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Abstract

Background: Hybrid simulation of (computational) biochemical reaction networks, which combines stochastic and
deterministic dynamics, is an important direction to tackle future challenges due to complex and multi-scale models.
Inherently hybrid computational models of biochemical networks entail two time scales: fast and slow. Therefore, it is
intricate to efficiently and accurately analyse them using only either deterministic or stochastic simulation. However,
there are only a few software tools that support such an approach. These tools are often limited with respect to the
number as well as the functionalities of the provided hybrid simulation algorithms.

Results: We present Snoopy's hybrid simulator, an efficient hybrid simulation software which builds on Snoopy, a
tool to construct and simulate Petri nets. Snoopy's hybrid simulator provides a wide range of state-of-the-art hybrid
simulation algorithms. Using this tool, a computational model of biochemical networks can be constructed using a
(coloured) hybrid Petri net's graphical notations, or imported from other compatible formats (e.g. SBML), and
afterwards executed via dynamic or static hybrid simulation.

Conclusion: Snoopy’s hybrid simulator is a platform-independent tool providing an accurate and efficient
simulation of hybrid (biological) models. It can be downloaded free of charge as part of Snoopy from http://www-

dssz.informatik.tu-cottbus.de/DSSZ/Software/Snoopy.

Keywords: Hybrid simulation, Hybrid Petri nets, Hybrid biological models, Snoopy

Background

In order to study the dynamics of biological models, a sim-
ulation procedure is usually employed to emulate reaction
firings. A vector representing the state of a system serves
to track the species concentrations and/or the corre-
sponding number of molecules as the simulation advances
with respect to time. The chosen simulation procedure
determines how the system state vector is updated as well
as the progression of the simulation time. There are vari-
ous approaches to capture reaction firings as well as their
effects on the system state. However, all available algo-
rithms can be grouped into four categories: stochastic,
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approximate stochastic, deterministic, and hybrid simula-
tion approaches [1, 2].

Stochastic simulation methods [2—4] consider reac-
tion firings as a random process and each reaction is
executed individually. Therefore, stochastic simulation
is very accurate compared to approximate approaches
(e.g., approximate stochastic methods and deterministic
ones). However stochastic simulation algorithms (SSA)
are often referred to as computationally inefficient as
they may consume much runtime to accomplish the
discrete and individual firing of reactions. They can be
used to simulate models with a moderate amount of
reactions that do not fire too frequently, since, increasing
the number of reactions could at the same time increase
the number of stochastic events. As an improvement
of the exact stochastic simulation, approximate stochas-
tic simulation algorithms [5] group and fire multiple
reactions at every step. Thus, they can save considerable
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runtime. Nevertheless, they will still require rather
expensive computations.

On the contrary, deterministic simulation offers a com-
pletely different approach by considering reaction firing
as a deterministic process which approximates reaction
firings by constructing a system of ordinary differential
equations (ODEs) or by using other approximation tech-
niques (e.g., see [6]). Although deterministic simulation is
computationally efficient, the results are not accurate for
all kinds of computational models of biochemical reaction
networks [2]. For instance, deterministic simulation is not
applicable for many experiments, where molecular fluctu-
ations of species with a few number of molecules drive the
overall model behaviour (for examples see [7, 8]).

As a combined approach, hybrid simulation [9-15]
merges exact stochastic and approximate algorithms.
Thus, it takes advantage of computational efficiency, while
avoiding result inaccuracy. Hybrid simulation works by
first partitioning the set of reactions into stochastic and
deterministic ones and correspondingly classifying the set
of species into discrete and continuous ones. Afterwards,
a system of ODEs is constructed for the deterministic
regime using kinetic rate laws as specified (e.g., mass
action). The system of ODEs is numerically integrated
until a stochastic reaction is to occur and then the stochas-
tic reaction takes place. The whole procedure is repeated
until the end of the simulation time is reached.

However, the implementation of hybrid simulation is
not a straightforward task compared with the comparably
simple stochastic simulation methods, since it requires the
interplay and integration of an ODE solver in addition to
the SSA. Hence, it becomes intricate to write a dedicated
and efficient simulation code for each model. Therefore
efficient hybrid simulation software tools are required to
accelerate the model development and execution. Unlike
stochastic simulation, there are only a few software
tools that currently support hybrid simulation (see e.g.,
[16, 17]). Furthermore, the original hybrid simulation
algorithm introduced in [9] is not efficient to simulate
all kinds of models. For example, a high frequency of
reaction events leads to a performance drop. Therefore,
recent hybrid approaches employ more sophisticated
techniques in order to achieve a better performance (see
e.g., [6, 12, 13]). Besides, hybrid simulation tools should
continuously evolve and support the state of the art of
hybrid simulation approaches such that they can cope
with the continuously growing interest in systems biology.

In this paper, we present Snoopy’s hybrid simulator, an
efficient and generic (i.e., it does not assume a special kind
of biochemical network models) hybrid simulator that
supports state-of-the-art hybrid simulation approaches.
Snoopy’s hybrid simulator is deployed as a component
of the Petri net tool Snoopy [18] and its steering server [19].
The latter tool permits different simulation scenarios
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than the one discussed in this paper (please see [20] for
more details). Snoopy’s hybrid simulator has been recently
restructured to support recent advances in hybrid simu-
lation algorithms. Moreover, it admits a graphical repre-
sentation of biochemical reactions by means of Petri nets
(see below), while complex models that exhibit repeated
components can be easily constructed as coloured Petri
nets [15]. Snoopy’s hybrid simulator is a free software tool
that can run on many well-known platforms including
MS Window, MacOSX and some Linux distributions. A
comprehensive user manual is available at [21].

Modelling biochemical networks via Petri nets. Petri
nets, as a discrete modelling approach, have been widely
applied in many fields, including systems biology [22, 23].
In Petri nets, tokens on places represent discrete quan-
tities of species such as the number of molecules or
levels of species concentration. To accommodate differ-
ent modelling scenarios, Petri nets have been extended
in many ways [23]. For instance, stochastic Petri nets
(SPN) [22] were proposed by associating each transi-
tion with an exponentially distributed waiting time, and
continuous Petri nets (CPN) have been introduced to
support continuous markings (cf., [22, 24]). The under-
lying semantics of a CPN model is a system of ODEs.
However, there are different CPAN interpretations. We
adopt a special semantics of CPA called bio-semantics
(cf., [25]). In the bio-semantics, we assume that transi-
tion rate equations are defined in terms of kinetic rate
laws (e.g., mass action) that are commonly used to model
biochemical networks. This assumption will considerably
simplify the CPN simulation and its implementation for
this particular application.

Furthermore, in order to allow discrete and continuous
entities to coexist in one model, different types of hybrid
Petri nets (HPN) were proposed for different purposes [24].
We employ a special class of HPN called generalised
hybrid Petri nets (GHPN) [11] which is specifically tai-
lored to the modelling of biochemical reaction networks.
GHPN offer two types of places and five types of transi-
tions, which permit together the convenient modelling of
various kinds of (biological) processes. A detailed descrip-
tion of GHPN can be found in [11, 21].

Figure 1 presents an introductory example of using
GHPN to model biochemical reaction networks. We fol-
low a simplified scenario of the calcium dynamics detailed
in [26]. Intracellular calcium dynamics is a complex pro-
cess which requires hybrid modelling where channel
opening and closing are stochastic processes while cal-
cium diffusion is more efficiently modelled as a determin-
istic process [26]. In this example we assume the existence
of only one channel which permits the flow of calcium to
the cytoplasm when it is in the open state. We use two dis-
crete places, open and close, to model the channel states,
open and close, respectively. Likewise, the two stochastic
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Fig. 1 A simple example illustrating the operation of hybrid Petri nets: (a) the HPN representation of simplified calcium dynamics, (b) a time course
of opening and closing of the calcium channel, and () the corresponding calcium concentration. The two discrete places close and open represent
the channel states, closed and opened, respectively. The two stochastic transitions: ch_open and ch_close model the state transition of the channel.
The continuous place Ca models the calcium concentration. The calcium inflow is modelled via the continuous transition Ca_inflow which has a
rate proportional to the open state of the channel. The outflow of the calcium is modelled using the transition Ca_pump. The simulation result of

60 80 100

transitions, ch_open and ch_close, model the processes of
opening and closing the channel, respectively. When the
channel is in the open state, the calcium can flow from the
endoplasmic reticulum (not represented in this example)
and enter the cytoplasm, which is represented by the con-
tinuous place Ca. The continuous transition Ca_inflow
models this process. Finally, calcium can return back to the
endoplasmic reticulum through a process called pump [26].

We model this process using the continuous transition
Ca_pump. Figure 1b depicts the dynamics of channel
opening and closing, while Fig. 1c provides the corre-
sponding calcium concentrations. For the purpose of this
example we have set the parameter values so that we can
demonstrate the basic idea which has no immediate bio-
logical relevance. The corresponding Snoopy file is given
in the Additional file 1: S1.
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Beyond these extensions, Petri nets have also been
extended in a parameterised way. Such an extension is
called coloured Petri nets (PNC) [27, 28]. In a PNC, a
group of similar components can be abstracted into one
component (similar to a variable), each of which is defined
as and thus distinguished by a colour (a specific value of
the variable). In a PN, one or more colour sets have
to be defined, and a colour set is assigned to each place.
The tokens on a place are now distinguishable by colours.
A guard, which is a Boolean expression, is assigned to
each transition. For enabling a coloured transition, we not
only check if the preplaces of the transition have suffi-
cient and appropriate tokens, which is similar to what is
done in standard Petri nets, but also have to evaluate the
guard, which has to yield true. Each uncoloured Petri net
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class can have a coloured counterpart. Thus by combin-
ing the parameterised modelling capability of PA/¢ and
the hybrid representation capability of GHPAN/, we obtain
coloured hybrid Petri nets (GHPNC) [15], which can con-
veniently model a system having both multiple spatial
and temporal scales. In what follows we refer to GHPN
and GHPNC simply by HPN and HPNC, respectively,
unless explicitly stated otherwise.

To demonstrate the basic idea of HPNC, we extend
the example presented in Fig. 1 to include more than
one channel arranged in one cluster and account for the
spatial behaviour of calcium diffusion. This scenario will
be much more realistic than the simple one presented
in Fig. 1. Figure 2a shows a simple example of the cal-
cium dynamics modelled as HPNC. The corresponding
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Fig. 2 A simple example representing the operation of PN (a) the HPPNC representation of spatial calcium dynamics, (b) the

corresponding colour definitions, (c) a time course representing the number of channels in the open state, and (d) a matrix plot representing the
calcium diffusion. In this model, we use three channels arranged in one cluster. The colour set chCS provides the number of channels (in this case
three). The variable m is used in combination with the transition ch_open to model the transition of a certain channel. The coloured place open
provides the total number of channels in the open state, which is used as a rate for the continuous transition Ca_inflow. The calcium is represented
by the coloured place Ca, which when unfolded gives a number of places equal to the colours in the colour set Grid2D (in this case Grid2D is a two
dimensional coloured set, each dimension being 100). Calcium diffusion is modelled via the continuous transition diffuse. When the continuous
transition Ca_inflow fires, it adds calcium to the position of the cluster in the grid (here in the middle of the grid (50,50)). The calcium outflow is
modelled by the continuous transition called Ca_pump
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colour declarations are given in Fig. 1b. Now the coloured
discrete place closed is parameterised with the coloured
set chCS which contains the colours from 1 to 3. There-
fore it represents the state of three channels when they
are closed, so does the coloured discrete place opened. In
this coloured model version the two transitions ck_open
and c¢/_close are bound with each colour in the colour set
chCS. That is each transition has three different instances
corresponding to the number of channels. Moreover, the
calcium concentration is modelled by the continuous
place Ca, which is associated with the colour set Grid2D
to represent a two-dimensional grid of 100 x 100 cells
(colours). Each of them represents a spatial calcium loca-
tion. The calcium flow is modelled by the continuous
transition Ca_inflow which adds calcium to the cluster
location (here assumed to be in the middle of the grid:
(50,50). The rate of the transition Ca_inflow is propor-
tional to the total number of open channels in the cluster
(see [26] for more details). The calcium diffusion is mod-
elled by the continuous transition diffuse which diffuses
the calcium to the four neighbouring cells of a calcium
position. The calcium pump is done via the coloured con-
tinuous transition Ca_pump which positions a transition
at each location in the grid. Figure 2c depicts the total
number of channels in the open state, while Fig. 2d shows
the calcium diffusion in the two dimension coordinates. In
this example we can easily carry out different experiments
by reconfiguring the model parameters. For instance, the
number of channels in the cluster can be increased by
just increasing the number of colours in the coloured set
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¢hCS. Similarly, the grid coordinates can be adjusted by
changing the colour set Grid2D. The Snoopy file for this
introductory example is given in the Additional file 2: S2.
A detailed discussion of simulating this coloured model is
provided in the “Implementation” section.

Implementation

In this section we briefly describe the implementation of
Snoopy’s hybrid simulator by considering the architecture,
available algorithms, export and import, and the deployed
external libraries.

Architecture

Figure 3 presents the architecture of Snoopy’s hybrid sim-
ulator. This architecture consists of three components: the
user interface, which comprises the model editor and the
simulation dialog; the simulator, which implements the
simulation algorithms as well as storing the currently run-
ning models and the corresponding result views; and the
Snoopy manager, which connects the user interface with
the simulation module. Snoopy’s hybrid simulator deploys
a simple graphical user interface to permit a rapid config-
uration of the core simulation procedure. Figure 4 depicts
the user interface; in the following, we discuss each of
these components.

Model editor

The model editor permits the graphical construction of
hybrid models using (coloured) hybrid Petri net notations
defined in [11]. Reactions are represented by transitions,
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Fig. 3 Architecture of Snoopy's hybrid simulator. The different components of the architecture can be divided into three layers: user interface,
communication, and simulation layer. The user interface is the user access point to construct and execute hybrid models. The simulation layer
comprises the simulator as well as the simulation version of the constructed model definition. The communication layer connects the simulation
component with the user interface
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Fig. 4 Screenshot of Snoopy's graphical user interface. The simulation window is divided into two parts: configuration and viewer subwindows. The
configuration window (left) permits to configure and control the simulation while the viewer window (right) is used to display the simulation results.
Multiple viewer windows can be opened simultaneously to show the results from different perspectives. The viewer curves can be exported into

while species are denoted by places. More informa-
tion about hybrid Petri net notations can be found in
[11, 19, 29] as well as in Snoopy’s hybrid simulator user
manual [21]. In addition to specifying all reactions,
the model editor provides other features to configure
the model parameters as well as the initial state. The
model editor is applied as a pre-step before executing the
simulation.

Simulation dialog

The simulation dialog is the user tool to run and manage
the simulation. Through it the simulation experiment can
be configured and then executed. Moreover, the simula-
tion dialog provides access to the simulation algorithms
that are implemented in Snoopy’s hybrid simulator. Once
a model has been constructed, a user can access the simu-
lation dialog through Snoopy’s menu bar. The simulation
dialog consists of four parts: model configuration, simu-
lator configuration, import/export, and simulation state
(compare Fig. 4).

The model configuration section permits to adjust
model settings including initial state, reaction rates and
other similar parameters. The simulation configuration
section deals with specifying the simulation options
including the start and end time point of the simulation,

the type of the ODE solver, and the hybrid synchronisation
method. The import/export section allows users to con-
figure how Snoopy performs any export or import of sim-
ulation results. Finally, the simulation state section serves
to start and stop the simulation as well as to monitor the
simulation state.

The simulation results can be examined using views.
Different result views can be defined to explore the sim-
ulation output from different perspectives. Each view has
its own window to display the results using a dedicated
result viewer. Result viewers permit to render the final
data using different plotting techniques such as xy-plot.
Finally, view curves can be exported into comma sepa-
rated files (CSV) for further processing.

Simulation model

After a model is constructed, e.g. using the model edi-
tor, it can be sent to the simulator for execution. The
simulation module takes a copy of the hybrid Petri net
model, but ignoring the layout information. Usually, the
model is a collection of species, reactions, stoichiome-
tries as well as associated data such as kinetic rates and
kinetic rate constants. Nevertheless, this information is
mapped in terms of Petri net components. When the
simulation model is partitioned into deterministic and
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stochastic parts, reactions and species are assigned to
either of the two regimes. Unlike other implementations
(e.g., in [10]), we consider only one version of the species:
either discrete or continuous. Later, if a transformation
is required (e.g., from number of molecules to concen-
tration, or vice versa), this can be easily done at the
position where such a conversion is required (e.g., in the
rate equation). Similarly, when considering the simulation
output, such a transformation can also be easily applied.
However, if a species is manipulated by both a determin-
istic and a stochastic reaction, it needs to be represented
as a continuous species.

Simulator

The simulation algorithms are implemented as a stand-
alone, but built-in simulation library. The simulator mod-
ule reads the model to be simulated and carries out the
execution. A number of algorithms, which will be dis-
cussed in the next section, are available to execute a hybrid
model. Please note, although the core simulator is imple-
mented as a stand-alone library, it can currently not be
used as a stand-alone application. However, we are work-
ing on this to achieve a stand-alone application (see the
“Future improvements” section).

Views

Views are associated with models. Each view is defined
over a set of places or transitions of which the dynamic
behaviour shall be displayed when the simulation starts.
These place/transition sets can be specified by a regular
expression. Multiple views can be defined for the same
model. A view is also associated with a viewer that dis-
plays the selected information. Views can be manipulated
or removed after they were initially added to a model.

Snoopy manager

The communication between the user interface and the
simulator is done via the Snoopy manager. The Snoopy
manager acts as an intermediate agent that sends the GUI
command to the simulator and gets the result back to visu-
alise or export them to the chosen file format. As Snoopy
is a stand-alone application, the communication between
the user interface and the simulation module is done inter-
nally and not through a physical communication channel.

Available algorithms

Snoopy’s hybrid simulator encompasses a set of simula-
tion algorithms that together provide a convenient execu-
tion of hybrid biological models. The general idea of the
hybrid simulation algorithms implemented in Snoopy is
as follow. First, the synchronisation module (the hybrid
algorithm) prepares the jump equation (see below). After-
wards, the ODE solver numerically integrates the sys-
tem of ODEs due to the deterministic part until the
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jump equation is fulfilled. At this point, the synchro-
nisation module switches the control to the stochastic
module to select and fire a stochastic reaction. The exact
time point of the stochastic event is determined by the
jump equation. In what follows, we outline each of these
algorithms.

Haseltine and Rawlings algorithm

This is the realisation of the hybrid simulation idea pro-
posed by Haseltine and Rawlings in [9]. According to this
method, a system of ODEs is numerically solved until a
stochastic event is to occur. The exact occurrence time of
the stochastic event is captured through (1).

t+r N
/ > & dt = —log(r), (1)
t =0

where x is the state vector of the model at time ¢, 7 is the
firing time of the next slow reaction, r is a random number
uniformly distributed in the interval U(0, 1), aj (x) is the

propensity of the j slow reaction, and N is the number of
stochastic reactions.

In (1) we aim to determine the value of t. This is
achieved by first generating a random number from
U(0,1) and then integrating the propensity equations of
all slow reactions together with the system of ODEs due
to the deterministic part from the current simulation time
t until (1) is satisfied. At this point we know that there is a
stochastic event which needs to be fired.

Although this method is very accurate, it requires con-
siderable time to switch from stochastic to determin-
istic simulation [13]. The performance of this method
drops rapidly as soon as the number of stochastic events
increases. Thus it is suitable only for simple models
where the number of potential stochastic events is limited.
Moreover, it can produce better results with ODE solvers
that do not collect and use history information to advance
the numerical integration time.

Accelerated Hybrid Simulation

To overcome the limitation of the Haseltine and Rawlings
method, we follow an accelerated approach introduced
in [13]. The accelerated algorithm takes advantage of the
model structure to boost the overall simulation perfor-
mance. According to this method, stochastic reactions are
classified into two groups: dependent and independent.
Dependent reactions affect the system state of the ODE
solvers when they occur, while independent reactions
have no effects. Therefore, the ODE solver is reinitialised
only when a reaction in the dependent group is fired.
Thus, the simulation performance becomes better than
for the Haseltine and Rawlings method, particularly for
bigger models. For instance, in [13] we compared the per-
formance of the Haseltine & Rawlings method and the
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accelerated approach using three models. We found that
there is a notable performance improvement for all three
case studies and for certain models; the latter approach
is ten times faster than the former one. This save in run-
time is mainly due to the reduction of the number of times
where the ODE solver is reinitialised. In order to achieve
the better performance, the accelerated method approxi-
mates the exact capture of the stochastic event occurrence
time given by (1) by another equation given in (2).

N
Za}?(x) - At = —log(r), (2)

j=0

where At is the time difference between the occurrence
time of the previous event and the current event. Eqgs. 1
or (2) has to be satisfied during the integration, when
the Haseltine and Rawlings or accelerated method is used,
respectively, until the ODE solver stops and returns the
control back to the stochastic regime. Please note that
although our approach mainly intends to reduce the reini-
tialisation of ODE solvers employing history information
to advance the simulation time (e.g., multi-step ODE
solver; see below), it can also be used with single step
solvers (e.g., Runge-Kutta) to reduce the frequent recal-
culation of the step size after each firing of a discrete
event.

Improved hybrid rejection-based stochastic simulation

The numerical integration of (1) as well as its approxima-
tion in (2) are computationally expensive to be satisfied.
Therefore, in [12] a new hybrid simulation method was
proposed based on the rejection-based stochastic simu-
lation algorithm (RSSA) introduced in [30] which avoids
the calculation of (1) and (2). The RSSA algorithm defines
lower and upper bounds of the reaction propensities to
minimise the propensity updates. The propensity lower
and upper bounds are calculated based on a lower and
upper bound of the system state values called fluctuation
interval. Propensities are updated only when one or more
of the system state entries move completely outside the
defined fluctuation interval. The Hybrid Rejection-based
Stochastic Simulation Algorithm (HRSSA) exploits this
opportunity by switching from the deterministic to the
stochastic regime only when the ODE solver reaches the
time of a stochastic event or when any of the system state
entries is outside the fluctuation interval. In the former
case, the discrete regime does not affect the continu-
ous one, while in the latter case the deterministic regime
changes the state of the discrete species during the numer-
ical integration. We apply an improved implementation of
this method which combines the accelerated and hybrid
rejection-based methods. Currently, the improved hybrid
rejection stochastic simulation method is tested as the
best hybrid algorithm implemented in our tool in terms of
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performance (compare Table 2). In [12], the performance
of the HRSSA algorithm has been compared with state
of the art hybrid simulation algorithms using five bench-
mark models. It turned out that the HRSSA outperforms
all competing algorithms.

Dynamic hybrid simulation

The previously discussed simulation approaches are based
on static partitioning. Static partitioning adopts a prede-
fined classification of the model reactions into stochastic
and deterministic ones. The partitioning itself is usu-
ally performed by the user and exploited afterwards by
the simulator during the whole simulation process. This
approach is constructive for many applications with a
clear cut between reactions which have to be simulated
stochastically and those which should be simulated deter-
ministically. For instance, in [31] and in many other sim-
ilar publications that study cell fate, reactions related to
the cell nucleus are considered as stochastic, while those
happening inside the cytoplasm are considered as deter-
ministic. However, such a clear cut is not always possible
to be achieved for all models during the whole simula-
tion period. Reactions can change their state from slow to
fast and vice versa during the simulation. For example, in
oscillating biological systems, reaction rates also oscillate
with respect to time from fast to slow and the other way
around. In this case, dynamic partitioning, where reac-
tions are partitioned repeatedly during the simulation, can
play a role in speeding up the whole simulation procedure.
Our implementation of the dynamic hybrid simulation is
based on the improved hybrid rejection method. Using
this approach, reactions are repartitioned as soon as any
of the state vector entries leaves the fluctuation interval.
This will indeed eliminate the need for frequent checks of
whether the set of reactions requires repartitioning.

Pure stochastic and pure deterministic simulation

To improve the comfort when simulating biological mod-
els with Snoopy’s hybrid simulator, the user has the option
to perform a pure stochastic or a pure deterministic simu-
lation of a hybrid model. The direct method [3] is applied
to implement the stochastic simulation, while the SUN-
DIAL CVODE [32] is used to carry out the deterministic
simulation. This is a worthwhile feature during the exper-
imentation phase to compare the hybrid results with the
pure stochastic and pure deterministic ones. Using this
feature, Snoopy’s hybrid simulator ignores any reaction
partitioning specified by the user and reads all model reac-
tions as stochastic or deterministic ones, depending on
the selected simulation algorithm.

Parallel multi-run simulation
Similar to stochastic simulation, hybrid simulation of bio-
logical models might require the execution of multiple
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runs to calculate average statistics. Snoopy’s hybrid sim-
ulator permits the concurrent execution of different runs
to take advantage of the existence of multiple cores in the
user’s machine.

Simulation of coloured models

A coloured model (such as HPNC) with finite colour sets
can be automatically unfolded to an uncoloured model
(such as HPN). See [33] for one of the unfolding algo-
rithms deployed in Snoopy. Thus, the simulation of an
HPNC model is done on the automatically unfolded
HPN model. When the user starts the simulation of
an HPNC model, an unfolding dialogue will be trig-
gered, where the user can select an appropriate unfolding
method to perform the unfolding. Afterwards, the simu-
lation methods discussed in this section can be used to
execute the unfolded model.

To better explain this idea, we consider the HPNC
model presented in Fig. 2. First, the discrete subnet, con-
sisting of the two places: closed and open as well as
the two transitions: ch_open and ch_close, is unfolded
into three identical subnets (because the colour set c¢hCS
consists of three colours). In other modelling scenar-
ios where the unfolded subnets are not identical we can
make use of transition guards to imply the required con-
straints. Similarly, the continuous subnet, consisting of
the place Ca and the two transitions Ca_pump and dif-
fuse is unfolded into 10,000 identical subsets (because the
colour set Grid2D consists of 100 x 100 colours). However,
because the transition diffuse has a guard expression, only
transitions for the colours satisfying this Boolean expres-
sion are added. The transition Ca_inflow will have only
one copy in the unfolded net because the input and out-
put arcs contain a constant expression. Nevertheless, this
procedure does not need to be implemented iteratively as
we do in this small example. Instead, it can be viewed as a
constraint satisfaction problem (CSP) which can be solved
by a dedicated CSP solver (e.g. [34]).

Export and import

Snoopy supports the import/export of Petri net models
from/to other tools and formats. First, Snoopy imports
and exports the (C)ANDL format (cf. [21]) which is a
human readable file format used by other software tools
(e.g., Marcie [35] and Charlie [36]) which can be employed
for a formal analysis of Petri net models (e.g., structure
analysis, model checking, etc.). Moreover, Snoopy reads
and writes SBML files [37] according to SBML level 2 ver-
sion 4 by using libSBML [38]. However, we support only
a subset of SBML elements that is compatible to our net
classes; specifically we do not support any kind of rules
or events. Snoopy passes all tests of the SBML Test Suite
comprising supported elements. However, the partition-
ing of hybrid models is lost when exporting to SBML,
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because SBML has no support for hybrid models yet. The
user has to decide whether the exported model has to
be treated stochastically or continuously. Furthermore, a
coloured model is exported to SBML by first unfolding it
into the low level representation and then performing the
export.

Implementation language and external libraries

Snoopy’s Hybrid Simulator has been implemented using
standard C++. As a component of Snoopy, it adopts
wxWidget [39] to implement the graphical user interface
under different operating systems. Moreover, the stochas-
tic and deterministic simulation components are imple-
mented in a modular way such that different algorithms
can be easily exchanged to execute the stochastic and
deterministic regimes. Snoopy’s hybrid simulator adopts
internally an external library, SUNDIAL CVODE [32], to
solve a system of ODEs. The ODE library provides two
main algorithms: one for stiff and one for non-stiff ODEs.
Additional ODE solver modules can easily be added in
future releases. We also make use of the C++ library Boost
[40] to carry out routine tasks such as input parsing and
multithreading support.

Results

Snoopy’s hybrid simulator provides a graphical and
convenient way to construct hybrid models

Before using Snoopy’s hybrid simulator, a model needs
to be constructed by specifying reactions, species, sto-
ichiometries, kinetic rates, etc. In Snoopy a model is
usually constructed using Petri net notations. However,
existing models can also be imported from other for-
mats including the well known SBML. In what follows,
we present two methods that permit the construction of
hybrid models in Snoopy.

Simple models

For simple models which involve a limited number of reac-
tions and species (e.g., both less than 100), we use HPN
to construct them. Snoopy’s hybrid simulator supports
two types of places, five types of transitions and six arc
types to facilitate the convenient modelling of hybrid bio-
logical systems. A complete description of these elements
is provided in the user manual [21]. Unlike other hybrid
Petri net tools and similar to the semantics discussed in
[25], we apply the bio-semantics to execute the continu-
ous part of the HPN (see also the “Background” section),
which is more efficient than the adaptive semantics when
simulating biological models.

Coloured models

For large-scale biological systems, the corresponding
HPN models become difficult to manage. In this case,
we may use HPNC (see the “Background” section) for
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model construction. These models may exhibit many
repeated components as well as spatial behaviour (see
Fig. 2 for an example). Colours have been successfully
deployed to model many real biological applications (for
examples see [28, 41, 42]).

Snoopy'’s hybrid simulator provides an efficient way to
execute hybrid models

Once a model has been created, it can be simulated
using one of the algorithms discussed in the previous
section. The simulation dialog has been designed to be
intuitive with many options to configure the simulation.
Furthermore, the resulting time course data can either be
viewed inside Snoopy or exported for further processing.
In the following we summarise the required steps to exe-
cute a hybrid model. A more detailed discussion can be
found in [21].

1. Configure the constructed model: Before running
the simulation, you may need to adjust the model
setting (see the model configuration section in
Fig. 2), which includes choosing the initial state
and/or the kinetic rate constants.

2. Configure the chosen simulator: To run a hybrid
simulator you have to select an appropriate
synchronisation algorithm, which is one of the
discussed hybrid simulation methods, as well as the
type of the ODE solver. Moreover, depending on the
specific model, a user might need to adjust the
options of the ODE solver. For many hybrid models,
the default settings can be kept. However, Snoopy’s
hybrid simulator offers a wide range of other options
for complex hybrid models that require special
treatment (see the simulation configuration section
in Fig. 2).

3. Run the simulation and explore the results: After
the model and the simulator are configured, the
simulation can be started. You may need to create a
new result view to explore the simulation output.

4. Export the simulation results: As a final step, the
resulting data can be exported to a CSV file for
further post-processing.

Example of using Snoopy’s hybrid simulator

To demonstrate how Snoopy’s hybrid simulator can be
used to deal with hybrid biological models, we include a
sample application and show how this model can be con-
structed using HPAN notations and then executed via a
hybrid simulation algorithm.

When studying cell fate behaviour, where a cell decides
either to undergo cell cycle arrest or commit apoptosis
[43—-45] in response to DNA damage, a model describing
this phenomenon can be clearly divided into two parts:
one with species exhibiting low number of molecules
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and the other one involving species with high number
of molecules. In such cases, it may not be feasible to
apply stochastic simulation due to the huge number of
stochastic events.

We deploy a recent model from [31] as a sample use case
for illustrating Snoopy’s hybrid simulator. This model per-
mits to investigate the importance of various DDR (DNA
Damage Response) elements after DNA damage induc-
tion during cell fate determination. More specifically, the
model studies the ATM/p53/NF-«kB pathway, consisting
of four main modules: p53 (a tumor suppressor protein),
ATM (ataxia telangiectasia mutated), NF-«B (a nuclear
transcriptional factor) and Wipl (a p53-induced protein
phosphatase), and involves three different compartments:
nucleus, cytoplasm, and extracellular matrix [31]. The
main aim of the model is to explore the connection
between these four key proteins and protein phosphates
in order to understand cellular response to DNA damage
which is important to understand cell fate determination.
A key model component is Wip1, which is increased to a
level that can block the corresponding cell apoptotic deci-
sion when DNA repair is successful [31]. However, the
level of Wip1 should not stay high after DNA repair; oth-
erwise the cell will not be sensitive to future damage. The
model is divided into the following stochastic and deter-
ministic parts. All the genes such as Wip and ATM are
considered as discrete places, and all reactions related to
genes (gene expression and degradation) are kept stochas-
tic, while all the other species are considered as contin-
uous places, and all other reactions, except those related
to DSB (DNA double-strand breaks) creation and repair,
are modelled as deterministic transitions. The output of
the model consist of the levels of molecules with respect
to time after irradiation and also the cell fate decision.
Figure 5 depicts the Snoopy implementation of this model.

The accelerated hybrid simulation algorithm [13] is
chosen to execute this model due to the weak coupling
between the two reaction regimes. Figure 6 gives a screen-
shot of simulating the model using Snoopy’s hybrid sim-
ulator which includes the time course behaviour of two
versions of the gene Checkpoint kinase 2 (CHK2): inac-
tive (CHK2_n,) and active (CHK2_pn,), in addition to the
negative regulator protein of the p53 (denoted by MDM2),
and the nuclear version of Wipl (Wip1_n). The simula-
tor output in Fig. 6 can also be exported to a CSV file
for further processing. For example, in this model it may
be required to count the number of cells that undergo
apoptosis and those which exhibit cell cycle arrest. A
threshold of the concentration of species p53, P21 (rep-
resenting the p21 protein) and Bax (denoting the Bax
protein) can be used to extract this information [31]. Such
post-processing can be done by help of the exported sim-
ulation traces. Moreover, a performance comparison of
three simulation algorithms when executing this model is
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Fig. 5 Implementing the ATM/P53/NF-«x B pathway model from [31] using Snoopy's hybrid simulator. Circles (places) represent species, squares
(transitions) represent reactions, and arcs denote connections between the two node types. More information about these notations can be found
in [11, 21]. Coloured circles represent discrete species, while the uncoloured ones represent continuous species. Similarly, coloured squares represent
stochastic reactions, while uncoloured ones denote continuous reactions. Solid black arcs represent connections that consume molecules when the
corresponding reaction fires, while dashed coloured ones just permit the use of substrates for defining reaction rates. Grey nodes are logical places
that are repeated to simplify the network layout. Please note, inhibitor arcs (arc with small circles) enforce the number of genes to be at most two
[31]. The complete Snoopy file is provided in the Additional file 2: S2.

provided in Table 2. The Snoopy file is included in the  well-known operating systems. No additional dependen-
Additional file 3: S3, while a short description of how to  cies do exist. In other words, all dependent packages are

execute the model is given in the Additional file 4: S4. installed with Snoopy’s main package. A detailed proce-
dure of how to install Snoopy on these platforms is given

Discussion in its user manual.

Installation

Snoopy’s hybrid simulation is installed as part of Snoopy. =~ Comparison with other tools
The Snoopy installation package can be run just by Inthissection we compare Snoopy’s hybrid simulator with
one click on a local computer with one of the three two of the well-known software tools that provide a hybrid
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Fig. 6 A screenshot of simulating the ATM/P53/NF-x B pathway model via Snoopy's hybrid simulator. The different curves represent the time course
behaviour of four model species. The simulation is done by executing the model given in Fig. 5 for the time period from 0 to 100,000 seconds with
the accelerated algorithm

simulation module to systems biologists: COPASI [16]
and Virtual Cell (VCell) [17]. Table 1 summarises the fea-
tures of COPASI, Virtual Cell, and Snoopy’s hybrid sim-
ulator with respect to the hybrid simulation procedures
supported by the three tools.

COPASI [16] is a general-purpose software tool for con-
structing and executing computational biological models.
It provides tables and widgets as user interface to spec-
ify compartments, reactions, species and other related
parameters. It reads and writes models written in SBML.

For hybrid simulation, COPASI adopts a version sim-
ilar to the Haseltine and Rawlings method, which has
been independently developed at the same time [1, 16].
However, it deploys a tight coupling of the SSA and a
specific ODE solver. To be precise, COPASI offers an
hybrid Runge-Kutta/SSA algorithm, combining the clas-
sical Runge-Kutta ODE solver with the SSA algorithm,
an LSODA/SSA, combining LSODA — a dynamic switch-
ing between stiff/nonstiff solvers — with the SSA algo-
rithm, and recently it has been extended to support

Table 1 Comparison of Snoopy’s hybrid simulator with two other similar tools

Features\Tools Snoopy's hybrid simulator COPASI [16] VCell [17]
Use of graphical notations to specify model reactions Yes No Yes
Use of a parameterised language to manage larger Yes No No
models

Support unstiff ODE solvers Yes Yes Yes
Support stiff ODE solvers Yes Yes Yes
Improving simulation performance by analysing the Yes No No
model structure

Interplay of stochastic and deterministic modules Variable Fixed Fixed
Exact hybrid simulation Yes Yes No
Platform-independent Yes Yes Yes
Availability Free Free Free
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HybridRK-45. COPASI is platform-independent and is
available free of charge.

The Virtual Cell [17] modelling and analysis tool also
provides a module to execute hybrid models. Virtual
Cell is deployed as a distributed application that can
be downloaded free of charge. It uses the BioModel
as well as VCell Markup Language to construct cell
models. Three hybrid algorithms are supported: Hybrid
(Gibson/Euler—-Maruyama), Hybrid (Gibson/Milstein),
and Hybrid (Adaptive Gibson/ Milstein).

Compared with COPASI and Virtual Cell, Snoopy’s
hybrid simulator offers a set of features that can improve
the performance as well as the productivity of con-
structing and executing hybrid biological models. These
include: analysing reaction networks to accelerate the sim-
ulation, implementing a modular design of the stochastic
and deterministic procedures, implementing the state
of the art of hybrid simulation algorithms, deploying
accurate and efficient hybrid simulation algorithms, and
utilising a parameterised language (coloured hybrid Petri
nets) to construct large scale biological models.

On the one hand, Snoopy’s hybrid simulator makes use
of the structural information of the underlying reaction
network to boost the overall simulation performance. For
instance, the accelerated hybrid simulation algorithm,
presented in [13], increases the performance of some
hybrid models by ten times compared to the classical
Haseltine and Rawlings method as it has been asserted
in [13]. This improvement in the runtime is mainly due
to detection of reaction dependencies between the deter-
ministic and stochastic regime. In other words, Snoopy’s
hybrid simulator avoids unnecessary re-initialisations
of the ODE solver when the system state of the ODE
solver is not affected by the firing of the current discrete
event.

On the other hand, Snoopy’s hybrid simulator does not
assume a fixed combination of the ODE solvers and the
SSA algorithms as in COPASI and Virtual Cell. Instead,
a user can select the appropriate type of the ODE solver,
and the hybrid simulation algorithm acts as a time syn-
chronisation module. Such modular design facilitates the
support of new ODE solvers and SSA algorithms in the
future with minimal efforts. Moreover, the user can take
advantage of this modular design by selecting a different
combination of the stochastic solver, ODE solver, and the
hybrid time synchronisation procedure. This feature can
be beneficial to address the issue that different models
may have their own computational demands.

Furthermore, Snoopy’s hybrid simulator implements the
state of the art of hybrid simulation algorithms that have
a better performance than the classical ones. For exam-
ple, Snoopy’s hybrid simulator implements the hybrid
rejection-based stochastic simulation algorithm which
has been recently introduced in [12]; it represents a
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promising direction to improve hybrid simulation when
dynamic and static partitioning strategies are used.

To improve the simulation performance, the previous
hybrid simulation algorithm implemented in COPASI
does not include time-varying propensities in the slow
subsystem [1] (i.e., there is no check for (1) or any sim-
ilar exact methods, e.g., [12]). Although this approach
can improve the simulation performance, it will affect
the result accuracy. Recently, a new hybrid module
(HybridRK-45,) has been added to COPASI to improve
the simulation accuracy and overcome this limitation. On
the contrary, Snoopy’s hybrid simulator implements three
exact versions of the algorithm in [9]. Moreover, recent
advances of the theory of hybrid simulation (e.g,. in [12]
and [13]) render it possible to overcome the computa-
tional overhead to check (1) or an alternative as (2).

Finally, unlike COPASI and Virtual Cell, Snoopy’s hybrid
simulator deploys a special parameterised language,
coloured hybrid Petri nets, to deal with larger models
which cannot be easily managed using traditional model
construction approaches (see Fig. 2 for an example).

Compared with the different simulation approaches
discussed in [1], Snoopy’s hybrid simulator mainly sup-
ports three hybrid algorithms that consider time-varying
propensities. That is the changes in the propensities of
slow reactions, while the deterministically simulated reac-
tions are evolving, are exactly captured using (1), (2), or
using the approach introduced in [12]. The biochemi-
cal reaction networks can either be partitioned by the
user (i.e., the net is drawn by the user as stochastic and
deterministic subnets), or it can be partitioned online by
Snoopy’s hybrid simulator. In the latter case the reac-
tion propensities as well as the number of molecules in
the reaction substrates serve as criteria to carry out the
partitioning.

Performance measures

To evaluate the performance of the three main algorithms
implemented in Snoopy’s hybrid simulator, we give the
runtimes of four case studies as performance measures.
The case studies range from simple to complex ones
that involve many species and reactions. These include:
a T7 phage model [8], a hybrid model of the eukary-
otic cell cycle [29] based on the stochastic one in [7], the
ATM/p53/NF-xB model [31] which has been discussed
in the “Results” section, and the simple hybrid calcium
model provided in Fig. 2. The simulation experiments
have been conducted on a Mac Pro. with 3 GHz Core i7
processor and 8GB memory.

Table 2 summarises the number of species and reac-
tions as well as the runtime of each example model when
they are simulated using each of the three hybrid algo-
rithms. For the T7 model we use the partitioning scheme
discussed in [11], while for the eukaryotic cell cycle model
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Table 2 Performance measures of the three implemented algorithms in Snoopy’s hybrid simulator

Measures\Models Model Information

Runtimes of Simulation Algorithms (sec.)

Species Reactions Stochastic Haseltine& Accelerated Improved HRSSA
(Discrete) (Stochastic) Events Rawlings* Method
T7 Phage (1,000 runs) 3(2 6 (4) 4,238,978 120.2 41.7 (281%) 26.6 (452%)
ATM/p53/NF-kB 62 (14) 119 (24) 3,726 6.3 1.9 (332%) 0.96 (656%)
Cell Cycle Model 26 (14) 51 (20) 762,612 8704 625.7 (139%) 365.5 (238%)
Calcium Model (Fig. 2) 10,006 (6) 49,607 (6) 2158 220.7 (-1.1%) 190 (1.13%)

“This refers to the algorithm version which exactly accounts for Eq. (1)

we apply the same partitioning as discussed in [29]. For
the purpose of performance comparison we provide the
number of stochastic events produced by each model.
The percentage numbers given in parentheses represent
the speed of the accelerated and improved algorithms
compared to the Haseltine and Rawlings algorithm, and
negative values mean the latter algorithm is faster.

In the Haseltine and Rawlings algorithm, the runtime
required to simulate a model mainly depends on the
number of corresponding stochastic events. This fact is
illustrated by the four case studies. For instance, although
the T7 phage model consists of only six reactions (four
of them are simulated stochastically), it takes a consider-
able runtime compared to the calcium model where ten of
thousands of reactions are involved. This is not the case
in the accelerated and improved HRSSA algorithms, since
not all of the stochastic reactions affect the determinis-
tic solver. For instance, in the ATM/p53/NF-«B model,
there is a substantial gain in terms of the runtimes because
only very few stochastic events trigger a reinitialisation of
the ODE solver (compare Fig. 5). Moreover, the runtime
for the calcium model is comparable for all three algo-
rithms because there are only a few stochastic events and
the optimisation by the accelerated and improved HRSSA
algorithms does not play a role.

Although the number of stochastic events in the cell
cycle model is less than those in the T7 phage model, the
latter model takes less runtime. The extra runtime is taken
by the ODE solver, since the numerical integration of the
cell cycle model exhibits more discontinuities, due to the
volume division (cf. [7, 29]) than the T7 phage model
where only two reactions are simulated deterministically.

The accuracy of the simulation results is the same for
the three simulation algorithms since the core idea has
not been changed. The accelerated and improved HRSSA
approaches avoid the reinitialisation of the deterministic
module for stochastic events which do not have an effect
on the deterministic solver. This will not influence the
simulation accuracy (please see [12, 13] for more details).

Future improvements
The development of Snoopy and its hybrid simulator is
still active and new features and algorithms can be added

in the future to further enrich its simulation capabilities.
We will continue to investigate how to further improve
the performance of the hybrid simulation by exploiting
the model structure. Moreover, we intend to support
additional ODE solvers and other stochastic simulation
algorithms to execute the semantics of different types
of models. Currently, the simulation library depends on
Snoopy’s graphical user interface for reading a model.
As a future extension of this scenario, we intend to cre-
ate a command line application that reads SBML files or
the Petri net file and simulates them directly using the
simulation library. We will also continue to incorporate
recent hybrid algorithms to Snoopy’s hybrid simulator.
The mailing list snoopy@informatik.tu-cottbus.de is ded-
icated to potential queries and bugs about Snoopy and its
components.

Conclusions

In this paper we have presented Snoopy’s hybrid sim-
ulator, a tool to execute hybrid biological models.
Snoopy’s hybrid simulator has been developed over
the last five years, and reached recently a mature and
reliable state. It employs a variety of hybrid simu-
lation algorithms such that it can deal with various
types of biological models that are usually encountered
in systems biology. In addition to the simulation
capabilities, the model can take advantage of the graphical
representation via hybrid Petri nets notations when
it is constructed and simulated via Snoopy’s hybrid
simulator.

Additional files

Additional file 1: An example 2PN model. A Snoopy file
implementing the calcium dynamics using 2PN notations. (HPN 56 kb)
Additional file 2: An example HPNC model. A Snoopy file
implementing the calcium spatial dynamics using 2PN € notations.
(COLHPN 114 kb)

Additional file 3: the ATM/p53/NF-«B HPN model. A Snoopy file
implementing the ATM/p53/NF-«B. (HPN 1193 kb)

Additional file 4: Description of the ATM/p53/NF-kB HPN model. A short
description of how to open and simulate the Snoopy file of the
ATM/p53/NF-k B HPN model. (PDF 1248 kb)
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