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Abstract

Background: Probabilistic Boolean networks (PBNs) have been proposed for analyzing external control in gene
regulatory networks with incorporation of uncertainty. A context-sensitive PBN with perturbation (CS-PBNp),
extending a PBN with context-sensitivity to reflect the inherent biological stability and random perturbations to
express the impact of external stimuli, is considered to be more suitable for modeling small biological systems
intervened by conditions from the outside. In this paper, we apply probabilistic model checking, a formal verification
technique, to optimal control for a CS-PBNp that minimizes the expected cost over a finite control horizon.

Results: We first describe a procedure of modeling a CS-PBNp using the language provided by a widely used
probabilistic model checker PRISM. We then analyze the reward-based temporal properties and the computation in
probabilistic model checking; based on the analysis, we provide a method to formulate the optimal control problem
as minimum reachability reward properties. Furthermore, we incorporate control and state cost information into the
PRISM code of a CS-PBNp such that automated model checking a minimum reachability reward property on the code
gives the solution to the optimal control problem. We conduct experiments on two examples, an apoptosis network
and a WNT5A network. Preliminary experiment results show the feasibility and effectiveness of our approach.

Conclusions: The approach based on probabilistic model checking for optimal control avoids explicit computation
of large-size state transition relations associated with PBNs. It enables a natural depiction of the dynamics of gene
regulatory networks, and provides a canonical form to formulate optimal control problems using temporal properties
that can be automated solved by leveraging the analysis power of underlying model checking engines. This work will

be helpful for further utilization of the advances in formal verification techniques in system biology.
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Background

Research on biological regulation is important for under-
standing cellular functions of organisms and developing
therapeutic interventions in medical applications. One of
the central issues in this area is finding optimal control
for gene regulatory networks [1]. At a given state of the
network, by imposing external interventions, e.g., drugs,
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radiation, and chemo-therapy, the expression status of
particular genes in the network can be changed; there-
fore, the whole network can transition to a desirable state
or a steady-state distribution via the interaction between
genes. The external inputs provided during the process
thus form a control policy for regulating cell behaviors of
organisms. Optimal control problem for gene regulation
is typically concerned with finding control policies that
minimize a cost function in a treatment horizon.
Probabilistic Boolean networks (PBNs) [2], an exten-
sion of Boolean networks (BNs),enable effectively expres-
sion of rule-based dependencies between genes and
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representation of the switching behaviors of genetic pro-
cess, and have been been widely used by system biologists
in external control for gene regulatory networks with
uncertainty [3]. A BN is a discrete, deterministic model,
where the expression status of each gene is represented
by a binary value: 0 (off) or 1 (on). Each node in a BN
is associated with a Boolean function that, defined over
the expression status of the corresponding gene and other
ones, describes the interactions between them. To model
uncertainty in realistic biological systems, PBNs have been
developed as an extension of BNs. In a PBN, several
Boolean functions are defined for each gene, and the func-
tions are chosen randomly with respect to a given proba-
bility distribution at each time step. Unlike a BN, such a
PBN, called an instantaneously random PBN, therefore is
a non-deterministic model, which essentially represents a
set of BNs such that a governing one is randomly decided
at each time to instantiate the PBN.

In this paper, we investigate the optimal control problem
for a context-sensitive PBN with perturbation (CS-PBNp).
The goal of introducing context-sensitivity to a PBN is
to characterize the inherent stability of biological systems
[4], which is achieved by imposing a probability g when
the switching in the Boolean networks is decided; Thus,
different from that in an instantaneously random PBN,
the switching behavior between the governing Boolean
networks in a context-sensitive PBN is restricted. A PBN
subject to random perturbation, on the other side, enables
capturing the impact of external stimuli to the genome
from the outside, such as mutagens and heat stress [5].
Due to the effect of random perturbations, the value of
each gene in a PBN can be flipped with a small pertur-
bation probability p; as a result, the PBN corresponds to
an ergodic Markov chain, where all the states communi-
cate and there exists a unique steady-state distribution.
As indicated in [4], a CS-PBNp is believed to be more
appropriate for modeling small biological systems where
the behavior of the genes in the network is moderated by
external conditions.

We provide an approach based on the technology of
probabilistic model checking for solving optimal control
problem for a CS-PBNp. Model checking [6] is a for-
mal verification technique for automated verifying behav-
ioral properties of concurrent systems based on state-
exploration. In this method, a modeling language is pro-
vided for describing the behavior of a system composed of
synchronous or asynchronous components. The desired
properties of the system are formulated using temporal
logic formulas equipped with formal syntax and seman-
tics. Thanks to the efficiency of the underlying data struc-
tures and algorithms, a model checker can automatically
build state transition relations of the system, and conducts
an exhaustive search of the system’s statespace to check
whether the behavior specified by a temporal property
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holds on the system or not. Recently, to support model-
ing and verification of systems with random and prob-
abilistic behavior, probabilistic model checking has been
developed, which extends traditional model checking with
advanced numerical computation algorithms, temporal
logic formulas and structures for describing probability
and cost/reward information, providing techniques for
automatically analyzing a wide class of quantitative fea-
tures about system behavior.

Applying (probabilistic) model checking to analysis of
biological behavior has been greatly studied in system
biology [7-10]. Specifically, in [11, 12], Kobayashiy and
Hiraishi proposed to use probabilistic model checking
to solve optimal control problems for (context-sensitive)
PBNs. Unlike other optimal control approaches for PBNs,
e.g., [1, 4, 13-15], that are usually developed over inte-
ger programming and dynamic programming, the method
based on probabilistic model checking does not need
explicit computation of large-size state transition relations
associated with PBNs and offers a framework for flexi-
ble specification and analysis. The methods presented in
[11, 12], however, have weakness: they can not model
impact of random perturbations on PBNs; moreover, they
did not take take into account of the information of con-
trol and state cost that are critical for evaluating practical
control policies.

In this paper, to deal with the above issues, based on
probabilistic model checking, we provide an approach
for solving optimal finite-horizon control for a CS-PBNp,
which considers both random perturbations and cost.
Optimal finite-horizon control [1] originates from the
field of cancer treatment applications where interventions
are typically conducted only for a finite time steps and
then are suspended for evaluating the results. The objec-
tive of such control is to search for a control policy by
manipulating the external control variables that drives the
network evolving in a desirable way and minimizes the
cost at the same time within the control horizon. In our
work, we first describe a detailed procedure of modeling
a CS-PBNp using the language provided by a widely used
probabilistic model checker PRISM [16], including the
steps for describing multiple Boolean functions, context-
sensitive switch behavior, and particularly, the effects of
random perturbation in a CS-PBNp. We then introduce
the reward structure in PRISM for describing quantitative
system information. We analyze the reward-based tem-
poral properties and the computation of the properties
in probabilistic model checking. Based on the analysis,
we provide a method to formulate the optimal control
problem as minimum reachability reward properties. Fur-
thermore, we add control and state cost information into
the PRISM code of a CS-PBNp such that automated model
checking a minimum reachability reward property on the
code gives the solution to the optimal control problem.
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We conduct experiments on two examples, an apoptosis
network [17] and a WNT5A network [15]. The experi-
ment results show the feasibility and effectiveness of our
approach. To the best of our knowledge, this is the first
time that probabilistic model checking has been used to
solve the class of optimal finite-horizon control prob-
lem for CS-PBNps. Within the same framework, we also
experiment on other variants of finite control problems,
in particular, optimal finite-horizon control with multiple
hard-constraints [13], which illustrates the flexibility of
our approach. These results will be helpful for further uti-
lization of the advances in formal verification techniques
to the research of gene regulation.

The rest of the paper is structured as follows: We
first briefly introduce the background of context-sensitive
PBNs with perturbation and the optimal finite-horizon
problem addressed in our work. We then give a detailed
account of our approach, including the procedure of
describing a CS-PBNp using the modeling language of
PRISM and the formulation of the optimal control prob-
lem as minimum reachability reward properties, which
allows for solving the optimal control problem via auto-
mated model checking the properties using PRISM.
Finally, we report our experiments on an apoptosis net-
work and a WNT5A network, and discuss the flexibility of
the approach.

Problem outline

In the following, we briefly review context-sensitive prob-
abilistic Boolean networks with perturbation and the opti-
mal finite-horizon control problem investigated in our
work; for further details, see [1, 4].

Context-sensitive probabilistic boolean networks with
perturbation
A Boolean network (BN) on # gens is defined by a tuple
B = (V,F), where V = {x1,...,%x,} is a set of nodes —
each node x; € {0,1} (i €[ 1..n]) represents the expression
status of the gene i, and F = {f1, . . ., f,} is a list of Boolean
functions describing the rules of regulatory interactions
between genes — each f; : {0,1}" — {0, 1} is the predictor
function for the gene i. The network state at any time step
t is given by a n-digit binary vector x(¢) =[x1(t) ... x,(2)],
where x;(t) is the value of x; at £.

In a probabilistic Boolean network (PBN) [2], each node
i is associated with multiple candidate Boolean func-
1(’), e 1((?)}' For each Boolean
function j;»(i) (j €[1..L()]), the probability of choosing it

to update the expression of the gene i is given by c]@

tions denoted by F; =

such that 3y c;i) = 1. Assume that the govern-
ing Boolean functions are chosen independently for each
gene. A PBN then represents a set of N = I;c1.{(0)
number of Boolean networks, and one of then is chosen
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for deciding the evolution of the PBN with respect to a
fixed probability distribution.

To model the inherent stability of biological systems, a
context-sensitive PBN (CS-PBN) has been developed [4].
The switching between the governing Boolean networks
in a CS-PBN is restricted by imposing a binary switch s
with a small switching probability g that forces switching
between the underlying Boolean networks. The switching
probability g is defined as a system parameter: when the
value of s is 1 with probability ¢, one of the Boolean net-
works in the CS-PBN is chosen as the evolution rule with
respect to the fixed probability distribution; in the case
that the value of s is 0, the current Boolean network is kept
for an interval of time until the next switch.

Moreover, to express the impact of external inputs on
the the expression status of gene, random perturbation
is incorporated into the structure of a PBN [5]. In this
case, each gene is supposed to be perturbed independently
with a small probability. Let a binary random variable per
(i €[1..n]) represent the perturbation of the gene i and a
parameter p be the perturbation probability. When a per-
turbation occurs, i.e., per’ = 1, with the probability p, the
expression status of the gene i flips from 1 to 0 or vice
versa. Hence, the PBN corresponds to an ergodic Markov
chain, where all the states communicate and there exists a
unique steady-state distribution.

In this work, we investigate external control problem
of a context-sensitive PBN with perturbation (CS-PBNp),
which is believed to be more suitable for modeling small
biological subnetworks where the behavior of the genes is
moderated by external conditions.

Optimal finite-horizon control problem

Optimal finite-horizon control [1] originates from the
field of cancer treatment applications where interventions
are typically conducted only for a finite time steps and
then are suspended for evaluating the results. The goal of
such control is to search for a control policy by manipulat-
ing the external control variables that drives the network
evolving in a desirable way and minimizes the cost at the
same time within the control horizon. Assume a CS-PBNp
with # genes has m control inputs, {u1,..., 4}, and the
length of a finite-horizon control is K. The state of all con-
trol inputs at any time step ¢ (¢ €[0..K -1]) is represented
by a m-digit binary vector u(t) =[u1(t) ... u,(t)], where
u;(t) is the value of u; at £. The control-dependent tran-
sition probability can be represented by a 2” x 2" matrix
based on the derivation in [4]. A control policy is rep-
resented by 7 = {uo,..., ux-1}, where p; : {0,1}" —
{0, 1} denotes a function that maps the state space of the
network into the control space. In order to achieve opti-
mal control, given by biologists in practice, a control cost
function gy (x(¢), u(¢)) : {0,1}” x {0,1}” — Rx¢ is used to
define the one-step cost of applying the control u(¢) at the



Wei et al. BMC Systems Biology 2017, 11(Suppl 6):104

state x(¢), and a state cost function gx (x(K)) : {0,1}" —
R>g is used to define the terminal cost (or, penalty) for a
state x(K) reached after K time steps; in general, based on
the desirability in biological applications, a more desirable
state is typically assigned a lower terminal cost.

According to the definitions above, given an initial state
x(0) and a K-step control policy 7 = {uo, ..., ux-1} fora
CS-PBNp P, following [1], the expected cost over the con-
trol horizon K, subject to the control-dependent transition
probability in P, is given by

K—-1

Jxx(0)) =E [th (x(2), e (x(2))) +g1<(x(1<))} 1)

t=0

The optimal finite control problem is to find an optimal
control policy 7* = {ug,..., ux_;} that minimizes the
cost function in Eq. (1).

Methods

We develope an approach for modeling a CS-PBNp
and solving the optimal finite-horizon control problem
based on the state-of-the-art probabilistic model checker
PRISM [16]. PRISM provides formal techniques for mod-
eling and analyzing systems exhibiting random or prob-
abilistic behavior. Particularly, PRISM provides a sim-
ple, state-based language for modeling systems. Based
on the code, PRISM can automatically build and analyze
the probabilistic models corresponding to the systems,
e.g., discrete-time Markov chains (DTMCs), continuous-
time Markov chains (CTMCs), Markov decision processes
(MDPs), or extensions of these models with reward (alter-
natively, cost). PRISM supports for analysis of a large fam-
ily of quantitative properties of the models. The properties
are formulated using temporal logics, e.g., Probabilistic
Computation Tree Logic (PCTL), Continuous Stochas-
tic Logic (CSL), as well as extensions for quantitative
specifications and reward. Thanks to the integration of
advanced graph-theoretical and numerical computation
algorithms, PRISM can deal with complex and large sys-
tems efficiently, and has been widely used for quantitative
verification in many different application domains, such
as communication protocols, quantum cryptography, and
systems biology.

In the rest of this section, we first show how to model a
CS-PBNp using the PRISM language. We then introduce
the extensions of MDP and PCTL with reward. We ana-
lyze computation of reward-based temporal properties.
Based on that, we provide a reduction method allowing
us to formulate the optimal control problem as a mini-
mum reachability reward property. Furthermore, we add
control and state cost information to the PRISM code of
a CS-PBNp such that the optimal control problem can
automatically solved by model checking the minimum
reachability reward property on the code using PRISM.
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Modeling a CS-PBNp in PRISM

Based on the description of a CS-PBN proposed by
Kobayashi and Hiraishi [12], we extend with random per-
turbations, providing a procedure of modeling the com-
plete dynamics of a CS-PBNp using PRISM. We illustrate
the procedure using a simple example and then summa-
rize the steps.

Consider a CS-PBNp P, composed of two nodes, x;
and xy, with one control input #, the switching probabil-
ity ¢ = 0.3, and the perturbation probability p = 0.1.
The dynamics of P,y is defined by the following Boolean
functions.

Jmovue &Y =03
s { x1(6) Axa(t) &) =07 )

@ A-ue P =02
s { () P =0

The PRISM code of P, is shown as follows.

(01) mdp

(02) formula fll=xl+u-x1l=u;
(03) formula f12=x1%x2;
(04) formula f21=x1x(1-u);
(05)
(0
(0
(

formula f22=x2;
6) module SWITCH
7) s:[0..171;
08) [PBN] true -> 0.3:(s’=1)
+ 0.7:(s8"=0);
(09) endmodule
(10) module PER1
(11) pil:[0..1];
(12) [PBN] true -> 0.1:(pl’=1)
+ 0.9:(pl’'=0);

(13) endmodule
(14) module NODE1
(15) x1:[0..1];
(1
(

6) di:[0..1];
17) [PBN] s=1&pl=0 -> 0.3:(x1’'=£f11)
&(d1’=0) ;
+ 0.7:(x1'=£f12)
&(dl'=1);
18) [PBN] s=0&pl=0&d1=0 -> (x1’'=£f11);
19) [PBN] s=0&pl=0&d1l=1 -> (x1’'=£f12);
20) [PBN] pl=1l&xl=1 -> (x1'=0);
21) [PBN] pl=1&x1=0 -> (x1'=1);

22) endmodule
23) module INPUT
24) u:[0..1];
25) [PBN] true ->
26) [PBN] true ->
27) endmodule

(u'=1);
(u’=0);

For the purpose of illustration, we only show the code
most related with the node x;, the control input
context-sensitive switching, and perturbation, defined in
different modules. In this code, line 1 shows the system
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being modeled is an MDP. Lines 2-5 describe the Boolean
functions transformed equivalently to numerical expres-
sions on binary values 0 and 1 according to the following
rules [11]:

—x~1—x xXVy~x+y—xy xAy~xy (4)

For example, lines 2 and 3 are transformed from Eq. (2),
and lines 4 and 5 — Eq. (3). Lines 6-9 define the mod-
ule SWITCH for the the context switch variable s: s is a
Boolean variable (line 7) with the probabilities to be true
(1) and false (0) given by 0.3 and 0.7, respectively (line
8). Similarly, lines 10-13 define the module PER1 for the
perturbation variable p1, where the probability for p1 to
be true is 0.1, and to be false - 0.9. Lines 14-22 describe
the module NODE1 for expressing the change of the vari-
able x1 — the status of the node x;, where the variable d1
records the index of the Boolean function selected for x1
in previous step. In particular, lines 20-21 show that the
value of x1 is flipped when the perturbation occurs, i.e.,
pl=1. Lines 23-27 show the module INPUT for the exter-
nal input from u, which is non-deterministically assigned
1 and 0, indicating that the control is applied and is absent,
respectively. To ensure synchronization over the mod-
ules, each command line is attached with the same label
[PBN].

Based on the example above, we summarize the steps
for deriving the PRISM code of a CS-PBNp as follows.

Step 1: Following the rules in (4), transform each Boolean
function jj(i) into an equivalent numerical expression
over binary values.

Step 2: Define the PRISM code as an MDP.

Step 3: Define the module SWITCH for the context
switch variable s as follows, where ¢ is the value of
the switching probability.

module SWITCH

s: [0..1];

[PBN] true -> qg:(s’'=1) +
(1-g) : (s'=0);

endmodule

Step 4: Define the module PER: for each perturbation
variable pi as follows, where p is the value of the
perturbation probability.

module PERI1

pi:[0..1];

[PBN] true -> p:(pi’'=1) +
(1-p) : (pi’=0);

endmodule

Step 5: Define the module NODE1 for changing the sta-
tus of each node x; under context-sensitive switching
and perturbation as follows.
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module NODE1I

xi:[0..1];
di:[0..l(0)-1]; 4 '
[PBN] s=1&pi=0 -> ¢\”: (xi’'=f?)&(di’=0)

.o
+oo e (ki =) &(dir=l)-1) ;

[PBN] s=0&pi=0&di=0 -> xi’=f;";

[PBN] s=0&pi=0&di=l(i)-1 -> xi’;ﬁg;
[PBN] pi=1l&xi=0 -> (xi’=1);
[PBN] pi=l&xi=1 -> (xi’=0);

endmodule

Step 6: Define the module INPUTi for each control
input ui as follows.

module INPUTi

ui:[0..1]1;
[PBN] true -> ui’=1;
[PBN] true -> ui’=0;
endmodule

Modeling and analysis of optimal control with reward

In the following, we first introduce the reward extensions
of MDP and PCTL in PRISM (see [16] for details). We
then give a reduction method to formulate the optimal
control problems as minimum reachability reward prop-
erties. Based on that, we incorporate cost information into
the PRISM code derived above such that the optimal con-
trol problem can be automatically solved through model
checking the properties in the code using PRISM.

Extending MDP and PCTL with reward

A reward structure in PRISM describes quantitative
reward (or, cost) information of the system that a prob-
abilistic model represents, such as power consumption,
execution time, and price of tasks. Consider an MDP
M = (S,a,8), where S is a finite set of states, « is a
finite set of actions, and § : S x ¢ — Dist(S) is a par-
tial probabilistic transition function. In PRISM, a reward
structure on M includes two reward functions: the state
reward function, p : § — R0, assigning to each state
the reward acquired in the state at each time step, and an
action reward function, t : S x « — R, assigning to
each pair of (s, a) the reward acquired when the action a
is selected in the state s.

In PRISM, behavior properties of an MDP can be
expressed using PCTL, which provides temporal oper-
ators to describe ordering of system events as well
as probabilistic quantifiers to specify the likelihood of
event occurrence. To express reward-based properties,
PCTL is extended with formulas for analyzing quantita-
tive measurement of system models, e.g., instantaneous
reward, cumulated reward, and reachability reward. Par-
ticularly, for the purpose of our work, we are interested
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in reachability reward properties expressed using the for-
mula R-,[FT], where ~¢ {<,<,>,>}, r € Rso, F
represents the “future” temporal operator, and T is a set
of target states. R~,[ F T] is true in a state s if, from s, the
expected reward cumulated until the target T is reached
meets the bound ~ r.

For an MDP, due to the existence of the non-
deterministic choices of actions, the properties of the
minimum (or, the maximum) expected values of reward
are formulated by replacing the R operator with Rpin (o,
Rmax) operator. The meaning of Ry [ F T is: “what is the
minimum expected cumulated reward of reaching the tar-
get T?” The value of Ryin[ F 7] is infinite, if, from s, the
probability of reaching a state in 7T is less than 1 under all
possible choices of actions; otherwise, PRISM computes
the value based on the following equations:

0 seT

Vs = o(s) + min (r(s,a) + Y s a)) - vs/> s¢T
acA(s) ses

(5)

where A(s) represents the actions available in s.

PRISM integrates a line of numerical algorithms, partic-
ularly, dynamic programming techniques based on value
iteration, Gauss-Seidel, and policy iteration, for solving
linear optimization problems on MDDPs, e.g., computing
the value of Ryin[ F T]. Meanwhile, these algorithm are
implemented using combinations of symbolic data struc-
tures, e.g., multi-terminal binary decision diagrams, and
conventional explicit storage engines, e.g., sparse matri-
ces and arrays, achieving compact representations and
efficient analysis of complex probabilistic systems.

Moreover, PRISM supports adversary generation based
on the value iteration algorithm. An adversary represents
a possible resolution of all the non-deterministic choices
in an MDP, used for choosing actions in each state. An
adversary is deterministic if only a single action is cho-
sen in each state; an adversary is memoryless if the choice
of the actions depends only on the current state. For the
property Ryin[ F T, it is known that there always exists
an optimal adversary, deterministic and memoryless, that
gives the minimum expected cumulated reward of reach-
ing a target in T [18]; such an optimal adversary can be
automatically generated by PRISM.

Reduction of optimal control to minimum reachability reward
Reward structures and properties offer effective mecha-
nism for analyzing different quantitative properties. We
now show how to formulate the optimal finite-horizon
control problem defined in Problem Outline section using
the minimum reachability reward property Ryin[ F T1].
Let P be a CS-PBNp with # nodes and m control inputs.
Consider a finite control of length K on P. The dynamics
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of P can be defined using an MDP Mp = (S, o, §), where
S = {0,1}" is the set states representing the status of the
nodes, « = {0,1}" is the set of actions associated with
control inputs, and § is the probabilistic transition func-
tion defined based on the the control-dependent transi-
tion probability for a CS-PBNp [4]. In practice, by making
the reward independent of time, the state reward function
p and the action reward function 7 on Mp can be gener-
alized from the the state cost function gk and the control
cost function g; defined for P, respectively.

To solve the optimal control problem for P by model
checking minimum reachability reward properties, there
are issues that need to be addressed. First, the objective of
the optimal control problem is to minimize the cost up to
a specific time step K. The minimum reachability reward
property Ryin[ F T, on the other side, is computed with
respect to a set of target states T; that is, the informa-
tion about time step is not taken into account. Second,
for the optimal control problem, the cost function defined
by Eq. (1) only considers the control cost over the con-
trol horizon and the terminal cost in the states reached at
the time step K; according to Eq. (5), however, Ryin[ F T
cumulates both the action and the state reward on every
transition up to the target states.

To address these issues, based on Mp, we construct an
MDP M/, = (§',a’,8") with new reward functions p’ and
7/, and define a target set 7" in M, such that the optimal
control problem for P can be solved by model checking
Rmin[ F T"] over M;D The fundamental idea of the con-
struction is to bring in a time step variable ¢ to record
the progress of the network evolution, which allows us
to specify the reward and the new target set T’ using
the value of t. Specifically, the MDP M, = (§',d/,8") is
constructed as follows.

o §=8x{0,---,K+1});

° o =q;

e foranys,s’ € S,aca,andi <K,
5/((5: i), ﬂ)((S/, i+1)) =48(s, ﬂ)(s/);

e foranys,s' € S,a e, 8 ((s,K+1),a)((s, K+1)) =
8(s,a)(s).

Furthermore, for the optimal control problem consid-
ered here, since Eq. (1) only computes the control cost
over the control horizon and the terminal cost in the states
reached at the time step K, we set zero for other cost in
the reward functions on M/,. Thus, p’ and t’ are defined
as follows.

e foranyse Sandi=K, p'((s,i)) = p(s), and for
0<i<K—lori=K4+1,p'((s,i) =0

e foranyse S,aca/,and0 <i<K-1,
7/((s,i),a) = 1(s,a), and for K < i < K+1,
v/ ((s,i),a) = 0.
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Based on the construction above, solving the optimal
finite control problem for P can be reduced to model
checking a minimum reachability reward property on
M. Let s; € S be the initial state of P where the finite
control with length K starts. We define (s;,0) € S’ be
the initial state of M7, and specify the target set in &'
be T" = {(s,K+1)|s € S}. According to Eq. (5) and the
definitions of the reward functions o’ and 7/, Rpin[F T7]
computes the minimum expected value of the control cost
cumulated over the path to the states in 77 and the cost
of the states reached at the time step K i.e., {(s, K)|s € S}.
Thus, model checking Ryin[ F T'] gives exactly the opti-
mal value of the cost function defined by Eq. (1) over the
control horizon of length K.

As introduced before, PRISM can produces an optimal
adversary o through model checking Rpin [ F T7] such that
for every state (s, i) reachable from (s7,0), o ((s, 7)) gives a
single choice of actions in «’. From such an adversary, a
control policy 7 for the CS-PBNp P, corresponding the
optimal value of the cost function, can be extracted, which
is the solution to the optimal control problem.

Solving optimal control using PRISM
Based on the analysis above, for a CS-PBNp P, we incor-
porate time step and cost information into the code
derived in Modeling a CS-PBNp in PRISM section. The
updated PRISM code corresponds to the MDP M?,, and
therefore can be used for solving the optimal control
problem. We illustrate this using the example P, again.
Given a finite control over P, with the length K = 4,
based on the construction described before, we first
define a module STEP for the time step variable ¢ as
follows.

module STEP

t:[0..5]

[PBN] t<=4 -> (t’' = t+1);
[PBN] t=5 -> (t’=5);
endmodule

Next, we describe the sate and control cost informa-
tion using the reward structures. In PRISM, rewards are
described using the following construct:

rewards rewardName
guard: reward
endrewards

where reward is a real number, guard is a predicate char-
acterizing the condition for the states or actions where the
reward is assigned.

For the example Py, the cost of the control (with u = 1)
is assumed to be 1, and the terminal cost for the states
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[0,0],[0,1],[1,0],and [1,1] - O, 2, 4, and 6, respectively,
which implies that the state [0,0] is the most desirable
one, and [ 1, 1] — the most undesirable. These information
can be added to the previous PRISM code using the
reward construct defined as follows.

) rewards cost
) u=l&t<4 : 1;
) X1=0&x2=0&t=4 0
) x1=0&x2=1&t=4 : 2
) x1=1&x2=0&t=4 : 4;
) x1=1&x2=1&t=4 6
) endrewards

(
(
(
(
(
(
(

N oy U WN R

Line 2 defines the control cost and lines 3-5 define
the terminal cost in states. Note that according to the
definitions of the reward functions p’ and t’ discussed
previously, we associate the time step variable ¢ to the cost
definition so that only the control cost in the first 4 steps
(t €[0..3]) and the cost of the states reached after the 4
steps (¢ = 4) are specified; all other ones are set zero by
default.

Suppose the finite control over P, starts with the ini-
tial state x[ 0] =[ 1, 1], i.e., the most undesirable one. For
the purpose of illustration, we assume that the switch is
turned off at the initial state, there is no perturbation
occurring, and the Boolean functions £11 and £21 are
chosen for x1 and x2, respectively. Model checking the
formula Ryin[ F (¢ = 5)] with respect to two initial con-
trol choices, # = 1 and ¥ = 0, returns 4.40 and 4.12,
respectively. Thus, the optimal value of the finite control
from [1, 1] is 4.12. Furthermore, from the optimal adver-
sary generated from PRISM, the following optimal control
policy @ = {0, 1, n2, 3} is derived:

* po(x[0]) = pu1(x[1]) = ua(x[2]) = 0 for any x[ 0],

x[ 1], x[ 3] reached during the first 3 time steps;

. [ 1ifx[3]=[1,1]
n3(x[3]) = { 0 otherwise

That is, the control input is applied only in the last time
step when the state x[ 3] of the network is equal to [ 1, 1];
otherwise, no control is applied in the policy.

Results and discussion

We conduct experiments on two examples, an apopto-
sis network and a WNT5A network, to demonstrate the
applicability of our approach on optimal finite-horizon
control for CS-PBNp models. We also discuss the flexi-
bility of the approach with experiment on other variants
of finite control problems, particularly, optimal finite-
horizon control with hard constraints.

Apoptosis network
Apoptosis, or programmed cell death, is a physiologi-
cal process allowing an organism to remove damaged or
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unwanted cells. The interactions within this process is
fundamental for embryonic development and adult organ-
isms. Malfunctioning apoptosis network may lead to var-
ious diseases, such as cancer, or immunodeficiency and
infertility. For the demonstration purpose of this paper, we
construct a CS-PBNp for an apoptosis network adapted
from [17], and apply our approach to solving the optimal
control problems for the network.

The apoptosis network used in our experiments con-
sists of one control input: the concentration level of TNF
denoted by u, and six nodes: the concentration level of
IAP denoted by x;, the concentration level of C3a by
x7, the concentration level of C8a by x3, the concentra-
tion level of NF«x By, by x4, the concentration level of
NF«B by x5, and the concentration level of CARP by xs.
According to [17], TNF is used as an control input to the
system — its stimulation triggers two opposite effects: acti-
vation and inhibition of caspases. The dynamics induced
by the underlying pro- and anti-apoptotic genes will lead
to different states of cell death or cell survival. A high con-
centration of IAP and a low level of active caspases, e.g.,
C3a, typically characterizes a living cell, whereas a high
level of active caspases together with a low concentration
of IAP typically leads to cell death. From this observation,
all the states where x; = 1 and xy = O are treated as
the most desirable states for regulation purpose, which are
assigned a state penalty of 0; the states where x; = 0 and
x9 = 1, the most undesirable ones, are assigned a penalty
of 10; and other states — a penalty of 5. The cost of control
is assumed to be 1, with # = 1 signifying TNF is activated
and u = 0 — TNF is absent. To attain a CS-PBNp, we adopt
synchronous and asynchronous update [11] to extend the
dynamics of the network, building eight Boolean net-
works used as the constituent Boolean networks. The
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probabilities for context-switch and perturbation are set g
= 0.3 and p = 0.1, respectively.

Following our approach developed in the paper, the
CS-PBNp is modeled using PRISM code. We consider
finite-horizon control of four different lengths: 4, 6, 8, and
10, and experiment with six different initial states where
the evolution of the network starts: s =[100111], s; =
[101111], s, =[000111], s3 =[111111], s4 =[010111],
and s5 =[011111]. The last three bits are set the same for
meaningful comparison of the experiment results. Note
that sg and s; are the most desirable states, and that s4 and
s5 — the most undesirable ones. For modeling stability of
biological systems, we assume no context switch and no
perturbation at the initial states, and assign them a default
Boolean network.

Figures 1 and 2 show the optimal expected cost with
control from different initial states, as well as the expected
cost without control, under the control horizon of lengths
4 and 10, respectively. The objective of this control is to
shift the network toward desirable states — cell survival
states — that are assigned a lower penalty. According to the
figures, we can see that the expected cost with control is
lower than that without control, which is consistent with
the control objective.

Moreover, Figs. 3 and 4, respectively, show the expect
cost from the two most undesirable initial states, s4 and ss,
under different lengths of control. From the figures, it can
be observed that with the increase of the length of control
horizon, the optimal cost of the control tends to gradually
decrease to a steady value.

Finally, Fig. 5 presents the optimal control policy for the
finite-horizon control of length 4 starting from the initial
state s4, where state numbers are represented using the
decimal equivalent of the binary encoding of each state, a
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Fig. 1 Apoptosis Network: Expected cost for a finite-horizon problem of length 4 originating from the different initial states
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red circle indicates that the control input is applied, and a
white circle — no control. The policy is extracted from the
optimal adversary generated from PRISM, and the con-
trol decisions shown here are only for the states reachable
from s4 in the 4 time steps. It can be seen from the figure
that the optimal control policy is not to apply control
input for the first two time steps (f = 0 and £ = 1) — note
that because one default Boolean network is assigned to
the initial state s4, only one state is reached at the second
time step; control inputs are applied in the last two time
steps (t = 3 and t = 4).

WNT5A network

A WNT5A network is a gene regulatory network devel-
oped from the study of metastatic melanoma [19], where
using an intervention to downregulate the WNT5A gene’s
action could decrease the possibility of a melanoma
metastasizing. Following [15, 20], we consider a WNT5A

network consisting of seven genes: WNT5A denoted by
x1, pirin by x, S100P by x3, RET1 by x4, MART1 by x5,
HADHB by x6, and STC2 by x7. Since the control objec-
tive is to keep WNT5A downregulated, the most desirable
states are the ones where x; = 0, which are assigned a
penalty of 0, and the most undesirable states, with x; = 1,
are assigned a penalty of 5. Moreover, according to [15],
the control strategies of a WNT5A network are designed
by choosing pirin as the control gene, with the control
input ¥ = 1 indicating that the state of pirin is reversed
and ¥ = O indicating no external intervention. A con-
trol cost of 1 is incurred when the control action forces
the state of pirin be reversed. We obtain a CS-PBNp
of a WNT5A network through synchronous and asyn-
chronous update, constructing four Boolean networks
used as the constituent Boolean networks. The probabil-
ities for context-switch and perturbation are defined by
g = 0.1 and p = 0.2, respectively.

Y T T T T P T
2.2015| » - Exp cost w/o control SR 8
Y . -7 5 N
| = = Exp cost with control A _a 5§
215h sy L B W W i
A3 : 2 : \
&= 17 : ’, ‘i
v LURY : ’, vy
8 2.10F vy : Y vy 7
14 : ’\ . ¢ s ABREY
ie] Y £ N ! ’, L IEY
(] : ’ s : ’ \
2,05 LMt p s et Sievisdboc 0T e
O v S i vy
) v A 8 A 'y
% vl s 44 ‘a
2.00} Vg T R
w Vvl ,I o A
v ’ LR
\
1.95L N ‘ 25 ]
N \
Y94 q : \
190 i./ 1 ] L 1 1 1
S 51 Sy S3 Sy S5 S Sy
Initial State
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For the WNT5A network described above, we con-
sider finite-horizon control of five different lengths: 4,
6, 8, and 10. We also experiment with six different ini-
tial states where the evolution of the network starts,
ie, so =[0000000], s; =[0111110], s, =[0110110],
s3 =[0011110], s4 =[1000001], s5 =[1000100], ss =
[1010001], and s; =[1111010]. Note that the first three
states are desirable states, whereas the last three ones are
undesirable ones. At the initial states, we assume that
there is no context switch and no perturbation, and assign
a default Boolean network to them.

Figures 6 and 7, respectively, show the expected cost for
a finite horizon problem of length 8 and length 16, start-
ing from the different initial states. The goal of the control
is to reduce the activity of WNT5A gene in affecting bio-
logical regulation. We can see from the two figures that
the expected cost with control is lower than that without
control, which agrees with the objective.

Furthermore, comparing Figs. 6 and 7 indicates that
with the increase of the length of control horizon, the dif-
ference between the expected cost obtained from different
initial states narrows — the initial states yield almost the
same expected cost. The same observation is also reported
in [15]; this may be caused by limited level of the underly-
ing networks and the existence of random perturbation in
the corresponding ergodic Markov chain.

Figs. 8 and 9, respectively, show the expect cost from the
two most undesirable initial states, s5 and sg, under dif-
ferent lengths of control. Similar to that observed in the
apoptosis network, with the increase of the length of con-
trol horizon, the expected cost of the control also tends to
gradually decrease to a steady value.

Figure 10 shows the optimal control policy for the finite-
horizon control of length 8 starting from the initial state
s5, where state numbers are represented using the decimal
equivalent of the binary encoding of each state, a red circle
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implies that the control input is applied, and a white circle
— no control. From the figure, it can be seen that the opti-
mal control policy is to apply control from the third step
(¢ = 2) to the sixth step (t = 5) depending on the states.

Discussion

In this paper, we have focused on the optimal finite-
horizon control problem defined in Problem Outline
section. On the other side, as observed in our work, a
model checking-based approach enables a natural depic-
tion of the dynamics of gene regulatory networks, and
provides a canonical form to formulate control prob-
lems using temporal logic formulas that can be auto-
mated solved by leveraging the analysis power of under-
lying model checking engines. Given these features, our
approach, in fact, has the flexibility to solve other variants
of optimal control problems within the same framework.

For example, for the optimal control problem defined
in Problem Outline section, suppose an upper bound
is imposed for the number of controls that can applied
to a network during the entire control horizon, which
is referred as optimal finite-horizon control with mul-
tiple hard-constraints [13]; such constraints are impor-
tant for medical applications where the maximum num-
ber of treatments, e.g., radiation and chemo-therapy, is
restricted. In this case, suppose the control horizon is K,
the objective of optimal control is to minimize 7 (x(0))
subject to the constraints 0 < #u; < Hj, .., and 0 <
#uy, < H,, where J(x(0)) is the cost function defined
in Eq. (1), #u; is the number of times that the control 4; is
applied, and H; (H; €[ 0..K]) is the upper bound of #u;.

Within the framework of our approach, this problem
can be solved as follows. To record the number of con-
trols applied, we add to the previous PRISM code a
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variable ct; for each control input u;: ct; is initialized
0, and increases by 1 at each time step if and only if
1. Then, the optimal control problem with the
constraints can be reduced to model checking the mini-
mum reachability reward property given by the formula
Ruin| F((6 < K+1) A (et < HD A+ A (et < Hu) |-

Consider the apoptosis network in previous experi-
ments and the finite control with length 6 starting from
the initial state s4. Suppose we add the constraint that
the maximum number of controls applied within the con-
trol horizon is 3. Based on the steps above, we obtain
that the optimal cost under this constraint is 6.03, which
is higher than the optimal value without the constraint
— 5.81 (Fig. 3). Similarly, for the WNT5A network, con-
sider the finite control starting from the initial state s5
with length 8. Suppose we add an upper bound 3 over the
maximum number of controls applied within the control
horizon. We obtain that the optimal cost in this case is
2.18 as compared with 2.17 (Fig. 8) for no such constraint.

The discussion above shows the flexibility of our
approach. Following this, we would like to evaluate our
approach on more biological networks in future, explor-
ing a wider class of optimal control problems that our
approach can solve. Meanwhile, to further exploit the
modeling and analysis power of the method based on
model checking, it seems interesting to investigate combi-
nation of probabilistic model checking and optimization
approaches, e.g., genetic algorithms, for larger-scale net-
works; the idea is to use probabilistic model checker as a
solver for cost functions, while using the heuristic mecha-
nisms in other approaches to guide the search for control
strategies.

u, =

Conclusions

In this paper, we studied optimal finite-horizon control
for probabilistic gene regulatory networks based on PBNS.
Specifically, we proposed an approach for solving the
problem for CS-PBNps using probabilistic model check-
ing. We presented a procedure of modeling a CS-PBNp
using PRISM code. Based on analysis of reward struc-
tures and properties, we reduced the optimal control
problem to automated model checking minimum reach-
ability reward properties. Preliminary experiment results
show the feasibility and effectiveness of our approach.
The approach based on probabilistic model checking for
optimal control avoids explicit computation of large-size
state transition relations associated with PBNs. It also sup-
port convenient modeling of gene regulatory networks
and specification of optimal control problems using tem-
poral properties that can be automated solved by the
state-of-the-art model checkers. We hope that our work
can be helpful for further application of advanced formal
verification techniques in system biology.
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