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Abstract

Background: Positive semi-definiteness is a critical property in kernel methods for Support Vector Machine (SVM) by
which efficient solutions can be guaranteed through convex quadratic programming. However, a lot of similarity
functions in applications do not produce positive semi-definite kernels.

Methods: We propose projection method by constructing projection matrix on indefinite kernels. As a generalization
of the spectrum method (denoising method and flipping method), the projection method shows better or
comparable performance comparing to the corresponding indefinite kernel methods on a number of real world data
sets. Under the Bregman matrix divergence theory, we can find suggested optimal A in projection method using
unconstrained optimization in kernel learning. In this paper we focus on optimal A determination, in the pursuit of
precise optimal A determination method in unconstrained optimization framework. We developed a perturbed

von-Neumann divergence to measure kernel relationships.

Results: We compared optimal A determination with Logdet Divergence and perturbed von-Neumann Divergence,
aiming at finding better A in projection method. Results on a number of real world data sets show that projection
method with optimal A by Logdet divergence demonstrate near optimal performance. And the perturbed
von-Neumann Divergence can help determine a relatively better optimal projection method.

Conclusions: Projection method ia easy to use for dealing with indefinite kernels. And the parameter embedded in
the method can be determined through unconstrained optimization under Bregman matrix divergence theory. This

may provide a new way in kernel SVMs for varied objectives.

Keywords: SVM, Indefinite kernel, Projection method, Bregman matrix divergence

Background

Support vector machines (SVMs), a supervised machine
learning technique, have been introduced by Vapnik
[1, 2]. In machine learning area, SVMs [3] are tradition-
ally considered as one of the best algorithms in terms
of structural risk minimization. Kernels in SVM work by
data embedding in high dimensional feature space and
one can construct an optimal separating hyperplane in
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this space [4]. Furthermore, kernel methods have wide
applications in the field of bioinformatics. Authors in [5]
have proposed incremental kernel ridge regression to pre-
dict soft tissue deformations after CMF surgery. In [6],
researchers utilized the kernel-based linear discriminant
analysis (LDA) method to address the problem of auto-
matically tuning multiple kernel parameters. In order to
address the nonlinear problem of nonnegative matrix fac-
torization (NMF) and the semi-nonnegative problem of
the existing kernel NMF methods, authors in [7] develop
the nonlinear NMF based on a self-constructed Mercer
kernel which preserves the nonnegative constraints on
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both bases and coefficients in kernel feature space. Pos-
itive Semi-Definiteness (PSD) is crucial [8] for a kernel
matrix in SVMs, which is required to guarantee the exis-
tence of a Reproducing Kernel Hilbert Space (RKHS). In
RKHS, one can formulate a convex optimization problem
to obtain an optimal solution. Sometimes however, simi-
larity matrices generated for practical use cannot ensure
such a PSD property. For example, in evaluation of pair-
wise similarity between DNA and protein sequences, pop-
ular functions like BLAST and Dynamic Time Warping
generate indefinite kernel matrices [9-11]. The general-
ized histogram intersection kernel that is conditionally
positive definite is not usually positive semi-definite [12].
Hyperbolic tangent kernels [13, 14] suitable for practice
sometimes are indefinite as well. As far as we know, it is
still not very clear how to effectively deal with indefinite
kernels in the SVM framework. Training indefinite SVMs
therefore becomes a challenging optimization problem
since convex solutions are no longer valid for standard
SVMs in this learning scenario [15].

To deal with indefinite kernel, a number of methods
have been proposed in the literature [16]. Representatives
in previous studies tackled such problem by altering the
spectrum of an indefinite kernel matrix so as to create a
PSD one. Authors in [17] developed the denoising method
which deems negative eigenvalues as noise and replaces
them with zero. The flipping method is another effective
method for transforming indefinite kernel into PSD one
by changing the sign of negative eigenvalues [18]. Authors
in [19] proposed the diffusion method which considers
the data distribution and replaces the eigenvalues with
exponential form. The shifting method, i.e., shifts eigen-
values by introducing new parameters to ensure all the
eigenvalues are nonnegative [20]. Authors in [13] devel-
oped a method in order to find stationary points under
a non-convex dual formulation of SVMs with sigmoid
kernels. Authors considered indefinite kernel learning as
a minimization problem in a pseudo-Euclidean space in
[21]. In [22], a max-min optimization problem is further
proposed so as to find a proxy kernel for the indefinite
kernel. Based on confidence function, a simple general-
ization of SVMs is suggested by Guo and Schuurmans
[23]. Kernel principal component analysis is developed as
a kernel transformation method to deal with indefinite
kernels [24].

In this paper, we develop a superior and effective
method, i.e., projection method, to convert an indefi-
nite kernel into a PSD one. Compared with the existing
methods, our proposed one is much more flexible and
comprehensive. One can easily obtain different type of
methods such as flipping or denoising method by vary-
ing its parameters. Furthermore, our suggested A under
Logdet Divergence and perturbed von-Neumann Diver-
gence can always yield near optimal performance, which
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can be regarded as a good choice for dealing with indef-
inite kernels. Besides, our suggested projection matrix
also has certain special mathematical properties. Fur-
thermore, the connection between spectrum method and
projection method can be investigated through analysis
on eigenvalues.

The rest of the paper is organized as follows. Firstly,
we present the projection method and also the associated
theorem. Then we propose the optimal A determination in
the projection matrix under unconstrained optimization
framework. After that, we apply two indefinite kernels
on some real world data sets which range from cancer
prediction to glycan classification. And we also validate
the suggested optimal A with the experimental data. Dis-
cussions of the experimental validation on the suggested
optimal A under Logdet Divergence and perturbed von-
Neumann Divergence are followed. Finally, in the last
section, we give the concluding remarks with possible
future work.

Methods

Assume (X;, ;)7L ;, where X; € R?, and y; € {1, -1} are a
given list of labeled patterns. And function k defined as k :
x X x — Rcan be regarded as a kernel function where x
represents the input space. A kernel induced by the kernel
function is defined by

KGj) = kX5 X)),  bje{l,2,...,n) (1)

And according to Mercer’s theorem, a valid kernel
should be positive semi-definite. Thus, to deal with invalid
kernels, kernel transformation strategy is increasingly
popular. In the case of non-positive semi-definite kernel K,
we may decompose it into this form K = P- D - P'. Where
D is a diagonal matrix and not all the diagonal entries are
non-negative, P is orthonormal matrix with the jth col-
umn corresponding to the eigenvector for jth eigenvalue
in D and P’ represents the transpose of matrix P. Eigen-
value transform is the representative method in kernel
transformation [17-20].

In the following, we present our suggested projec-
tion method for transforming an indefinite kernel to a
PSD one.

Lemma 1 There exists an n x m (m < n) matrix B satis-
fying B'B = I, such that (I, — \BB') has 1 — A and 1 as its
eigenvalues, the multiplicities for whom are m and n — m
respectively. Besides, it shares the same set of eigenvectors
with K.

Proof Consider that K is a real and symmetric matrix,
we decompose itas K = P-D-P' where P =[p1,p3, .. ., Pu)
and D = diag[di,ds,...,d,] is a diagonal matrix with
the diagonal elements d;,i = 1,2, ..., n. W.L.O.G, we may
assume all the eigenvalues are sorted in ascending order.
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We further assume the positive inertia index is / and the
negative inertia index is m.
Denote B =[p1,p2,...,Pm), we have BB = I, since

pii = 1,2,...,n are orthogonal eigenvectors. Then we
have
1—Mp;, ie{l?2,...,m
(1, — BBp = | TP { @

v, ielm+1lm+2,...,n}

Thus, it has 1 and (1 — A) as its eigenvalues, and the
multiplicity for (1 — 1) is m and for 1 the multiplicity is
n — m. Furthermore, the eigenvectors of (I, — ABB’) are
exactly the same as the kernel K. O

Theorem 1 Let K be an n x n real symmetric matrix
which is indefinite. Then there exists an n X m (m < n)
matrix B satisfying BB = I, such that (I, — A\BB)K is a
positive semi-definite kernel where » > 1 is a regulariza-
tion parameter.

Proof Denote B =[p1, P2, . . ., Pm), where the definitions
of pi,i = 1,2,...,m are the same as denoted in Lemma 1.
By Eq. (2), we have

(I, — ABB)K
= Pdiag{l — %,...,1—2,1,...,1}P"

Pdiag{dl, d2, ey dn}P/ 3
= Pdiag{(1 — \)dy,..., (1 — Ny, (3)
0,...,0,dp_ts1r...,dn}P.
——
n—m—I

Since A > 1, we have (1 — A)d; > Ofor 1 < i < m. This
will guarantee the kernel matrix (I, — ABB')K is positive
semi-definite. O

In particular, we get denoising method by letting A = 1
according to Eq. (3). And flipping method is the particular
case of Projection method when A = 2.

Optimal A determination

Considering that A is a embedded parameter in the pro-
jection method, it is necessary to study optimal A determi-
nation which can demonstrate excellent prediction power
for A > 0. To this end, we begin with the definition of
Bregman matrix divergence [25].

Definition 1 {Bregman Matrix Divergences}
The Bregman Matrix Divergence of K is defined as follows:

Dy (K, Kp) = ¢(K) — ¢p(Ko) — tr(Ve(Ko)) (K — Kop).

Here ¢ (K) is a strictly convex differentiable function of K
and tr(K) means the trace of matrix K.

A number of matrix divergences [25, 26] exist in the
literature.
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1. Mabhalanobis Divergence(p=2):

Dy (K, Ko) = tr (K* — 2KKo + K3) . )
2. Frobenius Divergence(¢ (K) = ||K||12E):

Dy (K, Ko) = || K — Kol|%. (5)

3. von-Neumann
Divergence(¢ (K) = tr(K log(K) — K)):

Dy (K, Kop) = tr(K'log K — K log Ko — K+ Kp). (6)
4. LogDet Divergence(¢ (K) = —logdet(K)):
Dy (K, Ko) = tr (KK ') — logdet (KK ') =n. (7)

Inspired by the work in [27] where authors proposed
a framework of kernel learning [28] by unconstrained
optimization, we re-formulate the problem as a kernel
learning one in a similar manner. The optimal A can be
obtained by minimization of D¢(1~<, K) where K is the
optimal PSD kernel which is close to original kernel K in
terms of divergence. Noting that

n m n
K=Y dpp, K=Y A-Ndpp;+ Y dipp
i=1 i=1 i=m+1

then the minimization problem can be equivalently trans-
formed to the following:

For Mahalanobis Divergence, by Lemma, we know that

KKy = KoK as they share the same set of eigenvectors.

Therefore, the minimization problem can be expressed as

min A2tr(BB'K)? (8)

The optimal A can be quickly obtained as 0.
For Frobenius Divergence, the minimization problem in
finding optimal A as derived from Eq. (5) is

min A || BB'K |2 )

It is easy to see that the optimal 1 is 0.

For von Neumann Divergence, we can deduce the mini-
mization problem to be

m
min ;‘ di((1 — M)log(1 — 1) + 1) (10)

Applying differentiation to Eq. (10), we obtain the opti-
mal value of . = 0.

The optimal A = 0 does not make any perturbation to
the original kernel matrix which is not reasonable. Hence
we focus on LogDet Divergence [27], the optimal A can be
determined through the following formula

m
m _1- -
T § ditr(K ' p;p}) = 0. (11)
i=1

Considering that the calculation involves inverse of
matrix K, where K is not necessarily positive definite,
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we use pseudo inverse instead. Thus, the final theoretical
optimal A becomes:

m
dopt = 1+ —. (12)
opt Yo, dite(K~1p;p))
Results
Materials

In order to experimentally evaluate our method, we
adopted a number of life science data sets satisfying
requirements that the generated kernels are indefinite,
where most of them are cancer related data sets. Three
data sets are obtained from libsvm data sets [29]. One of
the data sets is sonar data, there are 208 data instances
where 97 are positive and 111 are negative. The Live
disorder data set has 345 data instances, of which 145
are positive and 200 are negative. Breast Cancer data
set has 683 data instances in total, 444 are negative
and 239 are positive, and the number of attributes is
10. Another two datasets pertain to cystic fibrosis and
leukemia. Within the cystic fibrosis data set, there are 177
glycan structures in total, containing 89 glycans related to
cystic fibrosis, 107 related to respiratory mucin and 101
related to bronchial mucin. For leukemia related data set,
355 structures are included,originating from four human
blood components: leukemic cells, erythrocytes, serum
and plasma, containing 162, 111, 85 and 73 examples
respectively. All the glycan structures are retrieved from
the KEGG/GLYCAN database [30], where annotations are
retrieved from CarbBank/CCSD database [31]. If the gly-
can data set contains N glycans {g1, g2, - - ,gn}, we denote
the set of all g-grams existing in these N glycans to be a
g-gram set: &, = {qb;, o2, ,qﬁ;zq}. For a specific glycan
g; in the data set, g-gram representation is a column vec-
tor x? :[x?i,xgi, cee ,xzqi]T where xZ. means the number
of /th g-gram in the glycan g;. The number of attributes
within the dataset depends on the value of g (¢ = 1 to
9), where we have 9 datasets derived from cystic fibrosis
data and leukemia data respectively. The last data set is
about lung cancer and it is obtained from NCBI(National
Center of Biotechnology Information) GEO(Gene Expres-
sion Omnibus) [32]. Affymetrix Human Genome U133
Plus 2.0 Array experiments were carried out in a set of 91
non-small cell lung cancer (NSCLC) samples, containing
46 tumors and 45 controls. Detailed information on the
data sets can be found in Table 1.

Attribute Distribution Information for different g is pro-
vided in Fig. 1 for Leukemia Data and Cystic Fibrosis Data.
We can see that the number of attributes in Leukemia
Data is increasing with the increment of g while it is not
the case in Cystic Fibrosis Data. In Cystic Fibrosis Data
set, the number of the attributes firstly increases then
decreases with the increment of g. The possible reason is
that the glycan structures in Leukemia Data set is more
complicated than that in Cystic Fibrosis Data set.
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Table 1 Data set information

Data set Number of instances Number of attributes
Sonar 208 60

Live disorder 345 6

Breast cancer 680 10

Cystic fibrosis 177 Depends on g
Leukemia 355 Depends on g

Lung cancer 91 54675

Experiments
We perform the experiments in 5-fold cross-validation
setting and measure the performance of models with
the Area Under Curve (AUC). AUC (calculated as the
area under the ROC curve) is commonly used for model
evaluation. We measure the averaged AUC values for
the considered methods through 10 times 5-fold cross-
validations. Here we introduce two kernels: the Gener-
alized Histogram Intersection (GHI) kernel [12] and the
cosine kernel for illustration purpose. These two ker-
nels in most cases are indefinite (shown in Additional
file 1: Table SI), both of which have not been used in
biological applications like glycan classification or cancer
prediction.

GHI kernel is frequently used in image classification and
the definition is as follows:

r
k(X Xe) = Y min(|X;%, Xl )
i=1
where X; represents data vector and Xj; represents the ith
element of X;,j =1,2,...,n.

When o« = B, the kernel can be proved to be a posi-
tive semi-definite matrix. Experimental results in Table SI
(in Additional file 1) also show consistence with the state-
ment, as the minimal eigenvalue in GHI kernel is 0 when
a = B. We in experimental settings use different values of
a,B € {1,2,3},a # B to evaluate the performance of our
proposed projection method.

The cosine kernel function is defined by:

k(Xj, X) = cos(||X; — Xill)

which is different from the usual definition of cosine simi-
larity: HX,XH]% The reason we did not consider the usual
definition is that the corresponding kernel matrix gener-
ated from this function is positive semi-definite, which
fails to satisfy our requirements.

Experiments on GHI kernel

The performance of Projection method and original GHI
Kernel SVM was summarized in Tables 2, 3, and 4. Val-
ues marked in bold face represent best performance and
no marks are made when both methods showing compa-
rable performance. When « differs from 8, GHI kernel is
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Fig. 1 Attribute distribution for different values of g in leukemia data and cystic fibrosis data

Table 2 Averaged AUC values (%) of projection method and GHI
kernel using sonar data, live disorder data, breast cancer data and
NSCLC data

Data sets Parameters Projection method GHl kernel
Sonar a=18=1 82.87+£0.99 82.87+0.99
a=1=2 81.47 £0.99 53421494
a=1=3 84.02+1.19 54.10+4.92
a=2=2 8429+ 1.54 8429+ 1.54
a=2p=3 84.31+1.56 83.06 +2.04
a=3p=3 83.62+1.17 83.62+1.17
Live a=18=1 82.87 +£0.99 82.87 +£0.99
a=1=2 81.47 +0.99 5342 +£4.94
a=1=3 84.02+1.19 54104492
a=26=2 8429+ 1.54 8429+ 1.54
a=2p=3 84.31+£1.56 83.06+2.04
a=38=3 8362+1.17 8362+1.17
Breast a=18=1 96.73 +£0.11 96.73 +£0.11
a=18=2 97.06 +0.01 90.12+4.78
a=16=3 97.01 +0.01 7561 +744
a=28=2 96.71+£0.11 96.71+0.11
a=2p=3 96.92 £0.01 96.96 +0.01
a=3p=3 96.63+0.10 96.63+0.10
NSCLC a=18=1 1000 100+0
a=18=2 99.72 +0.01 64.07 +£7.42
a=18=3 61.46 +1.57 51474553
a=2,B=2 100+0 1000
a=2p=3 99.99+0 73.07 £8.17
a=3p=3 100+0 1000

Bold face represents best performance, and no marks are made if two methods
show comparable performance

indefinite (see Additional file 1: Table SI), we can see that
Projection Method outperforms GHI Kernel method.

The performance for sonar data set is reported in
Table 2. For example, when ¢« = 1,8 = 2, Projection
Method shows the averaged AUC value 81.47% with stan-
dard deviation 0.99% while in GHI kernel method the
averaged AUC value is 53.42% with standard deviation
4.94%. When (o, 8) = (1,3), Projection Method shows
84.02% in the averaged AUC value, with standard devi-
ation 1.19%. However, the averaged AUC value for GHI
kernel method is only 54.10% with standard deviation
4.92%. When («,8) = (2,3), the averaged AUC value
for Projection Method is 84.31%, larger than the averaged
AUC value for GHI Method 83.06%. The standard devia-
tion in Projection Method is 1.56%, while in GHI kernel
method standard deviation is 2.04%. This implies that Pro-
jection method is more powerful and stable compared to
original GHI kernel method.

For live disorder data set, we can see from Table 2
that the Projection method is significantly better per-
formance than the GHI kernel method when o # 8.
The best performance of GHI kernel when indefinite
achieves around 60% in AUC value which is not satis-
fying. When o« = g, both methods show comparable
performance.

For breast cancer data set, results in Table 2 indicate
that when ¢« = 1,6 = 2and ¢ = 1,8 = 3, the
Projection method is clearly superior to the GHI kernel
method except for « = 2,8 = 3 where comparable per-
formance is detected in both methods. This illustrates the
fact that indefinite kernels sometimes can also perform
well. However, the superiority of projection method over
the original GHI kernel method is clearly shown in this
data set.

In cystic fibrosis data set, we get 9 different compari-
son results when values of g vary from 1 to 9 as shown in
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Table 3 Averaged AUC values (%) of projection method and GHI kernel using cystic fibrosis data

Parameters Projection method(g = 1) GHIg=1) Projection method(g = 2) GHI(g = 2)
a=16=1 7857 +£1.75 7857 £1.75 81324+1.25 81324125
a=1=2 7894+ 1.86 7894+ 1.86 81.74+1.60 81.74+£1.60
a=1,8=3 7864 +1.01 7863+ 1.01 80.82+1.30 80.82+£1.29
a=2,=2 7933+142 7933+ 141 80.53+1.72 80.53£1.72
a=2,8=3 7932 £1.19 7932+£1.19 81.06 £1.37 81.06+1.36
a=3=3 7814 £1.11 7813 £1.11 80.794+1.12 80.78+1.12
Parameters Projection method(g = 3) GHI(g = 3) Projection method(g = 4) GHI(g = 4)
a=18=1 80.77 £ 1.44 80.76 = 1.44 83.10+2.10 83.09+2.10
a=1p=2 80.98 +1.81 80.97 +1.81 82114177 8213177
a=1=3 81.204+1.95 81.194+1.94 8354+ 146 8351+£148
a=2p=2 81324126 81304+ 1.27 82.75+2.14 8279+ 215
a=2,8=3 81.10 £1.10 81.09+ 1.11 83.62 £1.61 83.65+1.65
a=38=3 81.06+ 1.39 81.04+1.39 8349+0.77 83.56+£0.82
Parameters Projection method(g = 5) GHl(g = 5) Projection method(g = 6) GHl(g = 6)
a=16=1 74.03£2.18 74.00£2.18 72304193 72504 1.87
a=1=2 7167 £2.52 71624258 7362 +2.69 73.80+2.70
a=18=3 7477 £2.27 7473 +£2.28 71.94+£1.77 7211165
a=2,=2 7373+136 7373+£1.38 71494278 71.60 4 2.84
a=2,=3 7262 £297 72614292 7281 £191 73.01+1.92
a=3=3 7523 £2.64 7520+ 2.55 7353 4+2.62 73.80£2.67
Parameters Projection method(g = 7) GHi(g =7) Projection method(g = 8) GHI(g = 8)
a=16=1 67.99+2.78 67.60 +2.87 60.65 +4.20 60.90 £4.36
a=1=2 68.28 £3.51 67.89 & 3.60 581943.72 5833+3.77
a=1=3 67.754+220 67.25+2.19 5898 +3.67 59.28 £3.69
a=2pF=2 67.90+3.11 6723 +£3.04 5828 +4.20 58344413
a=2,8=3 67.58 £291 66.96 + 2.88 58.66 £ 240 58.86 +2.37
a=36=3 68.85+2.28 6844+£213 59.62 +3.34 59.77 £3.37
Parameters Projection method(g = 9) GHI(g=9)

a=16=1 5325+3.99 53.25+3.99

a=1p=2 52124428 52124428

a=1,8=3 52544322 52544322

a=2,8=2 51.16+£237 51.16+£2.37

a=2,=3 51.62 £4.18 51.62+4.18

a=38=3 51.96+5.01 51.96 +£5.01

Table 3. There is no clear difference between Projection
method and GHI kernel, as GHI kernel is positive semi-
definite for almost all considered pairs of « and B (see
Additional file 1: Table SI for reference). The only 2 cases
when GHI kernel indefinite are« = 1,8 = 2and o« = 1,
B = 3 for q = 1, and the minimal eigenvalue for the gener-
ated GHI kernel in these 2 cases is only -0.08, quite close
to 0, demonstrating that the generated kernel is almost
positive semi-definite.

Results for Leukemia Data are summarized in Table 4.
Similar to the results in cystic fibrosis data, projection
method and GHI kernel method show similar perfor-
mance in most of the cases for ¢ from 1 to 9. From
Additional file 1: Table SI we can see that, GHI kernel is
indefinite when o # 8 for g = 1,2,3. When g = 1, 2, Pro-
jection method is better than GHI kernel method for o =
1,8 =2and a = 1, 8 = 3; However, GHI kernel method
is comparable to Projection method fora = 2,8 = 3.
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Table 4 Averaged AUC values (%) of projection method and GHI kernel using leukemia data

Parameters Projection method(g = 1) GHIg=1) Projection method(g = 2) GHIg = 2)
a=18=1 93.68+0.62 93.68+0.62 95.90+0.84 95.90 +0.84
a=1=2 93.75 £ 0.59 87.00+4.10 95.85 + 0.41 94.93+£0.81
a=16=3 93.341+0.91 86.94 +3.37 95.41 +0.64 94.53 +0.89
a=2,=2 93.33+0.74 93.32+0.74 9561 +046 95.61 £046
a=2,8=3 9331 £047 9351 +046 95.17 £0.69 95.66 +0.85
a=3=3 93.54 4+ 0.66 93.54 4+ 0.66 95.77 £0.40 95.77 £0.40
Parameters Projection method(g = 3) GHl(g = 3) Projection method(g = 4) GHI(g = 4)
a=16=1 95.07 £ 0.64 95.08 + 0.65 93.51+£0.54 93.54+0.54
a=1=2 95.13+£046 95.10+ 0471 93.86+0.77 93.88+0.77
a=1=3 94.83 £ 041 94.77 £042 94.134+£0.52 94.154+0.52
a=2B=2 95.13+0.53 95.13+0.53 94.05 4 0.49 94.06 + 049
a=28=3 94.84 £067 94.85 £0.67 93.81 £0.69 93.82 £0.69
a=38=3 94.77 £0.61 94.77 £0.61 93.98+0.36 93.99+0.36
Parameters Projection method(g = 5) GHI(g = 5) Projection method(g = 6) GHI(g = 6)
a=18=1 93404058 93444058 9323+026 9338+0.26
a=1=2 93.12+0.70 93.16+0.70 93.07£0.75 9321+0.74
a=1=3 9320+0.27 93254028 93.05+063 93.18+£0.63
a=2,=2 93.61+0.73 93.64 +0.74 93.21+£048 9335+ 048
a=2,=3 93.78 £0.56 93.83+0.56 93.26 £0.70 9341+0.72
a=3=3 93.714+0.72 93.75+0.73 93.38 £0.65 93.51+0.67
Parameters Projection method(g = 7) GHI(g=7) Projection method(g = 8) GHl(g = 8)
a=16=1 92.15+0.68 92.37+0.67 90.10+0.71 90.36 +0.70
a=1,8=2 9233+0.57 9253 +0.59 90.68+ 1.14 9092+1.13
a=1=3 92.11+0.86 92314086 90.72+0.73 90.96 +£0.73
a=2B=2 92.01+£0.50 92234050 90.67 £1.06 9093 +1.04
a=28=3 92.06 £045 92274043 90.31 £0.90 90.53+0.89
a=38=3 9228+0.71 92481073 90.66 £ 0.65 90.92+ 067
Parameters Projection method(g = 9) GHI(g =9)

a=18=1 88924059 89.20+0.62

a=18=2 89.61+£0.62 89.86+0.63

a=1=3 89331068 89.60+0.67

a=2,=2 89.54+0.96 89.80+ 0.96

a=2,6=3 8857 £0.67 88.82 +0.68

a=38=3 88.56 +0.63 88.84 4+ 0.63

Bold face represents best performance for leukemia data in the compared two methods: Projection method and GHI Kernel method, and no marks are made if two methods

show comparable performance

Some interesting results can be found for NSCLC data
as shown in Table 2. Projection method and GHI kernel
method show exact performance when o = g, yielding
100% in AUC values. Note that Projection method does
not make any perturbation to the original kernel when
positive semi-definite(GHI kernel when &« = B), we can
get conclusion that GHI kernel is a preferred kernel for
tumor differentiation with NSCLC data. When «o differs

from B, different results are shown. When o« = 1,8 =
2, Projection method shows 99.72% in averaged AUC
values with 0.01% standard deviation, while GHI kernel
method only can get 64.07% in Averaged AUC values with
a large standard deviation 7.42%. When « = 2,8 = 3,
Projection method shows 99.99% in averaged AUC values
with 0 standard deviation, while GHI kernel method can
get 73.07% in averaged AUC values with a large standard
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deviation 8.17%. Exceptions happen when o = 1,8 = 3
where Projection method can only get 61.46% in aver-
aged AUC values and GHI kernel method is even worse,
achieving only 51.47% in averaged AUC values.

We can conclude that the performance of projection
method is not always similar for different pairs of (¢, 8).
There exists best (o,8) for inducing best projection
method, but different data sets may be suitable to differ-
ent pairs. GHI kernel method sometimes when kernel is
indefinite can also perform well. But in general, projection
method is clearly better than the GHI kernel for the above
considered data sets.

Experiments on Cosine kernel

Table 5 compares the performance of Projection method
with Cosine Kernel method for the considered datasets.
Our Projection Method demonstrates visible better per-
formance compared to Cosine Kernel method in terms
of averaged AUC values. From the bold text on the left
column of table, we can see that Projection method is
superior for almost all the cases (except ¢ = 8 where the

Table 5 Averaged AUC values (%) of projection method and
Cosine kernel for the considered datasets

Dataset Projection method Cosine kernel
Live disorder data 73.71+£1.21 6563 £275
Sonar data 89.57 +1.37 6746 £4.32
Breast data 99.37 +0.06 97.99+3.09
Cystic(g=1) 79.25+1.80 76.89 £ 3.24
Cystic (g = 2) 80.55+1.38 79.80 £ 1.84
Cystic (g = 3) 78.27 +1.59 70.10£4.01

Cystic (g = 4) 73.241+2.15 58.524+4.95
Cystic (g = 5) 64.38 + 3.85 52.13+4.30
Cystic (g = 6) 69.26 + 2.11 60.72 £536
Cystic(@=7) 64.6 +2.38 58.544+3.80
Cystic (g = 8) 63.17 £2.89 63.66+3.21

Cystic(g =9) 54.21+2.30 43.05+£238
Leukemia (@ = 1) 94.36 +0.43 90.73 £1.94
Leukemia (g = 2) 94.38 +0.79 6945 +4.81

Leukemia (g = 3) 95.20 +0.49 69.97 £6.58
Leukemia (g = 4) 94.73 +0.45 73334599
Leukemia (@ = 5) 91.23 +0.44 71814962
Leukemia (g = 6) 93.19 + 0.66 79.08 £6.96
Leukemia (g = 7) 90.56 +1.25 65.26 £6.90
Leukemia (g = 8) 87.81+0.98 58314287
Leukemia (@ = 9) 87.52+1.20 55.88 +£3.82
NSCLC 52.91+4.45 48.64 £530

Bold face represents best performance for the considered data sets in the
compared two methods: Projection method and Cosine Kernel method, and no

marks are made if two methods show comparable performance
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two methods show comparable performance with each
other). Apart from that, the Projection method is more
stable than Cosine Kernel method because the standard
deviation of AUC values for each data set is smaller in
Projection method. In Live Disorder Data set, the aver-
aged AUC values of Cosine Kernel method is 65.63% with
standard deviation 2.75%, and Projection method is much
better than Cosine Kernel method, achieving 73.71%
AUC values in average. The superiority of Projection
method over Cosine Kernel method is clearly demon-
strated in Sonar Data as well. The averaged AUC value
for Cosine Kernel method is 67.46% but 89.57% for Pro-
jection method. For Cystic Fibrosis Data and Leukemia
Data, Projection Method shows a general decrement in
performance with the increment of q. However, in Cosine
Kernel method there is no obvious correlation between
the performance and the value of q within the data sets.
In NSCLC Data set, both the Projection method and
Cosine Kernel method show unsatisfying performance
though Projection method is clearly better than the origi-
nal Cosine Kernel method.

Discussion

Experimental results show that the Projection method is
better or comparable with the compared kernel meth-
ods: GHI kernel and Cosine kernel. Despite the fact that
GHI kernel and Cosine kernel when indefinite some-
times can yield good performance, Projection method
still demonstrate comparable performance. The necessity
of Projection transformation for the considered indefi-
nite kernels is clearly demonstrated. Projection method
when A > 1 can transform an indefinite kernel into
a PSD one . The optimal A determination for Pro-
jection Method focusing on four different divergences
is also considered. From the deduced optimal A, we
focus on the one with LogDet Divergence as it is more
realistic.

In the following, we will conduct experiments on the
considered data sets, to confirm if suggested optimal A of
the Projection Method can show optimal performance in
various values of 1 > 0.

Optimal X in the projection method for sonar data

We set parameters o # 8 € {1,2,3} for GHI kernel and
consider A €[0.1,200] with step size 0.1. Figure 2 plots
the performance of Projection Method with different A €
[0.1,200]. The ‘*’ shape in black color marks the perfor-
mance of the Projection method with suggested optimal
A obtained under LogDet Divergence. The red line repre-
sents projected GHI kernel with « = 1, 8 = 2. The green
line represents projected GHI kernel with ¢ = 1,8 = 3.
The blue line represents projected GHI kernel with @ = 2,
B = 3. The cyan line plots the performance of projected
Cosine Kernel.
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Sonar Data with Projection Method
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Fig. 2 Averaged AUC values for different values of A in projection method with two considered kernels using sonar data set

The suggested optimal A in Fig. 2 is 2.0 in Projected
GHI kernel for all pairs of («,8),¢ # B. The perfor-
mance of Projection Method shows a steady decrement
when A > 2, implying that A = 2 is a good choice
for projection method. When A < 1, the performance
of projection method is quite unstable because the PSD
property cannot be guaranteed.

It is very interesting to see that the suggested optimal
A is uniformly the same in the two considered kernels.
Take projected GHI kernel with different («, 8) pairs
for comparison, we can see that projected method with
a = 1,8 = 3 shows best performance, 0.8733, where
the experimental best performance is shown to be 0.8735
achieving at . = 1.9. When o = 1,8 = 2, the projec-
tion method with suggested optimal A achieves 0.8246 in
averaged AUC value, and the experimental best result is
0.8276. When o = 2, 8 = 3, the projection method with

suggested optimal A achieves 0.8540 in averaged AUC
value, and the experimental best result is 0.8557. Con-
sidering the projected Cosine Kernel, the experimental
best AUC value for Projected Cosine Kernel 0.9126 is
achieved at A = 3.8, while our suggested optimal 1 = 2
yielding AUC value 0.9051, the difference between the
two values is little: 0.0075. We can conclude that the sug-
gested optimal A can guarantee at least an near optimal
performance.

Optimal A in the projection method for live disorder data

Figure 3 shows the performance of Projection Method in
different kernels for Live Disorder Data. The experimental
optimal A for GHI kernel with @ = 1, 8 = 2 is 1.8, achiev-
ing averaged AUC value 0.7570. Our suggested A under
Logdet Divergence is 2.38, achieving averaged AUC value
0.7566. The performance difference in the Projection

Live Disorder Data with Projection Method
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Fig. 3 Averaged AUC values for different values of A in projection method with two considered kernels using live disorder data set
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Method with theoretical optimal A = 2.38 and exper-
imental optimal A = 1.8 is very small: 0.0004. When
a = 1,8 = 3, The experimental optimal A for GHI ker-
nel is 1.6, with the average AUC value equaling 0.7381.
Our suggested optimal A is 2.37, with averaged AUC value
of 0.7333. The performance difference of the Projection
Method with suggested optimal A = 2.37 and experi-
mental optimal A = 1.6 is also very small: 0.0048. The
experimental best AUC value of 0.7417 in Cosine kernel
is achieved at A = 0.4, while our suggested optimal A =
2.17 yielding an AUC value of 0.7292. It can be seen that
when A > 120, the performance of projected method with
the two considered kernels fluctuates. When A < 120,
the performance of projected method increases firstly and
then decreases. The suggested optimal A can guarantee at
least an near optimal performance.

Optimal A in the projection method for breast cancer data

Figure 4 records the performance of the Projection
Method for Breast Cancer Data. The experimental opti-
mal X is 1.1 for GHI kernel with « = 1, 8 = 2, achieving
averaged AUC value of 0.9713. Our suggested optimal A is
4.5957, with the averaged AUC value of 0.9693. The per-
formance becomes slightly worse with increment of A. The
performance difference of the Projection Method with
suggested optimal A = 4.5957 and experimental optimal
A = 1.1is subtle: 0.0018. Similar results are shown for GHI
kernel with other («, B8) pairs. The experimental best AUC
value 0.9941 is achieved at » = 0.8 for Cosine Kernel,
while our suggested optimal A = 4.29 yielding AUC value
0.9939. Take projected GHI kernel and Cosine Kernel
for comparison, we can see that projected cosine kernel
shows visible better performance than projected GHI ker-
nel, suggesting that we should choose projected Cosine
kernel for breast cancer prediction. When all the kernels
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are considered, the suggested optimal A is preferable in
getting optimal performance for different values of A.

Optimal X in the projection method for cystic fibrosis data
Figure 5 records the performance of Projection method
with the 2 considered kernels. We can see that in almost
all cases the Projection method shows identical perfor-
mance for 1 € (0,200] except for ¢ = 1 when @ = 1,
B = 2and ¢ = 1,8 = 3. One possible explanation
might be that GHI kernel is PSD already before projec-
tion (please see Additional file 1: Table SI). When g = 1,
a = 1,8 = 2, the best AUC value when A € (0,200]
is 0.7908, and the smallest AUC value is 0.7890, where
theoretical optimal A yields 0.7905 in AUC value which
is near optimal. When « = 1,8 = 3, the smallest AUC
value is 0.7831 when A approaching 200, the best AUC
value is 0.7841 when A = 22.5, and the suggested optimal
A through Logdet Divergence yields 0.7840, which is also
near optimal. Considering Cosine kernel, the performance
of Projection method firstly improves and then descends
gradually for ¢ = 1,2 and 3. For example, the best per-
formance in experiment for q=1 is achieved at A = 77,
with the AUC value 0.7987, while our suggested optimal
A = 5.8 gets 0.7955 in AUC value, which is near optimal.
When q increases, the performance of projection method
improves firstly and stays relatively stable afterwards. For
example, when q = 4, suggested optimal A = 3.67 gets
0.7846 in AUC value and the experimental best perfor-
mance 0.8012 is obtained when A = 26.7. It can be seen
that denoising method when A = 1 achieves 0.6574 and
flipping method when A = 2 achieves 0.7441, implying
that projection method with suggested X is better than
these two methods. Although it is not optimal, the per-
formance of projection method is satisfactory, which is
slightly inferior to the optimal.

Breast Cancer Data with Projection Method
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Fig. 4 Averaged AUC values for different values of A in projection method with two considered kernels using breast cancer data set
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Cystic Fibrosis Data with Projection Method
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Fig. 5 Averaged AUC values for different values of A in projection method with two considered kernels using cystic fibrosis data set

Optimal X in the projection method for leukemia data

Experimental Results for Projection Method with GHI
kernel and Cosine kernel in leukemia data for g €
{1,2,...,9} are demonstrated in Fig. 6. Similar to Cystic
Fibrosis Data, Projection method in GHI kernel shows
almost identical performance for A € (0,200] for g €
{4,5,6,7,8,9}. This is consistent with the results in Table
SI (Please refer to Additional file 1) where original GHI
kernel is positive semi-definite when g > 4, as the mini-
mal eigenvalues of the kernel matrix is 0. When g = 1, the
experimental best AUC value is 0.9364 fora = 1,8 = 2,
and our suggested optimal A yields 0.9342. When g = 2,
the experimental best AUC value is 0.9545 for « = 1,
B = 2 when g = 2, and our suggested optimal A yields
0.9542. When g = 3, the experimental best AUC value
is 0.9539 for « = 1,8 = 2 when ¢ = 2, and our sug-
gested optimal X yields 0.9539. Experimental results are
similar for other pairs of (o, §). Results for projected GHI
kernel show that our suggested optimal A can induce a
near optimal projection method. In the case of Cosine
kernel, we can get some information from the cyan line
in Fig. 6. For all the considered ¢, there is no overall

tendency when A < 2, but the averaged AUC values will
slowly decrease in a steady manner when the optimal per-
formance is achieved. Some interesting phenomenon can
be detected where projection method always shows poor
performance when A = 1 (Denoising Method). For exam-
ple, when g = 2 the averaged AUC value of projection
method is 0.6134 for A = 1, but 0.7450 for A = 0.9 and
0.9318 for A = 1.1. When g = 3 the averaged AUC value
of projection method is 0.4221 for » = 1, but 0.7784 for
A = 0.9 and 0.9151 for A = 1.1. This probably can be
explained that denoising strategy neglects some hidden
information embedded in the negative eigenvalues and
eigenvectors which is critical for describing the Leukemia
Data. Regarding to the suggested optimal A in projected
Cosine Kernel, we can see that Projection method with the
suggested optimal A can always get at least near optimal
performance for allg € {1,2,...,9}.

Optimal A in the projection method with NSCLC data

The performance of Projection Method with GHI ker-
nel and Cosine Kernel in NSCLC Data is shown in Fig.7.
When « = 1,8 = 2, the optimal averaged AUC value

Leukemia Data with Projection Method
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Fig. 6 Averaged AUC values for different values of A in projection method with two considered kernels using leukemia data set
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NSCLC Data with Projection Method
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Fig. 7 Averaged AUC values for different values of A in projection method with two considered kernels using NSCLC data set

in experiment is 0.9979 and projection method with our
suggested optimal A = 2 can also ensure best perfor-
mance 0.9979. When « = 1,8 = 3, the experimen-
tal optimal averaged AUC value 0.6145 and projection
method with A = 2 can also ensure best performance
0.6145. When o = 2,8 = 3, the optimal averaged AUC
value 1 in experiment and projection method with our
suggested optimal A = 2 can also ensure equivalent best
performance. Another conclusion can be made is that pro-
jection method with GHI kernel in different pairs of («, 8)
may perform significantly different. In this experiment, we
can see that « = 1,8 = 3 is not fit for the task. Taking
into consideration of the projected Cosine Kernel method,
we can also conclude that cosine kernel is not suitable for
dealing with tumor differentiation in NSCLC data.

Table 6 lists the optimal A under Logdet Divergence with
considered kernels for all the considered data sets. The
first 3 columns refer to suggested optimal A in Projected
GHI kernel method. It is interesting to see that for cys-
tic fibrosis data set, the suggested optimal X is either 1 or
100 in most cases (except forg = 1 whena = 1,8 = 2
and ¢ = 1,8 = 3). The situation is similar for leukemia
data set, where the suggested optimal X in most cases is
either 1 or 100 (g > 4). Note that our suggested opti-
mal A has the formula 1 + WI% (Please refer to
Eq.(12)). Computational error may occur when the opti-
mal A is calculated to be close to +=00 which is not realistic.
We therefore make the amendments accordingly where
optimal A is defined to be 1 when approaching —oo and
100 when approaching +oo. The last column lists the the-
oretical optimal A for the considered data sets with Cosine
kernel. Computational error does not have influence on
Projection Method with Cosine Kernel in cystic fibrosis

data as —r—2 —=—=~ is not close to 0. We can draw
7;1 ditr(K*lPiP,')

some conclusions from the table. Firstly, when kernels are
different, the suggested optimal A in most of the cases
are different within the same data set. Secondly, when

Table 6 Optimal A suggested in projection method with
considered kernels

Methods GHI Kernel Cosine
Dataset a=18=2 a=18=3 a=2p8=23 kemel
Live disorder data  2.38 237 245 217
Sonar data 2 2 2 2
Breast data 4.6 6.57 4.06 4.29
Cystic(g=1) 71 71 100 58
Cystic (g = 2) 100 100 1 25
Cystic (@ = 3) 100 100 1 2.8
Cystic (@ =4) 100 100 1 367
Cystic(@ = 5) 100 100 100 6.2
Cystic (@ = 6) 1 1 1 14
Cystic (g =7) 1 1 1 21
Cystic (@ = 8) 1 1 1 37
Cystic (@ =9) 1 1 1 85
Leukemia (@ =1) 4733 4733 46.67 10
Leukemia (g =2) 2825 28.25 22.80 74
Leukemia (g = 3) 465 46.5 47 542
Leukemia(@=4) 1 1 1 3.06
Leukemia(@=5) 1 1 1 233
Leukemia (@ =16) 1 1 1 239
Leukemia (g =7) 100 100 100 2.56
Leukemia (g =8) 100 100 100 267
Leukemia(@=9) 1 1 1 298
NSCLC 20 46 2 2
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data sets are different, the suggested optimal A in most of
the cases are different even under the same kernel type.
Focusing on the GHI kernel, we can see that the suggested
optimal A for different (o, 8) differ from each other in
most of the cases. Comparing GHI kernel and Cosine ker-
nel, we can see that even for the same data set, it may
happen that one type of kernel is positive semi-definite
while the other type is indefinite, this can also partly
explain why the suggested optimal X is different.

Any better optimal A for projection method?

As stated above, we can see that under Logdet diver-
gence, we can determine an near optimal A for projection
method. In this subsection, we are considering if there
is any way to improve the projection method, in terms
of finding a better optimal A. Recall that Von Neumann
divergence has the formula Dy (K, Ko) = tr(KlogK —
Klog Ko — K + Kp), we here did a little perturbation to the
formula Dy (K, Ko) = trKtr(log K —log Ko) +tr(—K +Kp).
Then we can determine optimal A through minimizing the
following function

)

m
V) = (Z(l — Wi +
i=1 i=m+1
m n
X (Z(I—A)ditr(l(o_lﬁifo;—i- > ditr(K(;ljaiﬁ;)»
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Therefore, the new optimal Aqpt1 is of the following
formula:

S dite (K pipl) — 0.5
Sy dite (K pi))
We next conducted experiments on all the considered
data sets to see the comparison of optimal A from Logdet

divergence Aqpt and the newly proposed Aqpt1 in conjunc-
tion with projection method.

)‘optl =

e Lambda Comparison with Projection Method in
Sonar Data, Live Disorder Data, Breast Cancer Data
and NSCLC Data
As shown in the table (Table 7), we can see that the
newly determined optimal A through perturbed Von
Neumann Divergence shows similar performance
with the optimal A generated by Logdet divergence.
The only clear difference can be detected for Sonar
data in GHI kernel when o = 2, 8 = 3 and Cosine
Kernel. For GHI kernel @« = 2, 8 = 3 we can see that
Aopt is superior to Aopt1, while for Cosine kernel, Aopt1
is superior to Aopt. Regarding the determined optimal
A under different divergences, we can see that Aqpt
differs from Aopt1. For GHI kernel case, the
determined optimal A under Logdet Divergence and
perturbed von-Neumann Divergence is similar to
each other in Live data set but quite different in other
data sets. For cosine kernel case, Aqpt and Aopt1 are
quite different from each other. We can see that
though the determined optimal A under Logdet
Divergence and perturbed von-Neumann Divergence
is different, the performance is comparable. When we
compare both kernels, we can see that Cosine kernel
with Aopt1 is a preferred option.

¢ Lambda Comparison with Projection Method in
Cystic Fibrosis Data
From Table 8, we can get some conclusions. For GHI
kernel, it is obvious that projection method shows
almost identical performance with Aopt and Agpe1. It is

Table 7 Optimal A comparison in projection method with considered kernels in sonar data, live disorder data, breast cancer data and

NSCLC data
a=18=2 a=18=3 a=28=3 Cosine
Sonar (Aopt, AUCopt) (2.00,0.8266) (2.00,0.8787) (2.00,0.8585) (2.00,0.9034)
(hopt1, AUCopt1) (2.59,0.8284) (2.16,0.8784) (4.32,0.8486) (8.30,0.9118)
Live (Aopt, AUCopr) (2.38,0.7559) (2.37,0.7397) (2.45,0.7543) (2.17,0.7292)
(Aopt1, AUCopt1) (2.08,0.7571) (2.04,0.7415) (2.09,0.7542) (6.70,0.7249)
Breast (Aopt, AUCopr) (4.60,0.9689) (6.57,0.9659) (4.06,0.9684) (4.29,0.9937)
(Aopt1, AUCopt1) (2.03,0.9702) (2.02,0.9675) (2.20,0.9686) (13.04,0.9936)
NSCLC (Aopt, AUCopt) (2.00,0.9996) (2.00,0.9959) (2.00,0.9903) (2.00,0.4059)
(Aopt1, AUCopt1) (4.96,0.9990) (3.58,0.9978) (2.69,0.9910) (2.30,0.4010)

The italicize represents visible difference detected for projection methods with different optimal A
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Table 8 Optimal A comparison in projection method with considered kernels in cystic fibrosis data
a=1,8=2 a=18=3 a=28=3 Cosine
g=1 (hopt, AUCopt) (71,07771) (71,07711) (100,0.7829) (5.8,0.7889)
(Aopt1, AUCopt1) (36.5,0.7775) (36.5,0.7713) (100,0.7829) (28.3,0.7912)
g=2 (Aopt, AUCopt) (100,0.8031) (100,0.8114) (1,0.8209) (2.5,0.7951)
(Aopt1, AUCopt1) (100,0.8031) (100,0.8114) (1,0.8209) (43.38,0.7959)
g=3 (Aopt, AUCopt) (100,0.8103) (100,0.8140)) (1,0.8033) (2.8,0.7978)
(Aopt1, AUCopt1) (100,0.8103) (100,0.8140) (1,0.8033) (34.3,08111)
g=4 (Aopt, AUCopt) (100,0.8296) (100,0.8356) (1,0.8286) (3.67,0.7825)
(Aopt1, AUCopt1) (100, 0.8296) (100, 0.8356) (1,0.8286) (26.58,0.7979)
g=>5 (Aopt, AUCopt) (100, 0.7400) (100,0.7272) (100, 0.7405) (6.2,0.6973)
(Aopt1, AUCopt1) (100,0.7400) (100,0.7272) (100,0.7405) (27,0.7137)
g==6 (Aopt, AUCopt) (1,0.7173) (1,0.7164) (1,0.7224) (14,0.7144)
(Aopt1, AUCopt1) (1,0.7173) (1,0.7164) (1,0.7224) (34.16,0.7156)
qg=7 (Aopt, AUCopt) (1,0.6702) (1,0.6721) (1,0.6713) (21,0.6620)
(Aopt1, AUCopt1) (1,0.6702) (1,0.6721) (1,0.6713) (22.17,0.6616)
g=28 (Aopt, AUCopt) (1,0.5928) (1,0.5791) (1,0.5935) (37,0.6388)
(Aopt1, AUCopt1) (1,0.5928) (1,0.5791) (1,0.5935) (19.25,0.6387)
g=9 (hopt, AUCopt) (1,0.5146) (1,0.5107) (1,0.5254) (85,0.5637)
(Aopt1, AUCopt1) (1,0.5146) (1,0.5107) (1,0.5254) (17.5,0.5688)

The italicize represents visible difference detected for projection methods with different optimal A

interesting to see that in GHI kernel case, Aopt and
Aopt1 are equal to each other expect when g = 1 for
a=1,=2anda = 1,8 = 3. From Table SI we
know that GHI kernel in these 2 cases is indefinite.
Although the values of A,pt and Aopt1 are quite
different from each other when g = 1 for
a=1,=2and o =1, 8 = 3, the performances are
similar to each other. When it comes to Cosine kernel,
we can see that projection method with Aqpt; tends to
perform better for g € {1,2,3,4,5,6,9}. Clear
differences can be detected when g = 3,4, 5 that are
marked in bold face. Besides, Aopt1 in Cosine kernel is
larger than Aqp¢ for most cases (g € {1,2,...,7}),
meaning that projection method with Cosine kernel
tends to show better performance for relatively large
A. When we compare GHI kernel and Cosine kernel,
we find that GHI kernel in general tends to show
better performance for small g, and Cosine kernel
shows better performance when q is large.

Lambda Comparison with Projection Method in
Leukemia Data

We can get similar conclusions for Leukemia data. As
shown in the table (Table 9), projection method
shows almost identical performance with Ap¢ and
Aopt1 though different optimal A values are obtained
(Please check g = 1, 2, 3 respectively). When g = 1,
Aopt1 is smaller than Aope. When g = 2, 3 respectively,
Aopt1 is larger than Aopt. Though values of optimal A
differ from each other, the performances are quite

similar, meaning that projection method with GHI
kernel for Leukemia data is less sensitive in the
optimal A. When g € {4,5,6,7,8, 9}, Aopt and Aopt1
are identical, we can see from Table SI that GHI
kernel in these cases are PSD already. For Cosine
Kernel, optimal A determined by Logdet Divergence
and perturbed Von-Neumann Divergence differs.
Projection method with Aqpy1 performs slightly better
than projection method with Aopt. Besides, Aopt1 in
Cosine kernel is larger than Aqpt, implying that
projection method tends to show better performance
for large A. When we focus on the performance of
projection method with Aqpt1, we can find that
different from Cystic Fibrosis data set, the
performance of projected cosine kernel with Aqp
tends to show better performance for small g while
projected GHI kernel with Aop¢ tends to show better
performance for large q.

In summary, when » € (0,1), the positive semi-
definiteness of the projected kernel matrix cannot be
assured, and the performance tends to be extremely
unstable. The suggested optimal X in Projection method
is related to the eigenvalues in original kernel matrix,
and thus varies in different data sets. Besides, the sug-
gested optimal A under Logdet Divergence and perturbed
Von-Neumann Divergence differs from each other in the
same data sets in most cases. Even in that case, pro-
jection method under the two different cases can still
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Table 9 Optimal A comparison in projection method with considered kernels in leukemia data
a=18=2 a=18=3 a=2p=3 Cosine
g=1 (Aopt, AUCopt) (47.3,0.9418) (47.3,09377) (46.7,0.9365) (10,0.9469)
(Aopt1, AUCopt1) (26.8,0.9419) (26.8,0.9377) (27.8,0.9367) (16.6,0.9472)
g=72 (Aopt, AUCopt) (28.3,0.9551) ((28.3,0.9551) (22.8,0.9582) (74,0.9541)
(Aopt1, AUCopt1) (35.9,0.9550) (35.9,0.9551) (29.3,0.9582) (24.7,0.9555)
g=3 (Aopt, AUCopt) (46.5,0.9512) (46.5,0.9540) (47,0.9500) (542,09573)
(Aopt1, AUCopt1) (87.8,0.9512) (87.8,0.9551) (88.8,0.9500) (23.1,0.9593)
g=+4 (Aopt, AUCopt) (1,0.9427) (1,0.9416) (1,0.9405) (3.06,0.9485)
(Aopt1, AUCopt1) (1,0.9427) (1,0.9416) (1,0.9405) (18.6,0.9522)
g=>5 (Aopt, AUCopt) (1,0.9352) (1,0.9362) (1,0.9363) (233,09175)
(Aopt1, AUCopt1) (1,0.9352) (1,0.9362) (1,0.9363) (11.08,0.9259)
g=56 (opt, AUCopt) (1,0.9310) (1,09319) (1,09311) (2.39,0.9333)
(opt1, AUCopt1) (1,0.9310) (1,09319) (1,09311) (7.74,09337)
qg=7 (Aopt, AUCopt) (100,0.9201) (100,0.9236) (1,09212) (2.56,0.8993)
(Aopt1, AUCopt1) (100,0.9201) (100,0.9236) (1,09212) (5.03,0.8921)
g=2=8 (Aopt, AUCopt) (100,0.9035) (100,0.9096) (100,0.9059) (2.67,0.8795)
(Aopt1, AUCopt1) (100,0.9035) (100,0.9096) (100,0.9059) (3.56,0.8845)
g=9 (Aopt, AUCopt) (1,0.8936) (1,0.8915) (1,0.8899) (2.98,0.8734)
(Aopt1, AUCopt1) (1,0.8936) (1,0.8915) (1,0.8899) (3.72,0.8735)

The boldface represents best performance detected for projection methods with different optimal A, and no marks are made if two methods show comparable performance

guarantee near optimal performance. It can be seen
that when optimal A under Logdet Divergence and opti-
mal A under perturbed Von-Neumann Divergence is
very different, the performance of projection method
in both cases is still similar, showing that in this case
projection method is relatively insensitive to the val-
ues of suggested optimal A (projection method with a
large range of A values can suggest near optimal perfor-
mance). Our suggested theoretical A under Logdet Diver-
gence and perturbed Von-Neumann Divergence some-
times cannot guarantee the best performance. There
are two possible reasons. One possible reason is that
the optimal A determination by unconstrained optimiza-
tion in framework of kernel learning hypothesized the
positive definiteness of the kernels, but we use indef-
inite kernels in this case. Another possible reason is
that the inverse of kernel was substituted by pseudo
inverse.

Conclusions

In this paper, we propose projection method for address-
ing indefinite kernel learning problems. The projection
method is construed from an eigen-space perspective. It
is very flexible by varying the parameter A, to change
from the denoising method to the flipping method. These
two spectrum based methods are well-known techniques
in dealing with indefinite kernels. Two kernels that are
not generally PSD are introduced for comparison: GHI

kernel method and the Cosine kernel method. We show
better performance for projection method in terms of
AUC values under 5-fold cross-validations. The optimal A
embedded in the Projection Method can be determined
by solving an unconstrained optimization problem. Exper-
imental studies show consistence with theoretical analysis
as projection method with our suggested A can always
guarantee at least near optimal performance for A > 0.
In the pursuit of precise optimal A determination method,
we also compared optimal A determination with Logdet
Divergence and perturbed Von-Neumann Divergence,
aiming at finding better A in projection method. The
determined optimal A differs from each other for different
kernels and data sets involved, and the results obtained
are in general similar. Our proposed projection method
may be regarded as a good choice for dealing with indef-
inite kernels. Future work may contribute to the devel-
opment of more precise optimal A determination method
and the development of more variants of projection
method for indefinite kernels, hoping to be applied in
other areas.
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