ft−1 where the residuals are
derivatives of square loss function L over ft−1. Then, ht is
added to the previous learner with the learning rate β .

ft = ft−1 + βht (8)

The additive estimator ft continuously improve its pre-
diction power by compensating the previous estimator’s
error.
The only difference between BTNET-AdaBoost and

BTNET-GraBoost, other than the boosting method itself
(i.e., AdaBoost vs gradient boosting), comes from aggre-
gating method of single trees’ variable importance scores.
In the case of BTNET-AdaBoost, the ensemble impor-
tance scores were computed by weighted average whereas
the ensemble scores of BTNET-GraBoost were obtained
by just averaging the importance scores of each tree’s as
follows.

VIS_ensemble(G) = 1
T

T∑
t=1

VISt(G) (9)

The methods for computing variable importance scores
in a single tree, obtaining the weighted adjacency matrix
that contains regulatory interaction scores for all gene
pairs, and constructing a GRN are the same as those used
in BTNET-Adaboost.
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Implementation
We built BTNET by modifying GENIE3-time python
implementation [13]. We modified the part of comput-
ing regulatory interaction scores from bagging based tree
method to boosted tree method. We used AdaBoost and
gradient boosting implementation provided in the scikit-
learn Python machine learning package. The visualization
of an inferred gene regulatory network was done by using
the Graphviz Python package version 0.4.10. For a fair
comparison with GENIE3-time, we used the same param-
eter conditions as GENIE3-time from Jump3 [17] on both
BTNET-AdaBoost and BTNET-GraBoost (n_estimators
as 100, and others as default values of scikit-learn pack-
age). All genes except for a target gene were regarded as
candidate regulators.

Computational complexity
The computational complexity of BTNET is the same as
that of GENIE3-time, which is O(pTKNlogN) where p is
the number of genes, K is the number of candidate regu-
lators, T is the number of iterations for boosting, and N
is the total number of samples. Training one regression
tree has a complexity on the order of O(KNlogN). Since
building an ensemble tree takes T times longer than a
single tree, both BTNET-AdaBoost and BTNET-GraBoost
require a time complexity on the order of O(TKNlogN).
To obtain full regulatory networks, the ensemble tree
must be fit to p total genes. Therefore, BTNET has a
computational complexity on the order of O(pTKNlogN).

Results and discussion
In this section, we briefly describe the 8 benchmark
datasets we used for the quantitative evaluations and
report the AUROC and AUPR scores of our BTNET
method and 9 baseline methods. We also report the
results of qualitative analysis that experimentally verifies
a regulatory interaction inferred by BTNET using antide-
pressant treated human SK-N-SH neuroblastoma cells.

Benchmark datasets
IRMA dataset
The in vivo reverse-engineering and modeling assessment
(IRMA) network is a yeast (Saccharomyces cerevisiae)
synthetic network that was made for validating the perfor-
mance of GRN inference methods [31]. The network con-
sists of 5 genes (CBF1, GAL4, SWI5, GAL80 and ASH1).
The original IRMA network has 7 regulatory interac-
tions (CBF1 -> GAL4, GAL4 -> SWI5, GAL4 -> GAL80,
SWI5 -> ASH1, SWI5 -> GAL80, ASH1 -> CBF1, and
GAL80 ->GAL4). In the simplified version, an interaction
fromGAL40 to GAL4 was omitted. Switch-on and switch-
off data, two types of time-course gene expression data,
are from the IRMA network. In switch-on data, 16 time
points of gene expressions were measured after the IRMA

network was activated by galactose. In switch-off data, 21
time points of expressions were measured after switch-
ing the galactose to glucose. We inferred a network from
switch-on and another network from switch-off data, and
evaluated the networks against the original network and
simplified network, respectively.

Spellman dataset
The Spellman dataset contains time-course gene expres-
sion data on yeast (Saccharomyces cerevisiae) cell cycle
[32]. We selected two types of expression dataset which
were cdc-15 dataset, and cdc-28 dataset. Cdc-15 and
cdc-28 dataset were made by measuring 24 and 17 time
points expressions of 9 genes (FKH2, SWI4, SWI5, SWI6,
NDD1, ACE2, CLN3, MBP1, and MCM1) from cdc-15
and cdc-28 cell cycle arrested yeast, respectively. Yeast
cell cycle network used for the ground truth network
of the Spellman dataset was obtained from the study by
Simon et al. (2001) [33].

C.elegans and yeast cell cycle data fromDDGni
We obtained time-course gene expression dataset of
Caenorhabditis elegans (C.elegans) and yeast cell cycle,
and the ground truth networks for each dataset from
the study named DDGni [22]. The C.elegans dataset
contains 6 genes (PHA-4, END-1, ELT-2, ELT-7, GES-
1, and END-3) and 180 time points of gene expressions
were measured using cell imaging techniques [34]. The
ground truth networks were manually constructed by the
authors of DDGni. In case of yeast cell cycle dataset,
the authors of DDGni obtained the dataset from GEO
[35] with the accession number GSE8799. They selected
8 well-researched TFs which are YOX1, STB1, HCM1,
WHI5, YHP1, ACE2, SWI5 and ASH1 [36] from the GEO
dataset and manually constructed a ground truth network
from the literature and external databases (YEASTACT
[37] and STRING [38]). The yeast cell cycle time-course
dataset contains 30 time points of expression values.

DREAM4 in silico dataset
DREAM4 in silico time-course dataset, from the
DREAM4 In Silico Network Challenge, is well-known
simulated benchmark dataset used for assessing network
inference methods. Among 10 networks that were pro-
vided in the challenge, five networks had 10 genes and
the other five had 100 genes. The networks containing
10 genes and the others containing 100 genes have 5 and
10 replicates of time-course expression data, respectively.
Each replicate has 21 time points. At t=0, about one third
of the genes were perturbed by increasing or decreasing
initial expression of those genes. After 10 time points, the
perturbation is then removed and returned to its original
state. Initially perturbed genes were different from each
replicate.
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Performance metrics
The output of BTNET is a weighted adjacency matrix
containing regulatory interaction scores of all possible
interactions between all genes. To form a gene regulatory
network, we select a subset of interactions where the reg-
ulatory interaction scores are above a certain threshold.
Area Under Receiver Operating Characteristic (AUROC)
and Area Under Precision-Recall (AUPR) have usually
been used to evaluate the performance of GRN inference
methods [8, 10, 11, 17, 18]. AUROC calculates the area
under a ROC (receiver operating characteristic) curve
where the x-axis indicates a false positive rate (FPR) and
the y-axis indicates a true positive rate (TPR). In the case
of AUPR, it calculates the area under a precision-recall
curve where the x-axis indicates recall and the y-axis
indicates precision.

Performance on benchmark datasets
We conducted a quantitative evaluation of BTNET
by comparing AUROC and AUPR scores on the eight
benchmark datasets. On the IRMA dataset, we inferred
two GRNs from switch-on and switch-off time-course
data. We inferred two GRNs from Spellman cdc-15 and
cdc-28 time-course data. We also obtained two GRNs
from C.elegans and yeast cell cycle time-course data.
On DREAM4 dataset, we inferred five GRNS for each
DREAM4 in silico-size10 and DREAM4-size100 dataset
having 10 GRNs in total. In case of the DREAM4 dataset,
we averaged AUROC/AUPR scores for each five networks
of the size10 and size100 networks, respectively. Thus, we
received 10 evaluation results for each AUROC and AUPR
scores. The difference between the number of datasets
and evaluations in the IRMA dataset was caused by eval-
uating two inferred GRNs from switch-on and switch-off
data with the two ground truth networks (original
IRMA and simplified IRMA networks) producing four
evaluation results. We averaged the 10 scores for each

AUROC and AUPR and compared BTNET with the fol-
lowing nine baseline methods: BGRMI [18], JUMP3 [17],
GENIE3-time using Random Forest and Extra Trees [8],
DDGni [22], TDARACNE [16], TSNI [23], timedelayND
[20], time-lagged clr [6] and inferelator [15]. As shown
in Table 1, our BTNET method achieved better AUPR
scores than all baseline methods. BTNET-GraBoost
achieved the highest on both AUPR and AUROC scores.
BTNET-GraBoost also presented lower standard devi-
ations of AUROC and AUPR scores in comparison to
GENIE3-time. Furthermore, BTNET-GraBoost showed
the best results in average ranks on both AUROC and
AUPR scores. Results indicate that our methods are not
only more accurate but also more robust than baseline
methods. All AUROC/AUPR scores and ranks for each
dataset are in Additional file 1 (see Table S1–S4).

Qualitative analysis of BTNET on antidepressant treated
human neuroblastoma cells
To further evaluate BTNET, we performed an additional
qualitative analysis using wet lab experiments. We first
inferred a regulatory network from time-course activity
data of transcription factors using BTNET. The activ-
ity of transcription factors was measured after treating
human neuroblastoma cell line SK-N-SH with fluoxetine,
a popular antidepressant. Twenty depression related tran-
scription factors (MEF1, AP-3, HNF1A, ARNT1, GAS,
AP-4, GATA, c-Myc, brachyury, ER, AP-2, LHX8, ETS1,
AP-1, AR, p53, E2F1, FOXC2, HSE and ISRE) were cho-
sen for measuring activities. Living cell array [39] was
used to measure the activities of the transcription fac-
tors. The activities were measured every 12 h for 10 days
with 3 replicates. Thus, three 20 × 20 time-course input
matrices were used for inference. A detailed description
on the materials and methods used for this experiment is
provided in Additional file 1 (see Materials and methods
of qualitative analysis).

Table 1 Overall Scores of AUROC and AUPR on the integrated benchmark dataset

AUPR AUROC

Avg Std Avg rank Avg Std Avg rank

BTNET-GB 0.453 0.216 3.7 0.668 0.108 3.6

BTNET-AB 0.445 0.237 4.3 0.645 0.142 4.7

GENIE3-time_RF 0.43 0.227 4.3 0.652 0.142 3.8

BGRMI 0.419 0.304 5.4 0.596 0.261 5.6

Jump3 0.397 0.244 5.1 0.63 0.113 5.5

Inferelator 0.39 0.27 5.6 0.611 0.111 5.3

GENIE3-time_ET 0.381 0.2 5.7 0.606 0.153 6

DDGni 0.346 0.217 7.75 0.621 0.099 7.125

CLR-lag 0.344 0.212 7 0.563 0.17 7.1

TSNI 0.343 0.226 7 0.564 0.142 7

time-delayed ND 0.259 0.165 9.5 0.476 0.122 9.3
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The inferred network is shown in Fig. 2. BTNET-
GraBoost was used to infer the network. We used 0.25
as the threshold for the regulatory interaction score as
it exhibited the best F1-score on the 10 benchmark
evaluations. The network shows regulatory relationships
between 20 TFs affected by fluoxetine, and indicates that
p53 acts as a central regulator of the fluoxetine-induced
network. Previous studies have identified the effects of
fluoxetine on p53 [40, 41].
Additionally, Fig. 2 indicates that fluoxetine regu-

lated the activity of brachyury via p53. Brachyury is a
transcription factor and its main function is promoting
epithelial-mesenchymal transition (EMT) by down-
regulating E-cadherin [42, 43]. Studies reported that
brachyury is also involved in several types of tumors
[44, 45]. In particular, It was reported that brachyury is a
biomarker for chordomas, which is a type of central ner-
vous system tumor [44]. However, the inferred relation
that fluoxetine regulates brachyury via p53 is novel and
has not been reported before.
To verify the inferred relation, immunoblot assay was

examined. In Fig. 3, the immunoblot assay shows expres-
sion levels of downstream molecules of brachyury, such
as E-cadherin [46] and p-ERK [47], were elevated (day 6).
ERK and β-actin were used as controls for protein quan-
tification. The immunoblot assay result demonstrates that
brachyury was in fact regulated by fluoxetine, and fluoxe-
tine may have affected brachyury between day 4 and day 6
after the treatment. Additional file 1: Figure S1 shows the
activities of p53 and brachyury measured in the living cell
array. It shows that brachyury was actually upregulated
between day 5 and day 6.

Conclusions
We developed a more accurate and robust method that
infers GRNs from time-course measurement data. Most

Fig. 2 Regulatory network inferred by BTNET using time-course data
of fluoxetine-treated SK-N-H cells

Fig. 3 Immunoblot assay result showing increased expression of
downstream molecules of brachyury

GRNmethods using time-course data were validated only
on a limited number of benchmark datasets. To address
this problem, we integrated time-course gene expres-
sion datasets from previous studies and re-evaluated
the baseline methods on the integrated benchmark set.
GENIE3-time achieved the best performance among the
baseline methods. GENIE3-time infers GRNs by comput-
ing all possible pairs of regulators-target gene regulatory
interaction scores using Random Forest (or Extra Trees).
We attempted to improve the current state-of-the-art
method, GENIE3-time, by using boosting algorithms to
compute regulatory interaction scores.
We proposed two boosted tree based GRN infer-

ence methods: BTNET-AdaBoost and BTNET-GraBoost.
BTNET-AdaBoost uses adaptive boosting and BTNET-
GraBoost uses gradient boosting to compute the regu-
latory interaction scores. BTNET-GraBoost achieved the
highest AUPR/AUROC scores and the best average ranks.
We performed wet lab experiments to validate whether
BTNET could infer biologicallymeaningful networks. Liv-
ing cell array analysis was used to analyze the activity
of TFs in real time at various time points after treat-
ing human SK-N-SH cell lines with fluoxetine. BTNET
inferred a regulatory network from the time-course data
and brachyury was shown to be regulated by fluoxetine.
The inferred regulation of brachyury was verified by test-
ing the expression of downstreammolecules of the TF and
actual increase of expression on brachyury’s downstream
molecules was observed.
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