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Abstract

Background: Traditional drug identification methods follow the “one drug-one target” thought. But those methods
ignore the natural characters of human diseases. To overcome this limitation, many identification methods of
drug-pathway association pairs have been developed, such as the integrative penalized matrix decomposition
(iPaD) method. The iPaD method imposes the L1-norm penalty on the regularization term. However, lasso-type
penalties have an obvious disadvantage, that is, the sparsity produced by them is too dispersive.

Results: Therefore, to improve the performance of the iPaD method, we propose a novel method named L2,1-iPaD
to identify paired drug-pathway associations. In the L2,1-iPaD model, we use the L2,1-norm penalty to replace the
L1-norm penalty since the L2,1-norm penalty can produce row sparsity.

Conclusions: By applying the L2,1-iPaD method to the CCLE and NCI-60 datasets, we demonstrate that the
performance of L2,1-iPaD method is superior to existing methods. And the proposed method can achieve better
enrichment in terms of discovering validated drug-pathway association pairs than the iPaD method by performing
permutation test. The results on the two real datasets prove that our method is effective.
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Background
Studies of the mechanism of carcinogenesis have led to
the implementation that cancer is radically a disease of a
variety of genetic aberrations [1]. And at present, the
main method to treat cancer is drug therapy. New drug
research is an important topic of the drug discovery.
And one of the basic research concept of these new
drugs is to determine the interaction between drugs and
targets. And it can be used to predict candidate drugs,
which may act on targets [2]. Besides under the guidance
of the concept of pharmacology research and develop-
ment for new drugs, it can also be used for the reloca-
tion of existing drugs, and to forecast the new targets
for known drugs [3]. Drug discovery technology is in

primary stage, but many related algorithms have been
developed to find drug targets. In general, original drug
target identification algorithms follow the “one drug-one
target” line [4]. The purpose of those methods is to dis-
cover the effective drugs, which act on individual targets.
It is obvious that those methods do not take into consid-
eration of the relations among genes. Thus, “one drug-
one target” algorithms ignore related pathways [5].
Generally, many complex diseases are resulted from
unique pathway functions rather than individual genes.
And the function of drugs is not just aiming at single
proteins, but rather affecting the complex interaction of
some associated biological pathways [6]. Therefore, iden-
tifying drug-pathway associations is a momentous task
for quickening the development of drug discovery.
With the rapid development of high-throughput drugs

and pathways related data, it is feasible for researchers
to infer drug-pathway interactions. A large amount of
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studies have utilized the drug related data to obtain in-
sights on drug-pathway modes of action [7]. Gene Set
Enrichment Analysis (GSEA) is a traditional method to
identify drug-pathway associations. GSEA is proposed by
Harvard University and MIT’s broad institute research
group. It is utilized to analyze genome-wide expression
microarray and drug related data. You can download it
after free register [8], whose website is http://software.
broadinstitute.org/gsea/index.jsp. Based on known gene-
pathway association information, the GSEA method can
forecast responsiveness of pathways. But the GSEA
method does not consider the known pathway informa-
tion, its identification precision is poor [9]. In order to
improve the identification precision and use the prior in-
formation, the FacPad method is proposed to predict
drug-pathway associations, and it build a sparse Bayesian
factor analysis model to infer pathway responsive for
drug treatments [6]. In order to further improve the per-
formance of the FacPad method, another Bayesian model
named “iFad” is developed to discover the novel drug-
pathway associations [10]. And Ma et al. apply the iFad
method to analyze gene expression and drug related data
from the NCI-60 cell lines. The NCI-60 cell lines is from
the NCI-60 project, which provides useful information
for various types of “Omics” characterization of 60 hu-
man cancer cell lines with nine different cancer types.
The iFad method can discover effective drug-pathway
associations. However, its computational costing is ex-
pensive since this method applies the Markov Chain
Monte Carlo (MCMC) algorithm [11] to perform statis-
tical inferences. At the same time, some prior parame-
ters in the iFad model require to be specified in advance
by the investigators. With the rapid development of
modern genomics and pharmacology technologies, the
dimensionality of the raw data becomes larger and lar-
ger, that is, these data have a large number of variables
[12]. Thus, the size of sample is also becoming larger
and larger. And the computational expense of dealing
with the high-dimensional data becomes more expen-
sive. Based on the above problems, an efficient method
named “iPaD” is proposed to analyze drug related data
[13]. Li et al. use integrative penalized matrix decompos-
ition (iPaD) method to jointly analyze drug expression
and drug sensitivity data. And Li et al. apply the iPaD
method to the Cancer Cell Line Encyclopedia (CCLE)
and NCI-60 datasets. Compared with the NCI-60 data
set, the CCLE data set has the larger sample size. At the
moment, the CCLE project has more than 1000 cell
lines. Compared with the iFad method, the iPaD method
has obvious superiority in computational efficiency. And
the iPaD method only has one parameter required to be
turned. In addition, the iPaD method applies the L1-norm
penalty to obtain sparse solutions. However, the sparsity
produced byL1-norm penalty is too dispersive [14].

In this paper, we impose the L2, 1-norm penalty to re-
place the L1-norm penalty on the drug-pathway associ-
ation matrix. The L2, 1-norm regularization penalty can
make each row of the drug-pathway association matrix
as a whole and produce row sparsity solutions [15, 16].
Besides, the L2, 1-norm penalty can select the most
prominent morphometric variables [17]. In this paper,
compared with the iPaD method, our new proposed
method has two outstanding advantages: firstly, the L2, 1-
iPaD method can achieve better performance in identify-
ing validated drug-pathway associations by applying our
proposed method to the CCLE and NCI-60 datasets;
secondly, in this paper, we also perform permutation test
to evaluate the significance of the identified drug-
pathway associations, the experimental results demon-
strate that our proposed method can gain the smaller
P-values. Thus, we can obtain that our proposed method
can achieve better overall enrichment in terms of identify-
ing drug-pathway association pairs.
In the next subsection, at first, we will describe a novel

algorithm named L2, 1-iPaD to identify drug-pathway
associations. And then we will apply the L2, 1-iPaD method
on two real datasets (the CCLE and NCI-60 datasets) and
give the results of our proposed and iPaD methods.
Finally, we will give the conclusions and future work.

Method
Model description
Given a gene expression data matrix Y(1) with the size of
N ×G(1) and a drug sensitivity data matrix Y(2) with the
size of N ×G(2). N denotes the number of samples, G(1)

and G(2) denote the number of genes and drugs, respect-
ively. The traditional iPaD method decomposes the gene
expression matrix Y(1) into the pathway activity level
matrix X ∈ RN × K and the gene-pathway interaction
matrix B(1). K denotes the number of pathways. And the
iPaD method decomposes the drug related data matrix
Y(2) into the pathway activity level matrix X and the
drug-pathway interaction matrix B(2). The model of iPaD
method can be introduced as follows:

Y 1ð Þ ¼ XB 1ð Þ þ E 1ð Þ

Y 2ð Þ ¼ XB 2ð Þ þ E 2ð Þ;

ð1Þ

where E(1) and E(2) denote the error matrices in (1). Then
the model (1) can be written as the following form:

min
X;B 1ð Þ ;B 2ð Þ

Y 1ð Þ−XB 1ð Þ�� ��2
F þ Y 2ð Þ−XB 2ð Þ�� ��2

F : ð2Þ

In general, a drug is associated with a few pathways,
therefore, drug-pathway association matrix B(2) is sparse.
Based on this fact, in this paper, we propose a novel
method to improve the performance of the iPaD
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method. We employ the L2, 1-norm regularization to re-
place the L1-norm regularization in the iPaD method.
Then the optimization model of L2, 1-iPaD method can
be written as follows:

min
X;B 1ð Þ ;B 2ð Þ

Y 1ð Þ−XB 1ð Þ�� ��2
F þ Y 2ð Þ−XB 2ð Þ�� ��2

F þ λ B 2ð Þ�� ��
2;1

subject to
X
i

X2
i; j≤1; ∀j ¼ 1;…;K ;

B 1ð Þ
i; j ¼ 0; ∀ i; jð Þ : L 1ð Þ

i;j ¼ 0;

ð3Þ
where ‖W‖F denotes the Frobenius norm of the matrix
W. The detailed definition of the Frobenius norm can be
written as Wk kF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1

Pd
j¼1w

2
i;j

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1 wik k22

q
,

where wi is the i-th row of the matrix W. ‖W‖2, 1 de-
notes theL2, 1-norm of the matrix W. The definition of
L2, 1-norm is first proposed in reference [18]. And the
L2, 1-norm has been applied in many research direction
such as the feature identification [19, 20] and image
direction [21, 22]. The definition of L2, 1-norm can be
written as Wk k2;1 ¼

Pm
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd
j¼1w

2
i;j

q
¼Pm

i¼1 wik k2. Spe-
cifically, we firstly need to calculate the L2-norm of the
vector wi, and then compute the L1-norm of the vector
b(w) = (‖w1‖2, ‖w

2‖2,⋯, ‖wm‖2)
T [23]. The L2, 1-norm

penalty achieves the rows sparsity of the drug-
pathway association matrix B(2). Thus, the irrespective
drug-pathway pairs can be abandoned. In addition,
L 1ð Þ
i;j ∈ 0; 1f g is a known prior knowledge matrix with

the size of K ×G(1). In the model of L2, 1-iPaD
method, L 1ð Þ

i;j is used for indicating gene-pathway asso-
ciation matrix B(1). When L 1ð Þ

i;j ¼ 1 , the i-th pathway
will be associated with the j-th gene. When L 1ð Þ

i;j ¼ 0,
the i-th pathway will not be associated with the j-th
gene. Thus, similar to reference [13], in order to
merge the known pathway-gene relationship, we im-
pose the first constraint on gene-pathway association
matrix B(1). Besides, the second constraint on pathway
activity level matrix X is used to guarantee that the
optimization problem (3) is identifiable.

Optimization algorithm
In this paper, the optimization model (3) is convex, that
is, when X is fixed, optimizing gene-pathway association
matrix B(1) and drug-pathway association matrix B(2) are
both convex optimization problems. And when gene-
pathway association matrix B(1) and drug-pathway asso-
ciation matrix B(2) are fixed, optimizing X is also a con-
vex optimization problem. Thus, in this paper, we
optimize X by fixing gene-pathway association matrix
B(1) and drug-pathway association matrix B(2), and
optimize gene-pathway association matrix B(1) and drug-
pathway association matrix B(2) by fixing X.

Updating X

min
X

Y−XBk k2F
Subject to

P
i

X2
i; j≤1;∀j ¼ 1;…;K ;

ð4Þ

where Y = [Y(1),Y(2)] and B = [B(1), B(2)]. We use gradient
descent method [24] to solve the problem (4). We first
calculate the derivative of matrix X, the detailed compu-
tation process can be written as follows:

∂ Y−XBk k2F
∂X

¼ −2 Y−XBð ÞBT

¼ 2 XBBT−YBT
� �

:

ð5Þ

Thus, according to the update formula of gradient des-
cent method, X can be updated by

Xkþ1 ¼ Xk−2μ XBBT−YBT
� �

; k ¼ 0; 1; 2;⋯; ð6Þ

where μ denotes a step size. And then at each iteration,
we will project Xk + 1 to the feasible region, that is, we
will check if

P
iX

2
i;j≤1 ∀j ¼ 1;⋯;Kð Þ . If Xk + 1 satisfies

this condition, we will perform next step, if not, we will
make it as Xk + 1 = Xk + 1/‖Xk + 1‖. In addition, we also
apply the Nesterov’s algorithm [25] to quicken the con-
vergence speed of this algorithm.

Updating B(1)

In this paper, we assume that the relationship of genes and
pathways is already known. Similar to [13], we also apply
ordinary least squares (OLS) algorithm to solve gene-
pathway association matrix B(1), that is, we decompose the
original problem into G(1) separate OLS problems.

For q∈ 1; 2;⋯;G 1ð Þ� �
;

min
B 1ð Þ
:;q

Y 1ð Þ
:; q−X:;L 1ð Þ

:; q
B
L 1ð Þ
:; q ;q
1ð Þ��� ���

2

2

:
ð7Þ

According to the update formula of ordinary least
squares algorithm, the gene-pathway association matrix
B(1) can be updated as follows:

B 1ð Þ L 1ð Þ :; ið Þ; i
� 	

¼ X :;L 1ð Þ :; ið Þ
� 	h i−1

Y 1ð Þ :; ið Þ
h i

i ¼ 1; 2;…;G 1ð Þ;
ð8Þ

where Y 1ð Þ
:;q denotes the q-th column of gene-pathway

association matrix Y(1), B
L 1ð Þ
:; q ;q
1ð Þ

denotes a subvector of the
q-th column vector of matrix B(1) corresponding to the

non-zero elements of indicating matrix L 1ð Þ
:;q . X:;L 1ð Þ

:; q
refers

to a sub-matrix of matrix X, which consists of the
columns corresponding to the non-zero elements of
indicating matrix L 1ð Þ

:;q .
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Updating B(2)

We observe each column of drug-pathway association
matrix B(2), and decompose the optimization problem
into G(2) separate L2, 1-norm minimization problems:

For q∈ 1; 2;⋯;G 2ð Þ� �
;

min
B 2ð Þ
:;q

Y 2ð Þ
:;q −XB

2ð Þ
:;q

��� ���2
F
þ λ B 2ð Þ

:;q

��� ���
2;1
:

ð9Þ

Note that the problem (9) cannot merge known drug-
pathway association information. Thus, in order to use
prior information, we modify the optimization problem
(9) as follows,

For q∈ 1; 2;⋯;G 2ð Þ� �
;

min
B 2ð Þ
:;q Y 2ð Þ

:;q −XB
2ð Þ
:;qk kF2þλ B 2ð Þ

1−L
2ð Þ
:;qð Þ;q

����
����

2;1

þ B
L
2ð Þ
:;q ;q
2ð Þ

����
����

2

 !
;

ð10Þ
where similar to L 1ð Þ

i;j , L 2ð Þ
i;j ∈ 0; 1f g is also an indicating

matrix with the size of K ×G(2). It is used to indicate
drug-pathway matrix B(2). Besides, λ is a turning param-
eter to turn the sparsity of matrix B(2). Following, we will
introduce the optimization process.
We first solve the part that the drug-pathway associ-

ation B(2) is pointed by L(2), that is:

min
B 2ð Þ

Y 2ð Þ−XB 2ð Þ�� ��2
F
þ λ B 2ð Þ�� ��2

2
: ð11Þ

Note that we omit the notation in the objective func-
tion of problem (11). The objective function of problem
(11) can be rewritten as the following equation.

J1 B 2ð Þ� � ¼ Y 2ð Þ−XB 2ð Þ�� ��2
F þ λ B 2ð Þ�� ��2

2

¼ Tr Y 2ð Þ� �T
Y 2ð Þ

h i
−2Tr Y 2ð Þ� �T

XB 2ð Þ
h i

þ Tr B 2ð Þ� �T
XTXþ λI
� �

B 2ð Þ
h i

;

ð12Þ

where J1(⋅) is an auxiliary function and I ∈ RK × K is a unit
matrix. Then we compute the derivative of J1(B

(2)), and
set its result to zero, we have

∂J1 B 2ð Þ� �
∂B 2ð Þ ¼ −2XTY 2ð Þ þ 2 XTXþ λI

� �
B 2ð Þ

¼ 0: ð13Þ
Thus, we can obtain:

B 2ð Þ ¼ XTXþ λI
� �−1

XTY 2ð Þ: ð14Þ
Then we solve the part that the drug-pathway associ-

ation B(2) is pointed by 1 ‐ L(2). According to reference
[26], we propose an efficient method to solve this prob-
lem. This problem can be described as follows:

min
B 2ð Þ Y 2ð Þ−XB 2ð Þ�� ��2

F
þ λ B 2ð Þ�� ��

2;1

¼ min
B 2ð Þ

Y 2ð Þ−XD‐1=2D1=2B 2ð Þ�� ��2
F

þ λTr B 2ð Þ
� 	T

D1=2D1=2B 2ð Þ

 �

; ð15Þ

where D is a diagonal matrix with the i-th diagonal
element as:

dii ¼ 1

2 B 2ð Þ� �i��� ���
2

: ð16Þ

Then we make X1 =XD‐1/2 and B 2ð Þ
1 ¼ D1=2B 2ð Þ . Thus,

the problem (15) can be rewritten as follows:

min
B 2ð Þ
1

Y 2ð Þ−X1B
2ð Þ
1

��� ���2
F
þ λTr B 2ð Þ

1

� 	T
B 2ð Þ
1


 �
: ð17Þ

The objective function of problem (17) can be rewrit-
ten as follows:

J2 B 2ð Þ
1

� 	
¼ Y 2ð Þ−X1B

2ð Þ
1

��� ���2
F
þ λTr B 2ð Þ

1

� 	T
B 2ð Þ
1


 �
¼ Tr Y 2ð Þ� �T

Y 2ð Þ
h i

−2Tr Y 2ð Þ� �T
X1B

2ð Þ
1

h i
þTr B 2ð Þ

1

� 	T
X1

TX1 þ λI
� �

B 2ð Þ
1


 �
:

ð18Þ

Then we compute the derivative of J2 B1 2ð Þ
� �

, and then
set its result to zero, we obtain:

∂J2 B 2ð Þ
1

� 	
∂B 2ð Þ

1

¼ −2 X1ð ÞTY 2ð Þ þ 2 X1ð ÞTX1 þ λI
h i

B1 2ð Þ

¼ 0:
ð19Þ

Thus, we have:

B 2ð Þ
1 ¼ X1

TX1 þ λI
� �� −1

X1
TY 2ð Þ: ð20Þ

Therefore, we can obtain the updating formula of

matrix B(2), that is, B 2ð Þ ¼ D−1=2B1 2ð Þ . Note that
diagonal matrix D depends on drug-pathway associ-
ation matrix B(2). We summarize the alternating
optimization algorithm for the L2, 1-iPaD method in
Algorithm 1.
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Dealing with missing values
The gene expression data matrix Y(1) and drug related
data matrix Y(2) in original data set have a few missing
values. In order to strengthen the performance of our
proposed method, we need to deal with missing values.
Since each column of the gene-pathway association
matrix B(1) and drug-pathway interaction matrix B(2) can
be solved separately, the missing values in original data
set can be removed in the process of updating matrix
B(1) and B(2). However, we treat X as a whole matrix in
updating matrix X. It is not easy to handle missing
values, directly. Similar to [13], we use the soft-impute
algorithm to handle the missing values during the
process of updating X. The soft-impute algorithm can
solve the incomplete matrix learning problem [27, 28].
Following, we will introduce the detailed process for
handling missing values in the L2, 1-iPaD method.
Firstly, suppose that Ω ∈ {0, 1} is an indicating matrix

with the size of N × (G(1) +G(2)), and the matrix Ω can
indicate observed values in the matrix Y (Y = [Y(1),Y(2)]).
And HΩ is an operator, and when it projects the matrix
X onto the space indicated by Ω, it satisfies the follow-
ing formula:

HΩ Xð Þi;j ¼
Xi;j; if Ωi;j ¼ 1:
0; if Ωi;j ¼ 0:

�
ð21Þ

Hence, the optimization problem for X can be
expressed as follows:

min
X

HΩ Yð Þ−HΩ XBð Þk k2F
s:t:
P

i X
2
i;j≤1; ∀j ¼ 1;…;K :

ð22Þ

Then let Ω1 = 1 −Ω, which is used to indicate the
missing values in the matrix Y, the problem (22) can be
rewritten as:

min
X

HΩ Yð Þ−HΩ XBð Þk k2F
¼ min

X
HΩ Yð Þ−H1−Ω1 XBð Þk k2F

¼ min
X

HΩ Yð Þ− XB−HΩ1 XBð Þð Þk k2F
¼ min

X
HΩ Yð Þ þHΩ1 XBð Þ−XBk k2F

s:t:
P
i
X2

i;j≤1; ∀j ¼ 1;…;K :

ð23Þ

The detailed proving process can be found in [13, 27].
The problem (23) means that at every iteration, they
will plug into HΩ1 XBð Þ for the next iteration. And
this is exactly the main thought of the soft-impute
method [27].
The specific step of the optimization algorithm is

summarized in Algorithm 2.

Parameters selection and significance test
In the problem (3), λ is the only turning parameter,
which is used to turn the sparsity of the drug-pathway
interaction matrix B(2). The more important the drug-
pathway associations is, the earlier the non-zero ele-
ments will become. Thus, we set the value of λ from
producing the first non-zero elements in drug-pathway
interaction matrix B(2) to 0.1. And then we use ten-fold
cross-validation to obtain an appropriate λ value. Thus,
we find an appropriate λ value according to the smallest
residual sum of squares (RSS). The Figs. 1 and 2 show
the changing curve for RSS on the NCI-60 and CCLE
datasets, respectively. Thus, we can estimate the import-
ance of the identified association pairs by recording the
order of the values in the drug-pathway association
matrix B(2) in which the values become non-zero.
However, this identification method can not assess the
significance of identified drug-pathway associations.
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Therefore, we perform permutation test to assess the
significance of identified drug-pathway associations
after gaining an appropriate λvalue, and calculate the
P -values of every element in the drug-pathway asso-
ciation matrix B(2). Similar to [13], we also compute
P-values by the following equation:

Pi; j ¼ 1
T

XT

t¼1
B 2ð Þ tð Þ
i;j

��� ���≥ B 2ð Þ
i; j

��� ���� 	
; ð24Þ

where B 2ð Þ tð Þ
i;j denotes the value of drug-pathway associ-

ation matrix B(2) in the t-th permutation. T denotes the
overall number of permutations. And B 2ð Þ

i;j is the
estimated value in the original data.

Results and discussion
In this section, we will show the experimental results on
the real datasets, including the CCLE and NCI-60 data-
sets. And, in order to present the performance of our
proposed method, we compare our proposed method
with the iPaD algorithm.

Results on the CCLE data set
In this subsection, in order to assess the performance of
L2, 1-iPaD method, we apply this method to the CCLE

data set in [13]. CCLE data set is downloaded from the
CCLE project, which can provide public information as
for the genomic data, analysis and visualization for about
1046 terms. The CCLE data set is made up of 480 cell
lines (usually samples) with transcription data for 1802
genes and drug related data for 22 drugs covering 58
pathways. And those pathways are downloaded from
KEGG database. And the drug related data are measured
by area over the dose-response curve (“activity area”)
since activity area can both express the potency and effi-
cacy of chemical drugs. Besides, it has less unknown
values [13]. In this paper, the known drug-pathway asso-
ciation pairs are regarded as validation information. And
the prior information matrix L(2) is set to a zero matrix.
In the iPaD method, the authors perform 2000 per-
mutation to estimate P-values. The smaller the value of
P-value is, the stronger the significance of identified
drug-pathway association pairs becomes. And to be fair,
we also perform 2000 permutation to assess the sig-
nificance of identified drug-pathway association pairs in
our method. Table 1 lists the P-values on CCLE data set
for the L2, 1-iPaD and iPaD methods. Obviously, the
L2, 1-iPaD method can mostly obtain smaller P-values
than the iPaD method. In Table 1 the superior results are
in italic type. Thus, our method is better than the iPaD
method in identifying drug-pathway associations. More-
over, the L2, 1-iPaD method is a sparse optimization
algorithm. Thus, nonzero elements in the drug-pathway
association matrix B(2) are regarded as the drug-pathway
association pairs. After applying our method to the CCLE
data set, we discover that the L2, 1-iPaD method can iden-
tify 368 drug-pathway pairs, whose p-values are no more
than 0.05, and 66 drug-pathway association pairs among
them are verified in the CancerResource. But the iPaD
method can only identify 88 drug-pathway association
pairs, whose p-values are no more than 0.05, and 25 pairs
among them are verified in the CancerResource. And then
we compute the number of identified drug-pathway asso-
ciation pairs that P-values are no more than 0.005. For the
iPaD method, it can identify 51 drug-pathway association
pairs, and 16 drug-pathway association pairs among them
can be verified in the CancerResource. And our proposed
method can discover 53 association pairs with 16 drug-
pathway associations verified in the CancerResource data-
base. Tables 2 and 3 list the identification and verification
rates of drug-pathway association pairs on the CCLE data
set for the L2, 1-iPaD and iPaD methods. Note that in
Table 2, we also compare our method with the iFad
method. And the identification number denotes the
number of drug-pathway association pairs, which poster-
ior probabilities are no more than 0.9. The number of
verification denotes the number of identified drug-
pathway association pairs, which are validated in the
CancerResource. The results of iFad is derived from the

Fig. 1 The changing curve for RSS on the NCI-60 data set

Fig. 2 The changing curve for RSS on the CCLE data set
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reference [13]. It is obvious that the performance of our
method is better than the iFad method. In Table 1, we can
discover that the drug of Nutlin-3 is associated with
Chronic myeloid leukemia pathway. And, a study pub-
lished in [29] said that the drug of Nutlin-3 is a tumor
suppresser, which can up-regulate the expression of
Notch1 in both lymphoid and myeloid leukemic cells.
And we discover that PD-0332991 is a CDK 4/6 inhibitor
[30] and can act on chronic myeloid leukemia [31]. In
Table 1, LBW242 is associated with Chronic myeloid
leukemia pathway, but their association is not validated in
the CancerResource. A study published in 2007 says that
LBW242 can effect on mutant FLT3-expressing cells in
potentiating antileukemic therapies [32]. Therefore, our
method can also identify drug-pathway association pairs
which are not validated in CancerResource.
We note that combining different cancer types of data

can increase the number of samples and can be better to
identify common signals from different cancer. But, this
operation may weaken the knowledge, which is specific
to certain cancer types. Thus, in this paper, we apply the
L2, 1-iPaD method to the lung cancer data set, which is

extracted from the CCLE data set. And we also apply the
iPaD method to analyze lung cancer data set. Table 4 lists
the identification and validation rates on the lung cancer
data set.

Results on the NCI-60 data set
We also apply our method on the NCI-60 data set,
which has been used in [10, 13]. The NCI-60 data set is
from the NCI-60 project, which consists of 60 human
cancer cell lines with nine cancer types. The specific
data pre-processed process can be found in [10]. The
NCI-60 data set is made up of transcription and drug
sensitivity data, which are all downloaded from the
CellMiner database [33], and can be found from the
URL of http://discover.nci.nih.gov/cellminer. This data
set contains 57 cell lines from eight different cancer
types and 1863 genes covering 58 KEGG pathways and
101 drugs. The drug sensitivity is measured by GI50
values, which is the minimum concentration of the drug
needed to inhibit the growth of 50% [34]. As a conse-
quence, the lower GI50values can manifest the drug-
sensitive response, the higher GI50 values can manifest

Table 1 The top 15 identified drug-pathway association pairs on CCLE data set to L2,1-iPaD and iPaD methods

Drug KEGG pathway L2, 1-iPaD iPaD Validated?

Sorafenib Calcium signaling pathway 0 5.79E-04 Yes

Panobinostat Pancreatic cancer 0 6.07E-04 No

LBW242 Chronic myeloid leukemia 2.80E-44 1.34E-10 No

Nutlin-3 Chronic myeloid leukemia 1.74E-43 4.82E-16 Yes

L-685458 Chronic myeloid leukemia 4.33E-43 3.20E-31 No

17-AAG Chronic myeloid leukemia 9.46E-43 2.79E-20 No

AZD0530 Colorectal cancer 1.62E-41 3.05E-07 No

PD-0332991 Chronic myeloid leukemia 6.93E-41 1.38E-09 Yes

PHA-665752 Chronic myeloid leukemia 1.09E-40 1.97E-20 No

Paclitaxel Chronic myeloid leukemia 2.14E-38 2.52E-16 No

AZD0530 Chronic myeloid leukemia 7.12E-38 5.12E-13 Yes

ZD-6474 Chronic myeloid leukemia 1.62E-21 1.23E-11 No

AZD0530 ErbB signaling pathway 4.41E-16 2.81E-05 Yes

RAF265 ECM-receptor interaction 1.26E-15 0 No

Erlotinib Chronic myeloid leukemia 5.69E-15 1.98E-11 Yes

The superior results are in italic type

Table 2 The identification and verification rates on CCLE data set with the P-values < 0.05

Method Number of identification Number of verification Verification rate Identification rate

L2, 1-iPaD 368 66 0.0517 0.2884

iPaD 88 25 0.0196 0.0689

iFada 39.4 4.8 0.0038 0.0309

Note: aThe results of iFad method are derived from the reference thirteen. And the identification number denotes the number of drug-pathway association pairs,
which posterior probabilities are no more than 0.9. The number of verification denotes the number of identified drug-pathway association pairs, which are
validated in the CancerResource
The superior results are in italic type
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the drug-resistant response [5]. In the NCI-60 data set,
we also use the ten-fold cross-validation to discover an
appropriate λ value. And then we also perform 2000
permutations to obtain the P-values, which can estimate
the significance of the drug-pathway associations.
Table 5 lists the P-values on NCI-60 data set for the
L2, 1-iPaD and iPaD methods. After applying our pro-
posed method to the NCI-60 data set, we discover that
the L2, 1-iPaD method can find 562 association pairs, with
the P-values no more than 0.05, and 163 pairs among
them are verified in the CancerResource. However, the
iPaD method can only discover 247 drug-pathway associ-
ation pairs with the P-values no more than 0.05, and
among those drug-pathway associations only 74 drug-
pathway pairs are verified in the CancerResource. And
then we calculate the number of identified drug-pathway
association pairs that P-values are no more than 0.005.
The iPaD method can find 72 association pairs with 26
drug-pathway association pairs among them validated in
the CancerResource database. But our proposed method
can identify 89 drug-pathway association pairs with 33
association pairs among them validated in the
CancerResource. Tables 6 and 7 list the identification and
verification rates of drug-pathway association pairs on
NCI-60 data for the L2, 1-iPaD and iPaD methods. From
Tables 6 and 7, we can prove that our proposed method
can discover more drug-pathway association pairs than
the iPaD method. Note that in Table 6, we also compare
our method with the iFad method. Similar to the results
of CCLE data set, the identification number denotes the
number of drug-pathway association pairs with posterior
probabilities that are no more than 0.9. The number of
verification denotes the number of identified drug-
pathway association pairs, which are validated in the
CancerResource. The results of iFad is derived from the
reference [13]. In the NCI-60 data set, the performance of
our method is superior than the iFad method. In our
method results, Cell cycle pathway is related with
Tiazofurin, which is a C-nucleoside, is converted in sensi-
tive cells to the active metabolite, TAD, which tightly
bound at the NADH site inhibited IMP DH activity [35].
The results of reference [36] may be utilized in cancer

chemotherapy to combine Tiazofurin with biologic re-
sponse modifiers which recruit quiescent leukemic cells
into the cell cycle. And Selenazofurin is an IMPDH inhibi-
tor. The reference [37] has introduced that Selenazofurin
and Tiazofurin are due to a cell cycle block that causes the
cells to accumulate in the S-phase. Lomustine is a kind of
anti-cancer drugs. It is associated with Tight junction,
which contributes to the barrier property of brain endothe-
lial cells [38]. In Table 5, we can find that Mycophenolic
Acid (MPA) is related with the Cell cycle pathway, but
their association is not validated in the CancerResource.
Similar to the CCLE data set, we also use published litera-
tures to prove their associations. The authors in [39] dem-
onstrate that in peripheral blood lymphocytes, MPA can
lead to an inhibition for the cell cycle proliferation. As a
consequence, in the NCI-60 data set, our method can also
infer drug-pathway association pairs, which are not vali-
dated in the CancerResource.

Conclusions
Drug-pathway association identification is an important
issue in pharmacology. In this paper, we develop an ef-
fective algorithm named “L2, 1-iPaD” to discover novel
drug-pathway associations. In the optimization model,
the objective function has only one turning parameter λ.
Thus, our proposed method is nearly turning-free. To
find the best performance of our method, we apply ten-
fold cross-validation to discover an appropriate λ value.
And to estimate the significance of the identified drug-
pathway association pairs, we perform permutation test
to calculate the P-values. For the purpose of assessing the
performance of the L2, 1-iPaD method, we apply this method
in the CCLE and NCI-60 datasets. The experimental results
in the CCLE and NCI-60 datasets demonstrate that our
proposed method can discover more drug-pathway
association pairs than the iPaD method. And the L2, 1-iPaD
method can identify more validated associations.
With the development of genomics and pharmacology,

dealing with transcription and drug sensitivity data has be-
come feasible. Our proposed method has tremendously
improved the performance of the original algorithm. In
the future, we are ready to propose more efficient and

Table 3 The identification and verification rates on CCLE data set with the P-values < 0.005

Method Number of identification Number of verification Verification rate Identification rate

L2, 1-iPaD 53 16 0.0125 0.0415

iPaD 51 16 0.0125 0.0399

The superior results are in italic type

Table 4 The identification and verification rates on CCLE lung cancer data set with the P-values < 0.05

Method Number of identification Number of verification Verification rate Identification rate

L2, 1-iPaD 95 12 0.0094 0.0745

iPaD 57 8 0.0063 0.0447

The superior results are in italic type
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Table 5 The top 20 identified drug-pathway association pairs on NCI-60 data set to L2,1-iPaD and iPaD methods

Drug KEGG pathway L2, 1-iPaD iPaD Validated?

Hydroxyurea Neuroactive ligand-receptor interation 0 NAN No

Rebeccamycin T cell receptor signaling pathway 4.12E-16 4.65E-10 Yes

Tiazofurin Cell cycle 8.19E-11 7.54E-07 Yes

Selenazofurin Cell cycle 1.75E-10 2.78E-07 Yes

Mycophenolic Acid Cell cycle 2.61E-10 2.52E-06 No

Lucanthone Tight junction 1.04E-08 4.31E-06 Yes

Tanespimycin Jak-STAT signaling pathway 9.95E-07 2.67E-04 No

Primaquine Natural killer cell mediated cytotoxicity 1.14E-06 2.69E-04 No

Aminoglutethi-mide Primary immunodeficiency 1.30E-06 1.16E-04 No

Geldanamycin Gap junction 7.89E-06 1.87E-04 No

Diallyl Disulfide Acute myeloid leukemia 8.13E-06 8.41E-05 No

Carmustine Cell cycle 8.68E-06 4.58E-04 No

Lomustine Tight junction 1.06E-05 2.64E-04 Yes

Bleomycin Focal adhesion 1.17E-05 4.56E-04 No

Vitamin K 3 Metabolism of xenobiotics by cytochrome P450 2.22E-05 2.71E-04 No

Melphalan T cell receptor signaling pathway 2.64E-05 6.16E-04 Yes

Tegafur Gap junction 6.73E-05 5.60E-04 No

Chloroquine Phosphate Tight junction 7.12E-05 8.76E-04 Yes

Aclacinomyci- ns One carbon pool by folate 1.03E-04 5.41E-04 No

Tamoxifen Pyrimidine metabolism 1.12E-04 1.92E-03 No

The superior results are in italic type

Table 6 The identification and verification rates on NCI-60 data set with the P-values < 0.05

Method Number of identification Number of verification Verification rate Identification rate

L2, 1-iPaD 562 163 0.0278 0.0959

iPaD 247 74 0.0126 0.0422

iFada 123 25.2 0.0043 0.0210

Note: aThe results of iFad method are derived from the reference thirteen. And the identification number denotes the number of drug-pathway association pairs,
which posterior probabilities are no more than 0.9. The number of verification denotes the number of identified drug-pathway association pairs, which are
validated in the CancerResource
The superior results are in italic type

Table 7 The identification and verification rates on NCI-60 data set with the P-values < 0.005

Method Number of identification Number of verification Verification rate Identification rate

L2, 1-iPaD 89 33 0.0056 0.0152

iPaD 72 26 0.0044 0.0122

The superior results are in italic type
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robust algorithms to handle the high-throughput drug re-
lated data. And the rapid growth of the high-throughput
gene expression and drug related data is calling for more
effective algorithms to solve the computational problems.
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