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Abstract

Background: Mining frequent gene regulation sequential patterns in time course microarray datasets is an
important mining task in bioinformatics. Although finding such patterns are of paramount important for studying a
disease, most existing work do not consider gene-disease association during gene regulation sequential pattern
discovery. Moreover, they consider more absent/existence effects of genes during the mining process than taking the
degrees of genes expression into account. Consequently, such techniques discover too many patterns which may not
represent important information to biologists to investigate the relationships between the disease and underlying
reasons hidden in gene regulation sequences.

Results: We propose a utility model by considering both the gene-disease association score and their degrees of
expression levels under a biological investigation. We propose an efficient method called Top-HUGS, for discoverying
significant high utility gene regulation sequential patterns from a time-course microarray dataset.

Conclusions: In this study, the proposed methods were evaluated on a publicly available time course microarray
dataset. The experimental results show higher accuracies compared to the baseline methods. Our proposed methods
found that several new gene regulation sequential patterns involved in such patterns were useful for biologists and
provided further insights into the mechanisms underpinning biological processes. To effectively work with the
proposed method, a web interface is developed to our system using Java. To the best of our knowledge, this is the
first demonstration for significant high utility gene regulation sequential pattern discovery.
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Background
Microarrays have been extensively used for discovering
differentially expressed genes in human diseases. Several
methods have been designed to observe massive gene
expressions and recognize their regulations during a clin-
ical study. However, several studies show that a disease
cannot be characterized by a single gene but emerges as
complex interactions among multiple genetic variants [1].
Gene regulation sequential pattern analysis is an impor-
tant task for studying illness events such as cancer for-
mation. The formation of such diseases happen over a
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time period, hence abnormal alternations can be identi-
fied by monitoring gene expressions over a period of time.
Although associations among these genes are important,
existing work only consider how to discover differentially
expressed genes over time. Proposed by several studies
[1–4], sequential pattern mining is an effective technique
to discover such associations as gene regulation sequential
patterns.

Given a dataset, where each record is a sequence con-
taining a list of items/itemsets, Sequential pattern mining
is the process of discovering sequences of items/itemsets
whose occurrence in the dataset is no less than some
pre-defined threshold. Such techniques can identify a
potential gene regulation sequential pattern if it occurs
frequently (i.e., more than the threshold) in a period of
time.
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Although sequential pattern mining has been applied
to identify gene regulation sequential patterns, sev-
eral shortcomings can be found in the existing algo-
rithms. First, the techniques usually select significant
sequences based on the frequency/support framework.
Hence, those patterns whose frequency is relatively
high, are considered as significant patterns. Nonethe-
less, as clinical studies have indicated, the frequency
by itself might not be adequately informative to find
significant sequences with respect to a certain dis-
ease. For instance, several genes tend to be more
substantial compared to others in causing a specific
disease and some genes are certainly more effective
compared to others in fighting a disease. Further-
more, majority of the existing techniques consider the
more general up/down effects of gene’s behavior (i.e.,
gene expression) in a microarray dataset by transform-
ing the expression value to highly expressed or highly
repressed and do not consider the level of expressions.
For example, a gene might not appear frequently but
its behavior is extremely remarkable in each appear-
ance or vice versa. Consequently, sequences that have
highly expressed/repressed genes might not be iden-
tified by the frequency based methods since such
approaches neither take into account the significance of
genes, nor the degrees of expression under a biological
investigation.

To address these limitations, the utility is introduced
to sequential pattern mining. Utility is a domain driven
function that can be defined based on an objective. High
utility sequential pattern (HUSP) mining is the process of
discovering sequential patterns with respect to the util-
ity function. In this context, a sequence is a high utility
sequential pattern, if its utility in a dataset is no less than
a minimum utility threshold. Although such approaches
can be helpful to discover significant gene regulation
sequential patterns, most existing HUSP mining meth-
ods are mainly studied to discover patterns in market
basket analysis (e.g., finding profitable customer shop-
ping behavior), and have not been deployed to discover
patterns from complex sequential datasets such as time
course microarray datasets. The main challenge to apply
this approach is i) how to model the utility such that
it represents the objective (e.g., a specific disease) effec-
tively and ii) how to convert input sequential dataset
(e.g., a time course microarray dataset) to a utility-based
sequential database. Second, in gene regulation sequen-
tial pattern discovery, setting an effective value for the
threshold is not easy for biologists. If the threshold is
set too low, a large number of patterns can be discov-
ered, which makes it hard to analyze the mined patterns.
On the other hand, if the threshold is set too high, some
interesting patterns may be missed. A practical solution
to find significant patterns is to set a bound on the size

of output (e.g., top-k patterns). Given k as the size of
output, the algorithm should basically search for patterns
with a very low threshold (e.g., zero or a value close to
zero) to guarantee that at least k patterns can be found.
Finding patterns with a very low threshold causes very
high computational costs. The main challenge is how
to raise the threshold quickly while no top-k pattern is
missed.

In this paper, we address the aforementioned issues
by introducing a utility model that considers the gene
importance and its degrees of expression under a bio-
logical investigation. To the best of our knowledge, our
proposed method in [5] is the only work to discover
utility-based gene regulation sequential patterns in a time
course microarray dataset. In this paper, we design an
algorithm called Top-HUGS to mine top-k high utility
gene regulation sequential patterns (to be defined later) by
considering the proposed utility model. Top-HUGS takes
k (i.e., number of output patterns) and a disease (as the
objective) as input and it finds the top k most important
gene regulation sequential patterns from a time course
microarray dataset. We prove that Top-HUGS does not
miss any top-k high utility gene regulation sequences,
which take place across different time points during the
course of biological observations. Our contributions are
summarized as follows.

• We define a utility model based on the importance of
genes with respect to a disease and their finer degrees
of expression under a biological investigation.

• We present the problem of threshold free high utility
gene regulation sequential pattern mining. We design
several adjusting strategies to initialize and raise the
threshold before and during the mining process. We
prove that the proposed strategies do not miss true
high utility patterns.

• We propose a new algorithm called Top-HUGS to
mine top-k high utility gene regulation sequences
from a time course microarray dataset without any
given threshold.

• We conduct experiments on a real and publicly
available time course microarray dataset to evaluate
the effectiveness and efficiency of Top-HUGS to find
the patterns with respect to three different diseases.

• A web interfece is designed and implemented for our
proposed algorithms. This is the first demonstration
for mining high utility gene regulation sequential
patterns. Demo available at http://mzk.eecs.yorku.ca:
8080/GeneAssociation/

The rest of the paper is organized as follows. We present
a summary of related work. Then, the proposed method is
discussed. We evaluate the proposed methods and finally
we conclude the paper.

http://mzk.eecs.yorku.ca:8080/GeneAssociation/
http://mzk.eecs.yorku.ca:8080/GeneAssociation/
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Related work
In this section, we describe some existing work on
sequential pattern mining, high utility sequential pattern
mining, and sequential pattern mining in Bioinformatics.

Sequential pattern mining
Mining sequential patterns in sequence databases is a
challenging problem in data mining [6–11], which was
first introduced by Agrawal et al. [7]. A subsequence
is called sequential pattern or frequent sequence if it
frequently appears in a sequence database, and its fre-
quency is no less than a user-specified minimum support
threshold [7]. In the last two decades, several algorithms
have been proposed such as AprioriAll [6], GSP [10],
FreeSpan [8], PrefixSpan [9], SPADE [11] and SPAM [7].
These algorithms can be generally categorized as using
a horizontal database (e.g., AprioriAll, GSP, FreeSpan
and PrefixSpan) or a vertical database (e.g., SPADE and
SPAM). A vertical representation provides the advantage
of calculating frequencies of patterns without perform-
ing costly database scans. This allows vertical min-
ing algorithms to perform better on dense dabases or
long sequences than algorithms using the horizontal for-
mat. The AprioriAll and GSP algorithms use candidate-
generation-and-test methodology for mining sequential
patterns. FreeSpan and PrefixSpan discover sequential
patterns by the pattern-growth methodology. The SPADE
and SPAM algorithms use different vertical representa-
tions for mining sequential patterns.

High utility sequential pattern mining
Although sequential pattern mining algorithms have been
applied to solve many real-world problems [12], they treat
all items as having the same importance and assume that
an item appears at most once at any time point, which is
not the case for many applications. Recently, High Utility
Pattern (HUP) mining was proposed to address such limi-
tations to patterns (itemsets or sequences) whose utility is
no less than a minimum utility threshold.

High utility pattern mining [13–17] considers the exter-
nal utility (e.g., unit profits) and internal utility (e.g.,
quantity) of items such that it provides users with pat-
terns having a high utility (e.g., profit). Some efficient
algorithms such as two-phase [18], IHUP [19], UP-Growth
[20], HUI-Miner [21] and FHM [22] have been proposed
to find high utility itemsets (HUIs) from a transaction
database, where the sequential ordering of itemsets is
not considered. The addition of ordering information
makes the pattern mining problem fundamentally dif-
ferent and much more challenging than mining high
utility itemsets. The concept of high utility sequential
pattern (HUSP) mining was first introduced by Ahmed
et al. [13], who defined an over-estimated sequence util-
ity measure, SWU (i.e., Sequence-Weighted Utility), which

has the downward closure property, and proposed two
approaches, called UL and US, to find HUSPs based
on SWU. UL is a level-wise candidate generation-and-
testing algorithm and hence involves multiple scans of the
database and generates a large number of high-SWU can-
didate sequences. They also proposed US which uses a
pattern-growth method inspired by PrefixSpan [9] to gen-
erate all sequences whose SWU satisfies the threshold,
and then scans the database again to compute the exact
utilities of high-SWU candidate sequences to find HUSPs.
Shie et al. [15] proposed a framework for mining HUSPs
in a mobile environment. Their algorithm can only handle
sequences with a single item in each sequence element.
Ahmed et al. proposed efficient algorithms for mining
high utility access sequences from web log data [14], which
also only consider single-item sequences. Recently, Yin
et al. [16] proposed the USpan algorithm for mining
HUSPs. They used a lexicographic tree to extract the com-
plete set of high utility itemset-sequences and designed
mechanisms for expanding the tree with two pruning
strategies. One of the pruning strategy is based on SWU.
The other pruning strategy needs to be used after can-
didate generation. Moreover, it needs to construct Utility
Matrix (the proposed data structure) for each generated
sequence and also it traverses each element once to cal-
culate the utility of extended sequence, which is very time
consuming.

Sequential pattern mining in Bioinformatics
Sequential pattern mining has been widely applied to
the bioinformatics domain for finding patterns of cer-
tain elements in genes, for predicting protein function,
for analyzing gene expression, for motif discovery in DNA
sequences and for discovering sets of genes that are fre-
quently co-occurred in most biological conditions in a
microarray dataset. Some of these methods are apriori
algorithm [23], half-spaces [4], and FPtree algorithm [24].
Moreover, in [25], a method, called MAGIIC, is proposed
to discover the structure motifs from protein sequences.
In [2], the authors propose an algorithm called CTGR-
Span (Cross-Timepoint Gene Regulation Sequential pat-
tern) to efficiently discover CTGR-SPs (Cross-Timepoint
Gene Regulation Sequential Patterns). However, to the
best of our knowledge, all of the aforementioned meth-
ods do not consider the objective of the study. That is, the
temporal behavior of genes under a biological investiga-
tion is ignored in the problem setting, so is the importance
of genes with respect to a disease.

Several work have been also studied the relationships
between genes and a specific disease [1]. However, such
methods ignore the sequential relationships among genes
and only study the behavior of each gene individually.
In [3], the authors design an algorithm to identify nov-
elty in sequential patterns with respect to a disease (e.g.,
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Alzheimer). However, they ignore time course sequential
databases and also the proposed method still discovers
pattern based on frequency.

To the best of our knowledge, our proposed method
in [5] is the only work to learn utility-based gene reg-
ulation sequential patterns in a time course microarray
dataset. In this paper, we extend [5] as follows. First, we
improve TU-SEQ by proposing a new strategy to raise the
threshold which results a new method called Top-HUGS
to find top-k high utility gene regulation sequential pat-
terns efficiently. The correctness of the proposed method
is proved. Second, the newly proposed algorithm is com-
pared with the algorithm in [5] in the experiments. Third,
the experimental results are extended by (1) adding the
results of two more disease (i.e., Asthma and Rheumatoid
Arthritis) and (2) evaluating the effectiveness of the newly
proposed strategy.

Methods
In this section, we present how to find high utility gene
sequential patterns from a time course microarray dataset.
The process consists of three main parts: 1) We trans-
form a microarray dataset to a sequential database, 2) We
define and present the problem of top-k high utility gene
regulation sequential pattern mining, and 3) We design
algorithms to solve the problem.

Converting a time course microarray dataset to a time
course sequential dataset
We first propose a procedure to transform a time course
microarray dataset to a proper time course sequential
dataset.

Table 1 presents a time course microarray dataset
obtained from three patients whose IDs are P1, P2 and
P3. As Table 1 shows, each row represents values of three
genes G1, G2 and G3 over four time point samples. TS1,
TS2, TS3 and TS4.

The real values expressed for a gene in each time sample
can present a gene’s temporal behavior. In order to derive

Table 1 An example of a time course microarray dataset

Patient IDs Genes TS1 TS2 TS3 TS4

P1 G1 2420 546 100 50

G2 321 98 454 974

G3 410 350 251 243

P2 G1 128 786 135 344

G2 253 820 482 90

G3 290 150 256 864

P3 G1 600 188 99 40

G2 500 555 510 80

G3 200 400 350 450

the temporal behavior of each gene at each time sample,
we take the first time sample as a baseline. As such, the
temporal behavior of a gene at a time sample TS equals
to the expression value of the gene at TS divided by the
expression value of the gene at the first time sample. This
value shows the degree of expression of the gene at time
sample TS. Table 2 shows the temporal behavior values as
a fold change matrix.

Given Table 2 and a threshold γ , we convert each
expression value as up-regulated (showing by + meaning
that the value is greater than γ ), down-regulated (show-
ing by − meaning that the value is less than -γ ), or normal
(neither up-regulated nor down-regulated). Then, we pre-
serve the gene expressions that are either up-regulated or
down-regulated. Note that, this threshold is useful to filer
out noisy behavior. Each gene (i.e., Gx) in a sample can be
thought of as being one of two items, one item referring
to the gene being up (i.e., Gx+ ), the other referring to the
gene being down (i.e., Gx− ).

Given γ = 1.5, Table 3 represents the transformed
dataset (i.e., the time-course sequential dataset). In this
table, given patient P1, up-regulated G1+(2.2) and down-
regulated G2−(3.2) which occurred at the time TS2 and
their temporal behavior values (as defined above) are 2.2
and 3.2 respectively.

Problem statement
Let G = {G1+ , G1− , G2+ , G2− , ..., Gn+ , Gn−} be a set of dis-
tinct gene regulation items. A geneset GS is a set of gene
regulation items. A time-course sequential dataset con-
sists of patients {P1, P2, ...., PK }, where each patient has an
identifier Pr and is represented as an ordered list of time
point samples (or in brief time samples (TSs)). Each time
sample is a geneset. We denote the time sample TSd of Pr
as Pd

r .

Definition 1 The importance of gene g is com-
puted based on one or more disease-dependent variables
var1, var2, ..., vark. Therefore, Gene Importance (GI) is

Table 2 Fold changes of gene/probe values

Patient IDs Genes TS1 TS2 TS3 TS4

P1 G1 1 2.2 -2.4 -4.8

G2 1 -3.2 1.4 3.0

G3 1 -1.1 -1.6 -1.6

P2 G1 1 6.1 1.0 2.6

G2 1 3.2 1.9 -2.8

G3 1 -1.9 -1.1 2.9

P3 G1 1 -3.1 -6.6 -15

G2 1 1.1 1.0 -6.2

G3 1 2 1.7 2.2
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Table 3 A time course sequential dataset from time course microarray dataset in Table 1

Patiend IDs Sequence

P1 {G1+ (2.2)G2− (3.2)G3− (1.1)}2{G1− (2.4)G2+ (1.4)G3− (1.6)}3{G1− (4.8)G2+ (3.0)G3− (1.6)}4

P2 {G1+ (6.1)G2+ (3.2)G3− (1.9)}2{G1+ (1.0)G2+ (1.9)G3− (1.1)}3{G1+ (2.6)G2− (2.8)G3+ (2.9)}4

P3 {G1− (3.1)G2+ (1.1)G3+ (2.0)}2{G1− (6.6)G2+ (1.0)G3+ (1.7)}3{G1− (15)G2− (6.2)G3+ (2.2)}4

defined as GI(g) = fg(var1, var2, ..., vark), where fg is the
function for calculating the importance of g.

Table 4 illustrates the genes importance with respect
to a disease. For simplicity and without loss of general-
ity, we assume that the importance of Gx represents the
importance of both Gx+ and Gx− .

Definition 2 Internal utility is a temporal behavior of
a gene g in the time sample TSd of patient Pr

(
i.e., Pd

r
)
. It is

denoted as IGUdis
(
g, Pd

r
)

and is defined as the expression
value of g at TSd divided by the expression value of g at the
first time sample in Pr.

For example, in Table 3, given gene G1− and time sam-
ple TS3 in sequence P1, IGU

(
G1− , P3

1
) = 2.4. This value

specifies the relative abundance of the gene in the time
sample.

Definition 3 Given disease dis, the utility of gene
g in time sample Pd

r is defined as: GU
(
g, Pd

r
) =

fgu
(
GI(g), IGU

(
g, Pd

r
))

, where fgu is the function to com-
pute the utility.

For simplicity, we assume that fgu is calculated as
fgu

(
GI(g), IGU

(
g, Pd

r
)) = GI(g) · IGU

(
g, Pd

r
)
.

Definition 4 The utility of a geneset GS in a time sam-
ple TSd of a patient Pr where GS ⊆ TSd, is defined as
GU

(
GS, Pd

r
) = ∑

g∈GS
GU

(
g, Pd

r
)
.

Definition 5 (Occurrence of a sequence α in a patient
Pr) Given a patient Pr = 〈P1

r , P2
r , ..., Pn

r 〉 and a gene reg-
ulation sequence α = 〈GS1, GS2, ..., GSZ〉 where Pi

r is a
time sample and GSi is a geneset, α occurs in Pr iff there
exist integers 1 ≤ e1 < e2 < ... < eZ ≤ n such that
GS1 ⊆ Pe1

r , GS2 ⊆ Pe2
r , ..., GSZ ⊆ PeZ

r . The ordered list of
genesets 〈Pe1

r , Pe2
r , ..., PeZ

r 〉 is called an occurrence of α in
Pr. The set of all occurrences of α in Pr is represented as
OccSet(α, Pr).

Table 4 Importance of genes

Gene G1 G2 G31

Score 0.8 0.6 0.1

Definition 6 (The utility of a gene regula-
tion sequential pattern α in a patient sequence
Pr) Let õ = 〈Pe1

r , Pe2
r , ..., PeZ

r 〉 be an occurrence of
α = 〈GS1, GS2, ..., GSZ〉 in the sequence Pr. The utility of

α w.r.t. õ is defined as GU(α, õ) =
Z∑

i=1
GU

(
GSi, Pei

r
)
. The

utility of α in Pr is defined as GU(α, Pr) = max{GU(α, õ) |
õ ∈ OccSet(α, Pr)}.

Definition 7 The (utility of a gene regulation
sequence α in a time course sequential dataset
D) The utility of a gene regulation sequence α in
a time course sequential dataset D is defined as
GU(α, D) = ∑

Pr∈D
GU(α, Pr).

Definition 8 (High Utility Gene regulation Sequence
(HUGS)) Given a threshold δ, a sequence α is a High Util-
ity Gene Regulation Sequence (HUGS) in a time course
sequential dataset D, iff GU(α, D) is no less than δ.

Definition 9 (Top-k High Utility Gene regulation
Sequence in a time course sequential dataset D) A gene
regulation sequence α is called a top-k High Utility Gene
Regulation Sequence (HUGS) in D, if there are less than k
sequences whose utility value in D is no less than GU(α, D).

Problem Statement. Given a time course sequential
dataset D and k as the number of output patterns,
the problem of finding the threshold free high util-
ity gene regulation sequential patterns is to identify all
the patterns whose utility is no less than minUtilopt ,
where minUtilopt = min{GU(β , D)|β ∈ THUGSD} and
THUGSD is the set of top-k HUGSs over D.

Mining top-k high utility gene regulation
sequential patterns
In this section, we present our proposed algorithm
for mining top-k high utility gene regulation sequen-
tial patterns. The propose algorithm is an extended
version of our proposed algorithm in [5], called TU-
SEQ (Top-k Utility-based gene regulation SEQuential
pattern discovery). We first present an overview of
TU-SEQ. Then we propose the extended version of
TU-SEQ, called Top-HUGS, by proposing a novel
strategy to raise the threshold during the mining
process.
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An overview of TU-SEQ
TU-SEQ takes k as an input parameter and returns top-k
sequences with the highest utility in a time course sequen-
tial dataset D. It uses two main data structures called
ItemUtilLists and HUSP-Tree to preserve the information
of potential top-k HUGSs.

Below, we describe ItmeUtilLists and HUSP-Tree. For
more details about the data structures, readers can refer
to [5].

The ItemUtilLists of a gene G has several rows. Each row
keeps the utility information of gene G in the time sam-
ple Pu

v that contains G. Each row consists of three fields:
PID, TID and util. PID and TID store the identifiers of Pv
and TSu, respectively and util stores the utility of G in Pu

v
(Definition 3). Figure 1 illustrates the ItemUtilLists of G1+ ,
G2− and G3− in Table 3.

A HUSP-Tree is a tree data structure where each non-
root node shows a sequence of genesets. Figure 2 shows
part of the HUSP-Tree for the the dataset in Table 3, where
the root is empty. HUSP-Tree is a lexicographic tree. That
is, a node at the first level represents a sequence of length
1, a node at the second level represents a 2-sequence, and
so on. We design a non-root node to maintain informa-
tion about the sequence in a field called SeqUtilList. The
sequence utility list (SeqUtilList) of a sequence α is a list
of three-value tuples 〈PID, TID, util〉 represents an occur-
rence of α in a sequence of the dataset and the utility of α

with respect to the occurrence. The PID in the patient ID
in which α occurs, TID is the ID of the last time sample in
the occurrence of α, and util is the utility value of α with
respect to the occurrence. The SeqUtilList of α is denoted
as SeqUtilList(α).

There are two types of non-root node in a HUSP-Tree:
I-node or S-node. The nodes are constructed using two
main steps I-Step and S-Step, which add I-nodes and
S-nodes to the tree respectively.

Definition 10 (I-Step) Given a sequence pattern α,
I-Step adds a gene G into the last geneset of α (denoted as
α ⊕ G). The node with the output pattern is called I-node.

Definition 11 (S-Step) Given a sequence α, S-Step
generates a new pattern by adding a geneset {G} after the
last geneset of α (denoted as α ⊗ G). The node with the
output pattern node is called S-node.

In Fig. 2, given α = {G1+}, the node for sequence
{G1+G3+} is an I-node, while the node for {G1+}{G3+} is a
S-node.

For more details about the tree construction, readers
can refer to [5].

TU-SEQ uses a structure called TKList to store the
information of top-k high utility gene regulation sequen-
tial patterns.

Definition 12 Top-k HUGS List (TKList) is a fixed-size
sorted list which maintains the top-k high utility gene reg-
ulation sequential patterns and their utility values. Each
tuple in TKList has two elements: 〈α, util〉, where α is the
pattern and util is the utility of pattern α in the dataset.

Since TU-SEQ is a threshold free mining approach, the
threshold is not given as an input parameter. Hence, TU-
SEQ uses a variable called minUtil to keep track of the
current threshold which is initially set to zero. TU-SEQ
uses minUtil to remove candidates which are not top-k
HUGS.

TU-SEQ is a combination of a baseline procedure and
one raising threshold strategy. Below, we first present the
baseline procedure.

Given a time course sequential dataset D and k, TU-SEQ
first sets minUtil to 0. Then, it builds ItemUtilList and
HUSP-Tree by applying the S-Step and I-Step procedures.
Once a new node is inserted to HUSP-Tree, the pattern
preserved by the node and its utility are inserted as a new
tuple to TKList. It keeps inserting more patterns till k valid
patterns are inserted. Then, the minUtil is increased to
the util value of the pattern with the lowest util in TKList.
The updated minUtil is used to remove the search space
when searching for more patterns. Thereafter, once a new
node is added to the tree, TKList is updated. Accordingly,
the patterns with util less than minUtil are removed from
TKList. Given the updated TKList, minUtil is updated
according to the the util value of the kth pattern in the list.
This procedure continues until no more nodes are added
to the tree. That is, the top-k HUGSs are found in the
dataset.

While the proposed baseline procedure can find the
top-k high utility gene regulation sequential patterns cor-
rectly, it is not efficient approach since it generates to
many candidates. The main shortcoming is that minUtil

Fig. 1 ItemUtilLists of G1+ , G2− and G3− in Tables 3 and 4
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Fig. 2 An example of HUSP-Tree for the dataset in Tables 3 and 4

starts from 0. TU-SEQ addresses this problem by using
an effective strategy, called PES (Pre-Evaluation using
1-sequences and sequences) strategy, for initializing the
threshold before HUSP-Tree construction to improve the
performance.

PES initializes TKList by adding the utility of genes and
sequences in the dataset to the TKList before the tree
construction. In [5], we present theoretical aspects of this
strategy. Once all the items in the dataset D are added
to ItemUtilList, PES computes the utility of each gene
and each sequence. Given the updated TKList, TU-SEQ
initializes minUtil by the util value of kth tuple in TKList.

Example 1. Given k = 4, the time course sequen-
tial dataset D in Table 3, the utility of gene G1+ in D
is computed as follows: GU(G1+ , D) = GU(G1+ , P1) +
GU(G1+ , P2) + GU(G1+ , P3) = 1.76 + 4.88 + 0 = 6.64.
We can calculate the utility of the other genes similarly,
GU(G1− , D) = 15.84, GU(G2+ , D) = 3.72, GU(G2− , D) =
7.32, GU(G3+ , D) = 0.51 and GU(G3− , D) = 0.35. More-
over, the utility of each sequence is calculated using Ite-
mUtilLists. Once D is scanned, P1 and its utility (e.g., 11.5)
are added to the TKList as the other sequences in D (e.g.,

Table 5 Top-20 genes related to pneumonia

Rank Gene Rank Gene Rank Gene Rank Gene

1 CAT 6 SFTPC 11 SFTPA1 16 HMGB1

2 PDPN 7 SFTPB 12 CYP2J2 17 CR1

3 TLR6 8 PECAM1 13 F2 18 MASP2

4 TLR2 9 ITGB3 14 CXCL1 19 FCGR2A

5 SFTPD 10 CXCL2 15 MBL2 20 IL17A

P2 (12.18) and P3(25.07)). Given the three sequences, six
genes and their utility values, the util values in the TKList
are {25.7, 15.84, 12.18, 11.5}. Therefore, minUtil = 11.5
after applying PES strategy.

Applying PES strategy TU-SEQ effectively raises the
minimum threshold to a reasonable level before the tree
construction, and prevents generating unpromising can-
didates.

Top-HUGS: top-K high utility gene regulation
sequential pattern mining
In this section, we improve TU-SEQ by proposing a new
algorithm, called Top-HUGS, which applies another rais-
ing threshold strategy called RSO (Raising threshold by
Sorting concatenation Order) to effectively reduce com-
putational overhead and efficiently raise the threshold. As
mentioned, during the mining process we apply two con-
catenation processes to create candidates: I-Concatenate
and S-Concatenate. In the threshold-based method, the

Table 6 Top-10 diseases that share genes with pneumonia

Disease name Shared genes

Malignant neoplasm of breast 295

Breast carcinoma 285

Rheumatoid Arthritis 274

Asthma 267

Carcinogenesis 258

Neoplasm metastasis 258

Liver carcinoma 249

HIV infections 237
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Table 7 Top-20 genes related to Rheumatoid Arthritis

Rank Gene Rank Gene Rank Gene Rank Gene

1 PTPN22 6 STAT4 11 CCL21 16 REL

2 TNF 7 TRAF1 12 IL2RA 17 CCR6

3 HLA-DRB1 8 IRF5 13 CDK6 18 CIITA

4 CTLA4 9 SLC22A4 14 NFKBIL1 19 MMEL1

5 PADI4 10 CD40 15 KIF5A 20 CD244

processes are used in a depth-first manner. For example, in
Fig. 2, we start from root. Then, one of the searching paths
is 〈〉 → 〈G1+〉 → 〈G1+G2+〉 → 〈{G1+}{G2+G3−}〉 → . . . }.
Once this path is over, it goes for other branches until
more new patterns left. Since the threshold is given, any
order of generating candidates will result the same num-
ber of candidates. However, in top-k methods, the order
of concatenating items does matter. This is due to the fact
that, we are raising the threshold based on the utility of
the patterns added to the TKList. Therefore, early find-
ing of the candidates with higher utility during the mining
process can raise the threshold sooner and as a result less
candidates will be generated.

Before we present how RSO works, we first present a
few definitions [26].

Definition 13 (First occurrences of a sequence α in a
patient Pr) Given a patient Pr = 〈P1

r , P2
r , ..., Pn

r 〉 and a
sequence α = 〈GS1, GS2, ..., GSZ〉, õ ∈ OccSet(α, Pr) is the
first occurrence of α in Pr, iff the last geneset in õ occurs
sooner than the last geneset of any other occurrence in
OccSet(α, Pr).

Definition 14 (Rest sequence of patient Pr w.r.t.
sequence α) Given a patient Pr = 〈P1

r , P2
r , ..., Pn

r 〉 and α =
〈GS1, GS2, ..., GSZ〉, where α 
 Pr. The rest sequence of Pr
w.r.t. α, is defined as: restSeq(Pr , α) = 〈Pm

r , Pm+1
r , ..., Pn

r 〉,
where Pm

r is the last geneset of the first occurrences of α

in Pr.

Definition 15 (Upper utility of a sequence α in a
patient Pr) The rest utility of α in Pr is defined as
�(α, Pr) = GU(α, Pr) + GU(restSeq(Pr , α)).

Table 8 Top-20 genes related to Asthma

Rank Gene Rank Gene Rank Gene Rank Gene

1 TBCE 6 CXCL8 11 TGFB1 16 IFNG

2 SDC4 7 IRAK4 12 CFTR 17 IL10

3 MBL2 8 IL6 13 NOD2 18 PTGS2

4 TLR2 9 MYD88 14 TNF 19 CAMP

5 TLR4 10 CALCA 15 CRP 20 ABL1

Algorithm 1 Top-HUGS
Input: a time-course sequential dataset D, k
Output: top-K High Utility Gene Regulation Sequential Pat-
terns (THUGSD)

1: ItemUtilLists, TKList ← ∅
2: for each time sample Pi

r ∈ D do
3: for each gene G ∈ Pi

r do
4: Add 〈r, i, GU(G, Pi

r)〉 to ItemUtilLists(G)

5: end for
6: end for
7: Build TKList by calling PES strategy.
8: Initialize minUtil to kth utility value of TKList
9: Build HUSP-Tree using ItemUtilLists and minUtil

10: Apply RSO to extend the tree
11: Update minUtil whenever a new node is added to the tree
12: if the user requests to get top-k HUGSs then
13: THUGSD ← all the patterns and their util values stored

in TKList
14: end if
15: Return THUGSD if requested

For example, given α = 〈{G1+G2−}{G1−}〉 and P1
in Table 3, restSeq(P1, α) = 〈{〈{G1−(2.4)G3−(1.6)}
{G1−(4.8)G2+(3.0)G3−(1.6)}〉}〉. Hence, GU(restSeq
(P1, α)) = 6.68, then �(α, P1) = GU(α, P1) + 15 = max
{5.6, 7.52} + 6.68 = 14.2.

Definition 16 (Upper utility of a sequence α in a a
time course sequential dataset D) The upper utility of a
sequence α in a time course sequential dataset D is defined
as �(α, D) = ∑

Pr∈D
�(α, Pr).

Similar to the proof provided in [26], it can be shown
that the upper utility of a sequence α in a time course
sequential dataset D is an upper-bound of the true util-
ities of all the prefixSUPs of α in D. That is, ∀β �
α, GU(β , D) ≤ �(α, D). The difference here is that
in [26], the upper bound is used to prune the search
space during the mining process. Here, we argue that
this value can be used to select what path should be
traced first.

Definition 17 Priority relationship Given a time
course sequential dataset D, a sequence α and two genes
Gi and Gj, regardless of what concatenation process will be
used, let αGi be the extended pattern after adding Gi to α

and let αGj be the pattern after extending α using Gj. Gi
is prior to Gj, if and only if �(αGi , D) ≥ �(αGj , D) and it
denoted as Gi � Gj.

The priority relationship means that the candidates pro-
duced in the same concatenation level may have different
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Table 9 Top-4 HUGSs versus Top-4 FGSs with respect to Pneumonia

Algorithm ID. Sequence of genes (e.g., α) Support Util

Top-HUGS HUGS1 ( CAT ) ( CAT MBL2 ) ( CAT ) 9 250600

HUGS2 ( GOLPH3 PDPN ) ( CAT ) ( PDPN ) ( CAT ) ( PDPN ) 9 250325

HUGS3 ( CAT MBL2 ) ( CAT ) ( CAT ) 9 249741

HUGS4 ( PDPN )( CAT ) ( PDPN ) ( CAT ) ( PDPN ) 9 243037

CTGR-Span FGS1 ( LCN2 S100A12 ) ( LCDN2 ) 11 59981

FGS2 ( LCN2 ) ( S100A12 ) ( CSF3 LCN2 ) 11 59962

FGS3 ( CSF3 S100A12 ) 11 59931

FGS4 ( LCN2 S100A12 ) ( LCN2 S100A12 ) 11 58514

rest utility value. Hence, we can sort them in descend-
ing order of their rest utility values and the candidates
with higher rest utility will be generated before those
of having lower rest utility. Therefore, a newly gener-
ated candidate may have higher utility and thus, the
threshold can be raised sooner. The rationale is that rest
utility is an upper bound utilities in of the generated
candidates, hence extending the pattern toward the one
with higher rest utility may produce patterns with higher
utility.

Given a sequence α and the G1, G2, ..., Gn are genes can
be added to α. We will concatenate genes to α according
to their priority relationships Gp1 � Gp2 � · · ·� Gpn where
Gp1 , Gp2 , . . . , Gpn is the order to be concatenated.

For example, given P1 in Table 3 and α = 〈G3−〉, we can
have one I-Concatenate with G1− and its � value is 2.08
and three S-Concatenates with G1− , G2+ and G3− where
�({G3−}{G1−}, P1) = 4, �({G3−}{G2+}, P1) = 1.96 and
�({G3−}{G3−}, P1) = 0.32. Hence, the priority relation-
ship is: Gs

1− � Gs
2+ � Gi

1− � Gs
3− where Gs means that G is

added using S-Concatenate and Gi means that G is added
using I-Concatenate process.

The overview of Top-HUGS is illustrated in Algorithm 1.
Given a time course sequential dataset D, Top-HUGS
builds the ItemUtilLists to maintain the information of
every gene in each time sample in D. Then, it popu-
lates TKList by applying PES strategy based on genes

in the ItemUtilLists and the sequences in the dataset.
Then, minUtil is initialized by the utility value of kth
tuple in TKList. Given the initialized minUtil, Top-HUGS
constructs HUSP-Tree using I-Step and S-Step. During
the tree construction, whenever a node is going to be
extended, we first apply RSO to choose which item should
be added first. Once a new node is added to the tree,
TKList and minUtil are updated as explained before.
Finally, if the user asks to discover top-k HUGSs, Top-
HUGS returns all the patterns and their util values in the
TKList as top-k HUGSs (i.e., THUGSD).

Theorem 1 Given a time course gene sequential
database D, if a pattern α is among the top-k high util-
ity gene regulation sequential patterns, it is returned by
Top-HUGS.

Proof We prove the theorem by showing that the pro-
posed strategies in Top-HUGS never miss a top-k high
utility gene regulation sequential pattern.

1. Baseline procedure: the only strategy applied in the
baseline procedure is raising the threshold during the
mining process. We raise the threshold when at least
k patterns have been inserted to TKList. Since the
threshold is raised by the utility of kth pattern in the
list, there are at least k patterns in the list. Hence, we

Table 10 Top-4 HUGSs versus Top-4 FGSs with respect to Rheumatoid Arthritis

Algorithm ID. Sequence of genes (e.g., α) Support Util

Top-HUGS HUGS1 ( TRAF1 CTLA4 IL1B ) ( IL2RA CD40 ) ( TRAF1 PADI4 CTLA4 ) ( STAT4 IL2RA ) 6 5857

HUGS2 ( TRAF1 CTLA4 IL1B ) ( PTPN2 CD40 ) ( TRAF1 PADI4 CTLA4 ) ( STAT4 IL2RA ) 6 5856

HUGS3 ( TRAF1 CTLA4 IL1B ) ( CD40 ) ( TRAF1 PADI4 CTLA4 IL1B ) ( STAT4 IL2RA ) 6 5843

HUGS4 ( TRAF1 CTLA4 IL1B ) ( IL2RA PTPN2 CD40 ) ( TRAF1 PADI4 CTLA4 ) ( STAT4 ) 6 5834

CTGR-Span FGS1 ( CTLA4 ) ( IL1B ) 11 2981

FGS2 ( PTPN2 PADI4 ) (TRAF1 ) ( PTPN2 ) 11 2964

FGS3 ( TRAF1 ) ( TRAF1 ) ( PTPN2 ) 11 2961

FGS4 ( ANXA3 ) ( PTPN2 PADI4 ) 11 2947
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Table 11 Top-4 HUGSs versus Top-4 FGSs with respect to Asthma

Algorithm ID. Sequence of genes (e.g., α) Support Util

Top-HUGS HUGS1 ( TAF9 KCMF1 ) ( TBCE ) ( TAF9 ) ( TAF9 ) 10 218301

HUGS2 ( TAF9 ) ( TBCE ) ( TAF9 ) ( VAMP4 ) 10 215541

HUGS3 ( TAF9 ) ( TBCE ) ( TAF9 ) ( TBCE ) 10 207292

HUGS4 ( TAF9 ) ( TBCE ) ( TBCE ) 10 201802

CTGR-Span FGS1 ( CAMP ) ( CAMP ) ( CAMP ) 11 39216

FGS2 ( CAMP ) 11 86800

FGS3 ( CAMP ) ( CAMP ) ( CAMP ) ( CAMP ) 11 55486

FGS4 ( CAMP ) ( CAMP ) ( FCN2 CAMP ) ( CAMP ) 11 15136

do not miss any top-k high utility gene regulation
sequential pattern.

2. PES Strategy: according to [5], if α is a top-k high
utility gene regulation sequence, it will not miss by
using this strategy.

3. RSO strategy: this strategy uses the same approach
as above items to raise the threshold. That is, it raises
the threshold using the utility of kth pattern. The
only difference here is in the order of pattern
generation. Hence, if a pattern is a top-k high utility
pattern it will be generated eventually. Therefore, we
do not miss any top-k high utility gene regulation
pattern using this strategy.

Since TU-SEQ is an exact method to find all high util-
ity gene regulation patterns [5] and the proposed strategy
does not miss any top-k HUGS, if α is among the top-k
high utility gene regulation sequential patterns, it will be
returned by Top-HUGS.

Results and discussion
In this section, we evaluate the performance of proposed
method in finding top-k HUGSs. All the algorithms are
implemented in Java. The experiments are conducted on
an Intel(R) Core(TM) i7 2.80 GHz computer with 12 GB of
RAM. We mine a publicly available dataset GSE6377 [27]
in our experiments. McDunn et al. [27] found 8793 tran-
scriptional changes in 11 ventilator-associated pneumonia
patients’ leukocytes across 10 time samples.

Gene importance for pneumonia
There are several repositories that provide information
regarding associations between genes and diseases such

Table 12 The average value of Sup, GU, Pop, GU-Pop and Sup-Pop
for top-1000 sequences returned by the method

Method Sup GU Pop GU-Pop Sup-Pop

Top-HUGS 5 198939 12.5 24.96 7.32

CTGR-Span 10 44691 1.02 2.05 1.86

as CTD [28]. Each repository takes different factors of
the phenotype-genotype relationship to investigate gene-
disease association and none of them are complete.
DisGeNET is a platform which aggregates different infor-
mation resources extracted from the literature to build
a comprehensive view of the state of the art knowledge
about gene-disease associations. Therefore, we choose the
score proposed by DisGeNET to represent the importance
of a gene with respect to a disease. This score includes sev-
eral variables such as number and type of sources (level
of curation, model organisms) and the number of pub-
lications supporting the association to rank genes with
respect to a specific disease. Table 5 shows top-20 genes
w.r.t. Pneumonia and their scores.

The utility of gene G in time sample Pd
r is calculated

as follows: GU
(
G, Pd

r
) = GI(G) × IGU

(
G, Pd

r
)
, where

GI(G) is the gene importance G w.r.t. Pneumonia and
IGU

(
G, Pd

r
)

is the internal utility of G in time sample TSd
in sequence Pr . Note that, to calculate utility, any model
can be plugged in as desired. The use of more sophisti-
cated the model may further improve the quality of the
results.

The importance of genes with respect to Rheumatoid
Arthritis
In addition to pneumonia, we also investigate the gene
sequential patterns in the same dataset with respect to
Rheumatoid Arthritis. Table 6 shows top-10 diseases
related to pneumonia. The second column in this table
shows the number of shared genes. Our goal is to
show that considering a different disease results differ-
ent patterns on the same dataset. Therefore, we find

Table 13 Different versions of Top-HUGS

Method Baseline PES RSO

Top − HUGSBase � × ×
TU-SEQ � � ×
Top − HUGSR � × �
Top − HUGS � � �
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Fig. 3 Run time on the GSE3677 Dataset

gene sequential patterns with respect to Rheumatoid
Arthritis. Table 7 shows top-20 genes related to
Rheumatoid Arthritis. Note that this list downloaded
from DisGeNET on 2016. It can be seen that there are
several genes in common between these diseases.

The utility of gene G in time sample Pd
r is calculated

as follows: GU
(
G, Pd

r
) = GI(G) × IGU

(
G, Pd

r
)
, where

GI(G) is the importance of G w.r.t. Rheumatoid Arthritis
retrieved from DisGeNET and IGU

(
G, Pd

r
)

is the expres-
sion value of G in time sample TSd in sequence Pr .

The importance of genes with respect to Asthma
We also consider the gene sequential patterns in the same
dataset with respect to Asthma. Table 8 shows top-20
genes related to Asthma. It can be seen that there are sev-
eral genes in common between these diseases. Similar to
the previous subsection, we calculate the utility of gene
G in time sample Pd

r as follows: GU
(
G, Pd

r
) = GI(G) ×

IGU
(
G, Pd

r
)
, where GI(G) is the importance of G w.r.t.

Asthma retrieved from DisGeNET and IGU
(
G, Pd

r
)

is the
expression value of G in time sample TSd in sequence Pr .

Pneumonia: Top-k HUGSs versus Top-k FGSs
In this section, we investigate if patterns discov-
ered by TU-SEQ and Top-HUGS contain potential
genes/regulations which have not been reported by exist-
ing methods. The algorithms are ran to extract top-k

Fig. 4 Memory usage on the GSE3677 Dataset

HUGSs with respect to Pneumonia. Moreover, a recent
method called CTGR-Span [2] is ran to find frequent
gene regulation sequential patterns (i.e., FGSs) from the
dataset. Given a discovered pattern α and a disease dis,
the quality of the results is evaluated by popularity of a

sequence [29] which is defined Pop(α, dis) =
∑

i∈α

w(i,dis)

|α| ,
where w(i, dis) is the importance of the popular gene i
for disease dis. Without loss of generality, the genes pre-
sented in Table 5 are considered as popular genes and
w(i, dis) = 20 − rank(i, dis) + 1. For the genes which are
not presented in the list, w(i, dis) = 1.

Table 9 shows top-4 HUGSs extracted by TU-SEQ
and top-4 FGSs extracted by CTGR-Span, sorted by the
utility and support respectively. Since the output pat-
terns for both TU-SEQ and Top-HUGS are the same,
we only present the results of Top-HUGS. Table 9
confirms that the frequent sequences are not neces-
sarily significant w.r.t. the disease even though their
support value is high. This is due to the fact that
such patterns are identified based on their frequency
which is not informative enough. Moreover, patterns
returned by Top-HUGS are relatively significant. Such
patterns help biologists choose relevant sequences with
respect to a specific disease and also identify the rela-
tionships between important genes and the unknown
genes.

Rheumatoid Arthritis: Top-k HUGSs comparison with Top-k
FGSs
Table 10 shows top-4 HUGSs and top-4 FGSs with respect
to Rheumatoid Arthritis, sorted by the utility and support
respectively. This table asserts that the frequent sequences
are not necessarily popular w.r.t. Rheumatoid Arthritis. In
this figure, TU-SEQ finds the patterns whose popularity is
high compared to those of returned by CTGR-Span.

Asthma: Top-k HUGSs comparison with Top-k FGSs
Table 11 shows top-4 HUGSs and top-4 FGSs with respect
to Asthma. According to this figure, even though top-4
HUGS (the average support is 9) are not as frequent as
top-4 FGS (the average support is 11), their utility value
is 4 times higher in average. Since the utility is defined
with respect to the disease, we can claim that the results
obtained by TU-SEQ are more important than those of
obtained by CTGR-Span.

Quantitative evaluation
Given top-1000 patterns found by the methods, the aver-
age value of utility (i.e., GU), Pop and Sup are calculated
and presented in Table 12. The last two columns show
harmonic mean of (GU, Pop) and (Sup, Pop). They are
computed as follows: GU−Pop = 2× GU×Pop

GU+Pop , Sup−Pop =
2 × Sup×Pop

Sup+Pop . Top-HUGS achieved higher values of these



Zihayat et al. BMC Systems Biology 2017, 11(Suppl 6):109 Page 12 of 88

Fig. 5 First page of the system with parameters

measures since they are not only much more relevant to
the disease, but also they are frequent enough.

Efficiency of TU-SEQ and Top-HUGS
In this section, the performance of the algorithms are eval-
uated in terms of (1) Run Time (sec.): the total execution
time of the algorithms, and (2) Memory Usage (MB): the
average memory consumption per window.

Since our methods are the only methods for mining
top-k utility-based gene regulation sequential patterns, we
implemented three different versions of Top-HUGS.

Table 13 presents these versions. The first method is the
baseline procedure (i.e., Top-HUGSBase) which does not
use any of the proposed raising strategies to set the thresh-
old. TU-SEQ the proposed method in [5] is an extended
version of TU-SEQBase that applies PES strategy to ini-
tialize the threshold. Top-HUGSR uses RSO to raise the
threshold but does not apply PES strategy. We also use the
threshold-based approach (i.e., HUSP-Miner) proposed in
[30] as another baseline approach.

After getting the utility of the k-th pattern which is the
optimal minimum threshold in Definition 9, we use this
value as the threshold to run HUSP-Miner.

We compare Top-HUGS with Top-HUGSBase and
HUSP-Miner on the GSE6377 dataset. The results in

terms of running time are presented in Fig. 3. The results
confirm that Top-HUGS is significantly (more than 5
times) faster than Top-HUGSBase. For larger values of k,
Top-HUGSBase cannot even return the patterns within
12+ hours. Moreover, the time performance gap between
Top-HUGS and Top-HUGSBase increases with larger val-
ues of k. The results show that PES and RSO strategies are
effective for mining top-k HUGSs.

We also evaluate the performance of the algorithms
in terms of memory usage. The results are presented
in Fig. 4. Top-HUGS consumes less memory than Top-
HUGSBase, TU-SEQ and Top-HUGSR. This is due to the
fact that Top-HUGS produces a smaller search space than
the other versions since it applies both strategies and can
raise the threshold quicker than the other methods. Since
the tree construction is the same for all the methods, the
main factor in memory consumption is the threshold used
by the method during the tree construction. HUSP-Miner
consumes less memory since it uses the optimal thresh-
old (i.e., minUtilopt), thus prunes prunes the search space
efficiently.

Demonstration
A web interface of our system is developed in Java (Please
go to http://mzk.eecs.yorku.ca:8080/GeneAssociation/).

Fig. 6 Second page of the system for discovered patterns

http://mzk.eecs.yorku.ca:8080/GeneAssociation/
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This is the first web interface to mine top-k high util-
ity gene regulation sequential patterns. The system uses
GSE6377 dataset as the input dataset to find top-k
HUGSs. According to DisGNET, Athma and Rheumatoid
Arthritis are among top 10 diseases that share genes with
Pneumonia. Therefore, we also provide top-k HUGSs with
respect to Athma and Rheumatoid Arthritis. Moreover,
the patterns discovered by CTGR-Span [2] are compared.
In the first page of the interface, the user can specify dis-
ease, ranking measure, number of output gene regulation
sequences (i.e., k) and discovery method(s).

In the demonstration, users can compare the algorithms
in the following aspects:

1. Useful results: Our method based on the utility
model produces more meaningful sequences than
the other method.

2. Top-k HUGS: The sequences retrieved by the
methods are provided in a meaningful graphical
presentation.

3. Additional information: Additional information such
as values for the other measures than the selected
one for ranking and top-20 genes related to the
selected disease.

Figures 5 and 6 show the first and second page of the
system. In the first page, the user selects the disease,
the ranking method and the number of output patterns.
The second page visualizes the results obtained from the
dataset based on the given parameters. The genes in each
pattern are colored according to top-20 genes with respect
to the selected disease.

Conclusion
In this paper, we defined the problem of top-k utility-
based gene regulation sequential pattern discovery to find
patterns with stronger meanings in biology. By solv-
ing this problem, we addressed the limitations of previ-
ous frequency-based gene regulation sequential pattern
mining methods. We first proposed a utility model by
considering the importance of genes with respect to a dis-
ease and their temporal behaviour. Then, using the utility
model, we proposed two efficient algorithms called TU-
SEQ and Top-HUGS to find top-k high utility gene regu-
lation sequential patterns. To the best of our knowledge,
existing methods for mining gene regulation sequential
patterns are threshold-based methods and assume all
genes have similar importance, which is often not true in
real life scenarios. Our experiments suggest that TU-SEQ
and Top-HUGS are much more efficient and scalable than
baseline algorithms for top-k high utility gene sequen-
tial pattern discovery. We also showed that Top-HUGS
is an effective tools to provide biologists with further
insights into the relationships of gene regulatory events

and interactions in biological studies with respect to a
specific disease.
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