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Abstract

Background: To systematically understand the interactions between numerous biological components, a variety of
biological networks on different levels and scales have been constructed and made available in public databases or
knowledge repositories. Graphical models such as structural equation models have long been used to describe
biological networks for various quantitative analysis tasks, especially key biological parameter estimation. However, limited
by resources or technical capacities, partial observation is a common problem in experimental observations of biological
networks, and it thus becomes an important problem how to select unobserved nodes for additional measurements
such that all unknown model parameters become identifiable. To the best knowledge of our authors, a solution to this
problem does not exist until this study.

Results: The identifiability-based observation problem for biological networks is mathematically formulated for the first
time based on linear recursive structural equation models, and then a dynamic programming strategy is developed to
obtain the optimal observation strategies. The efficiency of the dynamic programming algorithm is achieved by avoiding
both symbolic computation and matrix operations as used in other studies. We also provided necessary
theoretical justifications to the proposed method. Finally, we verified the algorithm using synthetic network structures
and illustrated the application of the proposed method in practice using a real biological network related to influenza
A virus infection.

Conclusions: The proposed approach is the first solution to the structural identifiability-based optimal observation
remedy problem. It is applicable to an arbitrary directed acyclic biological network (recursive SEMs) without bidirectional
edges, and it is a computerizable method. Observation remedy is an important issue in experiment design for biological
networks, and we believe that this study provides a solid basis for dealing with more challenging design issues
(e.g., feedback loops, dynamic or nonlinear networks) in the future. We implemented our method in R, which is
freely accessible at https://github.com/Hongyu-Miao/SIOOR.

Keywords: Biological network, Graphical model, Structural identifiability analysis, Structural equation model,
Observation strategy

Background
The emergence of young research fields such as systems
biology and network medicine [1, 2] reflects some exciting
changes in biomedical investigators’ view of biology and
practice. Particularly, it has been increasingly recognized
that thinking in networks may lead to novel scientific
insights and findings [3] that the traditional reduction-
ism approaches cannot grant [4]. The recent develop-
ment of experimental techniques (e.g., a variety of

high-throughput omics approaches) also provides
unprecedented opportunities for biomedical investiga-
tors to construct numerous biological networks at
different levels and scales; for instance, protein-
protein interaction networks [5, 6], gene regulatory
networks [7–10], functional RNA networks [11–13],
and metabolic networks [14, 15] can be found in a
number of databases or knowledge repositories
nowadays [9, 16, 17]. All such previous efforts
provide a solid basis for further advancing our under-
standing of biological systems and the associated
outcomes qualitatively or quantitatively.
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Graphical models have long been considered as a
natural mathematical representation of biological
network for various quantitative analysis tasks such as
parameter inference [18–21]. Specifically, given a
biological network structure and experimental obser-
vations of certain variables associated with network
nodes, it is often of significant interest to determine
the unknown coefficients associated with network
edges. For instance, to understand the responses of a
biological network (e.g., activation or inhibition) to
different environmental signals (e.g., different signal-
ing molecules or different doses of the same signaling
molecule), edge coefficients are likely to vary under
different conditions and thus need to be estimated
under each condition for the same given network
structure [18]. In such a scenario, although the struc-
ture of the corresponding graphical model is known
and fixed, concerns about the accuracy and reliability
of parameter estimates often raise due to, e.g., the
existence of unobserved node variables (i.e., latent
variables). In practice, latent variables are not uncommon
due to various technical limitations, ethic issues, financial
affordability, and so on [18, 20]. Therefore, a natural ques-
tion to ask is: what is the remedy that enables us to obtain
reliable parameter estimates for a given graphical model
structure with partially observed variables?
To the best knowledge of our authors, the afore-

mentioned important question has rarely been tackled
before in the context of quantifying unknown model
parameters of biological networks; and in this study,
we make the very first attempt to address this ques-
tion from the structural identifiability point of view.
By the definition in Miao et al. [18], an unknown
model parameter is structurally identifiable if it can
be uniquely determined for a given model structure
under the assumptions that sample size is sufficiently
large and data quality is not of concern. Of course,
one can also take the effects of sample size and data
noise into consideration and conduct the so-called
practical identifiability analysis [18]; however, this is
out of the scope of this study as practical identifiabil-
ity analysis is not feasible at certain experimental
design stage when real data are not available. On the
contrary, structural identifiability analysis allows us to
detect flaws in model structure and observation
scheme before data collection, and thus should be
investigated first. Our solution to the question men-
tioned at the end of the previous paragraph is thus a
strategy that identifies a minimum number of unob-
served nodes, for which the associated node variables
should be observed in experiments such that all
unknown parameters become structurally identifiable.
This is a useful and cost-effective remedy if some of
the model parameters are not identifiable given the

original observation scheme, and we thus name it the
structural identifiability-based optimal observation
remedy (SIOOR).
Since biological networks can be represented by

many different types of mathematical or statistical
models, it is impossible to devise the SIOOR strategy
for every different model type in one study. There-
fore, we consider a linear structural equation model
[22] here because it is a representative graphical
model type and has been widely applied in various
disciplines including systems biology [23–27]. A num-
ber of previous studies have investigated the param-
eter identifiability problem of SEMs, but the majority
of these studies only derived theoretical criteria or
conditions for identifiability verification, including
Pearl’s back door and front door criteria [28], Brito
and Pearl’s generalized instrumental variable criterion
[29], Tian’s accessory set approach [30]. Only a few
studies proposed computerizable identifiability analysis
approaches, including Drton’s condition [31] and
Foygel’s half-trek criterion [32] (implemented in R
package SEMID), Sullivant’s computer algebra method
and the more recent Wang’s identifiability matrix
method [33, 34]. More importantly, all such criterions
and methods assume that the observation strategy is
given (i.e., it is pre-specified which variables are
observed and which are not), and none of them con-
sidered the remedy strategy if a given observation
strategy does not grant identifiability to all unknown
model parameters. The focus of this study is thus to
investigate how to choose a minimum number of
nodes that are not observed in the original observa-
tion strategy for additional experimental measure-
ments such that all unknown model parameters
become identifiable. This study leads to a general and
computerizable solution to the SIOOR problem for
the first time.
More specifically, in the case that a given observa-

tion strategy of a biological network cannot grant
identifiability of all unknown parameters in the corre-
sponding SEM due to the existence of unobserved
variables, we propose a dynamic programming (DP)
approach to search for all possible SIOOR strategies.
The proposed approach is a generic and computeriz-
able method that can deal with recursive SEMs. It
should be stressed that SIOOR strategy does not
involve any power or sample size calculation and thus
cannot be compared with the traditional experimental
design approaches [35, 36]. Also, it should be stressed
that the observability problem in control theory is dif-
ferent from the SIOOR problem because the aim of
observability analysis is to determine the internal
states of a system from its external outputs [37]. For
clarification purpose, we also compare Liu’s graphic
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approach for observability analysis [38] with our
SIOOR strategy in this study.
This article is organized as follows. In the Methods

Section, the structural identifiability-based optimal
observation remedy problem is mathematically formu-
lated. We then propose a dynamic programming approach
with theoretical justification to solve the problem for
recursive SEMs. In the Results and Discussion Section, we
describe our algorithm implementation and validate the
proposed method using selected benchmark networks.
Also, a real substructure from the influenza virus A [39]
KEEG pathway is chosen as an example to illustrate the
application of the proposed method in practice.

Methods
In this section, several key concepts and definitions are
introduced for solving the SIOOR problem, including
Observation Strategy (OS), Cardinality of Observation
Strategy [4], and Identifiability Gain (IG). The design of
the dynamical programming algorithm is also described.
In addition, we provide the necessary theoretical justifi-
cation for the proposed method.

Problem formulation
A directed biological network can be denoted by G = (V, E),
where V denotes the node set and E denotes the edge set.
Let Vi (i = 1, 2,…, n) denote the i-th node, and Yi denote
the variable associated with Vi. If Yi is a linear function of
the remaining node variables, the corresponding SEM can
be specified as follows,

Y i ¼
X
j≠i

cijY j þ εi; i; j ¼ 1;⋯; n;

where cij denotes the coefficient associated with the
directed edge Vj→Vi, and εi denotes the disturbance
error term that follows a certain distribution (Gaussian
or non-Gaussian [40, 41]) with mean zero. For simpli-
city, all disturbance error terms are assumed to be inde-
pendent. By definition, E specifies the structure of the
coefficient matrix C = [cij], i.e., cij = 0 if no edge exists in
E from Vj to Vi for i ≠ j. When a network structure
contains one or more loops, G is a directed cyclic graph
(DCG) and the corresponding SEM is called a non-
recursive model; otherwise, G is a directed acyclic graph
[42] and the corresponding SEM is called recursive.
Although Drton’s condition [31] and Foygel’s half-trek
criterion [32] are applicable to the identifiability
analysis of non-recursive SEMs, the identifiability of
parameters on a loop may be still inconclusive. Due
to the lack of mature structural identifiability analysis
techniques for examining every unknown parameter
of a non-recursive SEM, this study focuses on recur-
sive SEMs (i.e., DAGs) only.

Definition 1 (observation strategy). Given a graph G
= (V, E), its observation strategy can be denoted by a bin-

ary vector O ¼ OV 1 ;⋯; ;OVnð ÞT , where OVi ¼ 1 if node
Vi is observed and OVi ¼ 0 if Vi is unobserved.
Observation strategy is important to parameter iden-

tifiability. In general, for a given network structure, the
more observed nodes an observation strategy contains,
the more likely all model parameters are identifiable.
However, more observed nodes are usually associated
with a higher experiment cost, so it is also desirable to
reduce any unnecessary cost. The goal of SIOOR is thus
to improve a given observation strategy by observing a
minimum number of originally unobserved nodes such
that all nonzero parameters in C become identifiable.
For this purpose, let P denote the vector of all nonzero
parameters in C, and let D denote the vector of
identifiability status of every element in P. That is, if Pi
is locally or globally identifiable (i.e., Pi has a finite num-
ber of possible values or a unique value within the
parameter space, see [18]), Di = 1; otherwise, Di =1.
When all the parameters in a model are locally or
globally identifiable, this model is called identifiable.
Consequently, the SIOOR problem can be formulated as
follows

min
observed Vi

Xn
i¼1

OVi
; subject to D ¼ 1; ð1Þ

where
Xn
i¼1

OVi
is the total number of observed nodes in

an observation strategy O, and 1 denotes a vector of
ones. For clarification, we stress that the observation
measurements are for the random variables associated
with network nodes, and we assume (n – m) of them are
observed in the original observation strategy, where n
denotes the total number of nodes and 0 <m ≤ n.
The objective function above is minimized with

respect to the originally unobserved nodes, subject to
the constraint D = 1. During the minimization process, it
needs to be repeatedly verified whether all parameters
have become identifiable (i.e., D = 1). For this purpose,
an efficient algorithm for structural identifiability ana-
lysis of SEMs is needed. Here we consider the identifia-
bility matrix method proposed by Wang et al. [34].
Briefly, structural identifiability of parameters can be
verified by examining the number of solutions to the
symbolic polynomial identifiability equations generated
by Wright’s path coefficient method [43, 44]. To avoid
the expensive symbolic computation involved in redu-
cing such identifiability equations, the identifiability
matrix method proposes to derive binary matrices from
symbolic polynomials and thus enable us to determine
the number of solutions via several simple matrix
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operations. It is noteworthy that Wang’s work [34] does
not explicitly handle colliders involving bidirectional arcs
when generating identifiability equations with Wright’s
method, however, the identifiability matrix method is
still applicable here as we do not consider bidirectional
arcs in DAGs.

Identifiability gain and must-be-observed nodes
The optimization problem in the previous section is
combinatorial in nature. Therefore, if the number of
the originally unobserved nodes (denoted by m) is
not small, enumerating all the 2m different possible
observation strategies over these nodes will be com-
putationally expensive. We thus need an efficient
algorithm such as dynamic programming to obtain
the solutions. For this purpose, a few more definitions
need to be introduced first.
Definition 2 (redundant identifiability equation).

Given a set of identifiability equations, an identifiability
equation IE(Vi,Vj) is redundant with respect to that set if
it can be expressed as a linear combination of the
equations in that set.
Definition 3 (cardinality of observation strategy).

Given an observation strategy O for a network G, one
symbolic polynomial identifiability equation can be
generated for each pair of d-connected [28] observed
nodes using, e.g., Wright’s path coefficient method. Then
the total number of non-redundant identifiability
equations is called the cardinality of O, denoted by f(O).
The Wright’s path coefficient method generates iden-

tifiability equations for recursive SEMs by calculating
the covariance between two node variables, which is
equal to the sum of the products of edge coefficients

along each d-connected path, i.e., IE V i;V j
� �

: Cov

V i;V j
� � ¼

X
pathk

Y
edgel

θl . After removing all redundant iden-

tifiability equations and redundant monomials, the
identifiability result of each parameter can be
determined by Theorem 1 in [34]. That is, if the
number of non-redundant identifiability equations is
less than the number of unknown parameters, then
the parameters have an infinite number of possible
values within the parameter space and are thus
unidentifiable; otherwise, the parameters have a
limited number of solutions or even a unique solution
and are thus at least locally identifiable [45]. Let Nu

denote the total number of unknown parameters in
P. For every parameter in P being locally or globally
identifiable, the inequality f(O) ≥Nu should hold
according to Theorem 1 in [34]. Therefore, the
optimization problem can also be formulated as
follows

min
observed Vi

Xn
i¼1

OVi
; subject to f Oð Þ≥Nu; ð2Þ

where the calculation of f(O) is a key challenge because
it depends on specific network structure and observation
strategy and thus has no closed-form solution. We thus
introduce the following definition.
Definition 4 (identifiability gain). Given a network

G = (V,E), let O(k) and f(O(k)) denote an observation
strategy and its cardinality, respectively. Let Vi be an
unobserved node in O(k), and only Vi becomes
observed in a new observation strategy O(k + 1) with
the observation statuses of other nodes remaining
unchanged. Let f(O(k + 1)) denote the cardinality of O(k + 1).
Then the identifiability gain of observing Vi, denoted by
g(Vi,O

(k)), is calculated as g(Vi,O
(k)) = f(O(k + 1)) − f(O(k)).

By definition, g(Vi,O
(k)) is the difference in cardinal-

ity between two consecutive observation strategies
O(k) and O(k + 1). That is, after Vi becomes observed in
O(k + 1), we need to find out the number of newly
added non-redundant identifiability equations. First, if
another node Vj (i ≠ j) is observed in both O(k) and
O(k + 1) and there exists a Wright’s path [46] of length
1 connecting Vi and Vj, it can be shown that the
newly added identifiability equation, denoted by
IE(Vi,Vj), is non-redundant (see Lemma 1 and
Additional file 1 for theoretical justification). How-
ever, if the length of every Wright’s path between Vi

and Vj is greater than 1, the identifiability equation
IE(Vi,Vj) is not always redundant, and it depends on
both the node’s observation status and the structure
of the network. Here we introduce the concept of
detour-path before we further elucidate the redun-
dancy issue. Consider a DAG G = (V,E) and two d-
connected observed nodes Vi and Vj. Assume that
there exists a Wright’s path Pji between Vi and Vj as
well as an observed node Vk(k ≠ i, j) on Pji, and the
direction of Pji is from Vi to Vk and then to Vj. Now
let Pki and Pjk denote the two segments of Pji, then
Pki entering node Vk has an arrow pointing into Vk

while Pjk exiting node Vk has an arrow pointing away
from Vk. However, if there exists another Wright’s
path between Vk and Vj, denoted by ~Pkj , which has
no any other observed nodes besides Vk and Vj and
has an arrow pointing into Vk, then Vk is a collider
with respect to Pki and ~Pkj. Thus, we call the Wright’s
path segment Pjk the detour-path, and call Vi, Vj and
Vk the upstream node, the downstream node, and the
collider node of the detour-path Pjk, respectively. By
definition, a detour-path can have only one down-
stream node and one collider node but may have one
or more upstream nodes. Moreover, multiple detour-
paths can share the same upstream node, the same
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downstream node or the same collider node. Several
examples are given in Fig. 1 to illustrate the concept
of detour-path.
In addition, when an upstream node Vi is shared by

two or more detour-paths that have the same
downstream node, Vi is called a shared upstream node;
otherwise, Vi is called an exclusive upstream node. Note
that a detour-path can have both exclusive and shared
upstream nodes in the same time, and the collider node
of one detour-path can be an upstream node of another
detour-path. Consider two detour-paths that have no
exclusive upstream nodes, if they share the same
downstream node and at least one upstream node, or
one upstream node of one detour path is the collider
node of the other detour-path, then two detour-paths
are intersecting. One can tell that if Pjk1 intersects with
Pjk2 and Pjk2 intersects with Pjk3 , then Pjk1 also intersects
with Pjk3 . Then we consider a downstream node Vj, let
S_IDP denote all the intersecting detour-paths, and let
S_SUN denote all the shared upstream nodes of S_IDP.
Similar to a single unknown parameter, the coefficient

product WP ¼
Y
edgel

θl of a Wright’s path P can be deemed

as a single parameter and one can tell its structural
identifiability based on identifiability equations. If a
detour-path P has at least one exclusive upstream node,
then the Wright’s coefficient WP of P is globally identi-
fiable (see Lemma 2 and Additional file 1 for theoretical
justification). Also, for a group of intersecting detour-
paths, if the node number of S_SUN is equal to or greater
than the number of intersecting detour-paths in S_IDP,

then the Wright’s coefficient of each detour-path in S_IDP
is globally identifiable (see Lemma 3 and Additional file 1
for theoretical justification).
Given a DAG G = (V,E), consider two observed nodes

Vi,Vj and an unobserved node Vu. Vu may not be on any
Wright’s paths between Vi and Vj. For this case,if only
Vu becomes observed in O(k + 1), then for each observed
node Vi in O(k), one can check whether the identifiability
equation IE(Vi,Vu) is redundant according to Lemma 4
(see Additional file 1 for theoretical justification). That
is, when none of the Wright’s paths between Vi and Vu

contains detour-paths, IE(Vi,Vu) is redundant if and only
if each Wright’s path between Vi and Vu passes at least
one observed node other than Vi and Vu; otherwise,
IE(Vi,Vu) is redundant if and only if the Wright’s coeffi-
cient of each detour-path between Vi and Vu is globally
identifiable in O(k) and each Wright’s path between Vi

and Vu passes at least one observed node other than Vi

and Vu. If Vu is on a Wright’s path between Vi and Vj,
and the sufficient and necessary condition for one of the
identifiability equations IE(Vi,Vu) and IE(Vj,Vu) being re-
dundant is similar to Lemma 4 and given in Lemma 5
(see Additional file 1 for theoretical justification). Note
that it can be determined whether the Wright’s coeffi-
cient of a detour-path is globally identifiable according
to Lemma 2 and Lemma 3.
Based on Lemma 4 and Lemma 5, we propose a

novel graphic method to calculate the identifiability
gain g(Vi,O

(k)). Let desi denote the descendant node
set of Vi, anci denote the ancestor node set of Vi, reli
denote the set of nodes that are not included in desi

(a) (b)

(d)(c)

Fig. 1 Four examples for illustrating the detour-path concept, where observed nodes are colored green and unobserved nodes are colored grey.
a A simple detour-path; b Two detour-paths Pjk, Pnk share the same collider node Vk and upstream nodes Vi, Vo; c Two detour-paths Pjk, Pnk share
the same collider node Vk, upstream nodes Vi,Vm and edge ejk; d Two detour-paths Pjk, Pnk share the same upstream node Vi and downstream node Vj
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or anci. Moreover, let boundi ⊂ anci denote the bound-
ary node set, in which every node has at least one
outgoing edge to a node in reli. Then we can calcu-
late g(Vi,O

(k)) by removing the following edges from
the original graph G: i) all the incoming edges to the
observed nodes that are not collider nodes of detour-
paths in anci; ii) all the outgoing edges from some
observed nodes in desi and reli and these observed
nodes are not the collider nodes of the detour-paths
whose Wright’s coefficients are unidentifiable in O(k);
and iii) all the outgoing edges from the observed
nodes in boundi to nodes in reli, and then we get a
new graph denoted by G '. Let Nw denote the total
number of the observed nodes that are connected
with Vi via any Wright’s path in graph G '. Further-
more, one can tell from the edge-removal operation
that there still exist some redundant identifiability
equations in G ', because the following two types of
redundancy cases have not been considered in the
edge-removal operation: Vi is the downstream node of
an arbitrary detour-path, and Vi is on a Wright’s path
between two observed nodes in G '. Let Nr denote the
number of redundant identifiability equations in G '.
According to the topological structure of G ' and the
node’s observation status, we can obtain Nr based on
Lemma 4 and Lemma 5 (see the details in Implementation
and Verification Section). It can be shown that the iden-
tifiability gain is g(Vi,O

(k)) =Nw −Nr (see Theorem 1 and
Additional file 1 for theoretical justification).
For a given DAG G and an observation strategy O(k),

different unobserved nodes may associate with different
identifiability gains. Naturally, our strategy is to choose
the unobserved node in O(k) with the maximum iden-
tifiability gain if it becomes observed in O(k + 1). However,
we also recognize that, to assure that all model parame-
ters are at least locally identifiable, certain nodes of a
DAG must be observed if they are unobserved in an
observation strategy (see Lemma 6 and Additional file 1
for theoretical justification). For convenience, we call
such nodes the must-be-observed [14] nodes, and let

O 0ð ÞM denote the observation strategy, in which only the
MBO nodes are observed.

Lemma 1 Given a DAG G = (V,E), an observed node
Vi, and an unobserved node Vuin O(k), if only Vubecomes
observed in O(k + 1), the identifiability equation IE(Vi,Vu)
is non-redundant if there exists a Wright’s path of length
1 connecting Viand Vu.

Lemma 2 If a detour-path P has one or more exclusive
upstream node, the Wright’s coefficient WP of P is glo-
bally identifiable.

Lemma 3 For a group of intersecting detour-paths, if
the number of the shared upstream nodes in S_SUN is
equal to or greater than the number of intersecting

detour-paths in S_IDP, then the Wright’s coefficient of
each detour-path in S_IDP is globally identifiable.
Lemma 4 Given a DAG G= (V,E), an observed node

Vi, and an unobserved node Vu in O(k), if only Vubecomes
observed in O(k + 1), there exist two cases:

1) each Wright’s path between Vi and Vu passes at least
one observed node other than Vi and Vu when none
of the Wright’s paths between Vi and Vu contains
detour-paths;

2) each Wright’s path between Vi and Vu passes at
least one observed node other than Vi andVu,
and the Wright’s coefficient of each detour-path
between Vi and Vu is globally identifiable in O(k) when
certainWright’s paths between Vi and Vu contain
detour-paths.

Then the identifiability equation IE(Vi,Vu) is redundant
if and only if one of the above conditions holds.
Lemma 5 Given a DAG G= (V,E), two d-connected ob-

served nodes Viand Vj, and an unobserved node Vuin
O(k), if Vuis on a Wright’s path between Viand Vjand only
Vubecomes observed in O(k + 1), there exist two cases:

1) each Wright’s path between Vi and Vj passes at least
one observed node other than Vi and Vj when none
of the Wright’s paths between Vi and Vj contains
detour-paths;

2) each Wright’s path between Vi and Vj passes at least
one observed node other than Vi and Vj, and the
Wright’s coefficient of each detour-path between Vi

and Vj is globally identifiable in O(k) when certain
Wright’s paths between Vi and Vj contain detour-
paths.

Then one of the two identifiability equations IE(Vi,Vu)
and IE(Vj,Vu) is redundant if and only if one of the above
conditions holds.
Theorem 1 Given a DAG G = (V, E) and an unob-

served node Viin an observation strategy O, let G ' denote
the sub-graph after the edge-removal operation. Then the
identifiability gain is g(Vi,O) =Nw −Nr, where Nwdenotes
the total number of the observed nodes that are con-
nected with Vi via any Wright’s path in graph G ', and
Nrdenotes the number of redundant identifiability equa-
tions in graph G '.
Lemma 6 For a given DAG G= (V, E), the following

nodes must be observed to assure that all the parameters
of the corresponding SEM are at least locally identifiable

1) The nodes with an out-degree 0;
2) The nodes with an out-degree 1;
3) The nodes with an in-degree 0 and an out-degree

less than 3.
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Dynamic programming strategy

Let O 0ð ÞG denote a given observation strategy. If some of

the MBO nodes are not observed in O 0ð ÞG , O 0ð ÞM should be

incorporated into O 0ð ÞG according to Lemma 6. Therefore,
the initial observation strategy, denoted by O(0), should

always be O 0ð Þ ¼ O 0ð ÞM jO 0ð ÞG
� �

, where the OR operator
is an element-wise operation. For example, for a

DAG with six nodes, if O 0ð ÞM ¼ 1 0 1 0 0 0½ �T
and O 0ð ÞG ¼ 0 1 1 0 0 0½ �T , then O 0ð Þ ¼
1 1 1 0 0 0½ �T .
The dynamic programming strategy starts with the

calculation of the cardinality of O(0) (that is, f(O(0)))
based on Theorem 1. Specifically, let R be the num-
ber of observed nodes in O(0), Vo_r(r = 1, 2,⋯, R) be
the r-th observed node in O(0), and O(0){Vo_1,…,Vo_r}
be the observation strategy in which only the first r

observed nodes in O(0) are observed. Then f O 0ð Þ� � ¼X
r¼1R−1

g V o rþ1ð Þ;O 0ð Þ Vo 1;…; ;Vo r

n o� �
can be calcu-

lated according to Theorem 1. Note that the order at
which Vo_r is selected into O(0){Vo_1,…,Vo_R} will not
change the observation strategy (e.g., O(0){Vo_1,Vo_2} =
O(0){Vo_2,Vo_1}) and thus have no effect on the value
of f(O(0)).
The second step of our dynamic programming strategy

is to define stages and their associated states. Let S denote
the number of unobserved nodes in O(0), and let Vu_s (s =
1, 2,⋯, S) denote the s-th unobserved node in O(0), then
the dynamic programming procedure can be divided into
S + 1 stages. For illustration purpose, we consider a simple
example with 5 unobserved nodes, as shown in Fig. 2. The
0-th stage is actually the initialization step as described in
the previous paragraph, and it has only one state, i.e., O(0).
At the first stage, there are S = 5 different states; that is,
only one of the unobserved nodes {Vu_1,Vu_2,⋯,Vu_5} in
O(0) will be selected to observe. At the second stage, since
one of the five unobserved nodes has been selected at the

previous stage, there are only four unobserved nodes for
selection and thus four states exist (that is, {Vu_2,Vu_3,
Vu_4,Vu_5}). Therefore, as shown in Fig. 2, except for
stages 0 and 1, each subsequent stage has one less states
than its previous stage; also, the upper triangular region
(see the area above the labels of stages 1–5 in Fig. 2) is
empty because the selection order of unobserved nodes
does not affect the eventual observation strategy so the in-
clusion of such states in the upper triangular region is re-
dundant. One can tell that the proposed stage and state
definitions satisfy the optimality principle of dynamic
programming [47–49].
The third step is to compute the state transition costs

for searching the optimal state transition path(s).
According to the definitions of stages and states, there
may exist several different states at the s-th stage that
can transit to the same state at the (s + 1)-th stage. For
instance, four states Vu_1, Vu_2, Vu_3 and Vu_4 at the first
stage can transit to Vu_5 at the second stage, as shown in
Fig. 2. The state transition cost from state Vu_i to
state Vu_j (i ≠ j) between two consecutive stages is just
the identifiability gain g(Vu_j,O

(k){…,Vu_i,…}), where
O(k){…,Vu_i,…} means that Vu_i is observed in O(k).
Then the cardinality of an observation strategy can be
computed by adding f(O(0)) and all the state transition
costs along the state transition path. Since the goal of the
dynamic programming strategy is to search for the opti-
mal observation strategies, when there exist multiple tran-
sition paths from state Vu_i in O(k) to state Vu_j in O(k + 1)

(i ≠ j), the transition path associated with the maximum

identifiability gain will be chosen; that is, f O kþ1ð Þ
Vu j

� �
¼

max
Vu i

;i≠j
g V u j;O

kð Þ
Vu i

� �
þ f O kð Þ

Vu i

� �� �
, where O kð Þ

Vu i
is a con-

venient notation for O(k){…,Vu_i,…}.
The dynamic programming strategy above can be

mathematically described in Eq. (3), and we have im-
plemented this strategy in R (see the “Implementation
and verification” Section),

_1uV
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_ 2uV

1stage0stage 2stage 3stage 4stage 5stage

00f O

0
_1,ug V O _ 2uV
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1
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Fig. 2 Schematic illustration of the stages, states and state transition costs in the proposed dynamic programming strategy
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f O 1ð Þ
Vu s

� �
¼ f O 0ð Þ� �þ g Vu s;O 0ð Þ

� �
; s ¼ 1; 2;…; S;

f O kþ1ð Þ
Vu j

� �
¼ max

Vu i
;i≠j

g V u j;O
kð Þ
Vu i

� �
þ f O kð Þ

Vu i

� �� �
; k

¼ 1; 2;⋯ k≤S−1:

8>>><
>>>:

ð3Þ
It should be stressed that it is not necessary to finish

all the S iterations as shown in Eq. (3). Once the cardin-

ality f O kð Þ
Vu i

� �
at the k-th stage becomes equal to or

greater than the number of unknown parameters Nu, the
dynamic programming process will stop and we get the
SIOOR strategies.

Results and Discussion
Overview of the framework
Observation strategy design is an under-investigated
problem for biological networks, despite the fact that a
variety of biological networks have been actively con-
structed and used in numerous benchside or bedside
studies. However, the existence of latent variables is a
common problem due to cost, technical or other limita-
tions, and has significantly hampered our capability to
quantitatively investigate and understand such networks
via, e.g., key network parameter estimation from experi-
mental data. Identifiability analysis has long been recog-
nized as a powerful tool to assure the accuracy and
reliability of parameter estimation techniques; however,
identifiability-based observation strategy design for bio-
logical networks turns out to be an unexplored field
despite its substantial importance to biological network
studies like structure identification.
To the best knowledge of our authors, this is the first

study that tackles the problem of identifiability-based
observation strategy design for biological networks
described by linear SEMs. First, we introduce several
new concepts such as cardinality of observation strategy
and identifiability gain and mathematically formulate the
identifiability-based optimal observation problem. Sec-
ond, for a given network structure, the key idea is to
turn a minimum number of unobserved nodes in the
original observation strategy into observed such that the
number of non-redundant identifiability equations
becomes greater than or equal to the number of
unknown model parameters (i.e., the whole system is at
least locally identifiable). By counting the number of
non-redundant identifiability equations, we avoid per-
forming actual identifiability analysis on SEM and the
proposed method is thus computationally efficient.
Third, by defining the concepts of stage division and
state transition, a dynamic programming strategy is
proposed to solve the maximization problem without
involving any time-consuming symbolic computation or
matrix operations [33, 34]. Fourth, an efficient computing

algorithm is proposed to calculate the identifiability gain
of each unobserved node in a given observation strategy.
More specifically, the computing process is significantly
simplified by counting the number of observed nodes that
connect with the node of concern via Wright’s paths after
removing certain edges from the original graph.
It takes a non-constant time to compute the node

identifiability gain in each iteration, and the algorithm
complexity depends on the number of observed nodes.
Furthermore, the number of iterations of the dynamic
programming algorithm does not depend on the total
number of nodes, but the number of unobserved nodes
in the original observation strategy. Let S denote the
number of unobserved nodes and T denote the number
of observed nodes in the original observation strategy,
then the computation complexity of the dynamic pro-
graming strategy is O(S2 ⋅ T).

Implementation and verification
The flowchart of the proposed algorithm for searching
the structural identifiability-based optimal observation
remedy is shown in Fig. 3. We have implemented the
dynamic programming algorithm in R, and all the source
codes and examples are freely accessible at https://
github.com/Hongyu-Miao/SIOOR.
Here we describe several important technical details of

the implementation. First, at the state transition step,

i.e., f O kþ1ð Þ
Vu j

� �
¼ max

Vu i
;i≠j

g V u j;O
kð Þ
Vu i

� �
þ f O kð Þ

Vu i

� �� �
, if

there exist multiple transitions that produce the same
f(O(k + 1)), our current implementation chooses only one
such transition to update the next-stage observation
strategy. If needed, the R code can be slightly modified
to enumerate all optimal observation strategies. Second,
since the boundary node set is just a subset of the ances-
tor node set for a given node, the processing of the
boundary nodes is incorporated into the processing of
the ancestor nodes in the current implementation.
In order to verify the implementation, synthetic DAGs

can be generated for this purpose, like the two DAG
examples in Fig. 4. The first DAG contains 8 nodes and
13 edges, and it has only a single input node and a single
output node. Moreover, the first example considers a
special initial observation strategy (i.e., all nodes are
unobserved) to illustrate the capability of the proposed
method to design optimal observation strategy from
scratch. The second DAG has multiple input and output
nodes, and it considers a more general situation, that is,
there exists both observed and unobserved nodes in the
initial observation strategy. We analyzed the two exam-
ples using the proposed algorithm, and used the
identifiability matrix method [34] to verify that the
obtained observation remedies do grant (local) identifia-
bility to all model parameters.
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(a)

(b)
Fig. 4 Two DAG examples for algorithm implementation validation, where the green nodes are unobserved and the blue ones are observed in
the initial observation strategy. a A DAG with a single input and a single output; b A DAG with multiple inputs and multiple outputs

Fig. 3 Flowchart of the proposed dynamic programming algorithm
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Applications to real biological networks
Since it is impossible to cover all the biological networks
in various databases and knowledge repositories [16, 17]
in one study, we choose the biological network associated
with influenza A virus [39] as an application example for
illustration purpose. IAV can infect birds as well as mam-
mals including human, and it has been one of the major
infectious pathogens that have caused millions of human
deaths. It is thus of great scientific significance to system-
atically understand IAV infection and immune response
mechanisms. Therefore, Matsuoka et al. [50] manually
curated a comprehensive database, called FluMap, for
depicting the influenza virus life cycle at the molecular
level from over 500 previous publications. There are
mainly five modules in FluMap: virus entry, virus replica-
tion and transcription, post-translational processing,
transportation of virus proteins, and packaging and
budding. Given the critical role of virus replication in in-
fluenza virus life cycle, numerous experimental studies
(e.g., [42, 51–53]) have made attempts to understand virus
replication mechanisms and their clinical implications.
Thus, we choose to focus on the IAV replication module
and analyze its observation strategy.
Since IAV replication involves many different biomole-

cules and complex interactions, it is usually infeasible to
observe all such components and their interactions in
one study. The question of concern here is how to
choose a minimal number of nodes in Fig. 5 to observe
such that all the model parameters become at least
locally identifiable. Note that Fig. 5 is derived from
Matsuoka’s work [50], and consists of 22 nodes and 26
edges; for simplicity, the catalyzers and inhibitors in this
network are treated as reactants.
A relevant concept, called observability, has been

previously investigated by Liu et al. [38] for complex
dynamic systems. Although observability analysis also
deals with observation strategies considering the

existence of latent variables, it is very different from
identifiability analysis in two aspects: 1) the focus of
observability analysis is not model parameters but how
to infer the unobserved state variables from experimen-
tally measured outputs of a system; 2) the graphical
approach proposed by Liu et al. was developed for the
so-called balance equations based on mass-action kinet-
ics, the model structures of which are very different
from static linear SEMs. However, it is of interest to
compare the identifiability-based observation results
with those of the observability-based method. For this
purpose, we assume that all the nodes in Fig. 5 are ini-
tially unobserved. After applying the proposed dynamic
programing method, we get the optimal observation
strategy shown in Fig. 6(a) for achieving parameter iden-
tifiability. The optimal observation strategy produced by
Liu’s observability approach is shown in Fig. 6(b).
According to Fig. 6(a) and (b), one can tell that the
identifiability-based observation strategy contains 20
observed nodes and 2 unobserved nodes, while the
observability-based strategy contains 3 observed nodes
and 19 unobserved nodes. That is, for the IAV replica-
tion module, the system internal states can be inferred
from a few observed output nodes if a balance equation
model is used; however, it needs much more observed
nodes to achieve parameter identifiability if a linear SEM
is used. Such an observation is not only due to the dif-
ferent goals of observability and identifiability analyses,
but also the differences in the underlying model struc-
tures used in observability or identifiability analyses.
Moreover, besides the nodes with an out-degree 0 or 1

as mentioned in Lemma 3, the identifiability-based
observation strategy is also likely to select the nodes
with a high out-degree as unobserved nodes; for
instance, the two unobserved nodes viral_RNA and
NP(ub) in Fig. 6(a) have the highest out-degrees 2 and 3,
respectively. This is because, if an unobserved node has

Fig. 5 An application example based on the influenza A virus replication module, where all nodes are initially unobserved and in green color
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a high out-degree, this node is connected with many
out-neighbor nodes; when its out-neighbor nodes are
observed, there will exist multiple Wright’s paths that
connect such out-neighbor nodes and pass this unob-
served node, and the corresponding identifiability
equations thus contain the parameters associated
with the out-edges of this unobserved node such that
these parameters can be identifiable. Interestingly,
the observability-based strategy tends to select the
nodes with a low out-degree as observed nodes, for
example, all the nodes with 0 out-degree are
observed in Fig. 6(b). It is because the nodes with an
out-degree 0 in a DAG are usually the final products
of chemical reactions, instead of reactants, and thus
the internal states associated with other nodes can be
easily inferred based on the balance equations if all
the final products of chemical reactions are
measured.

Conclusions
In this study, we address an important problem for bio-
logical networks: the design of observation strategies for
all edge coefficients being identifiable. Linear SEMs are
used as the mathematical representation of biological
networks, which allows us to formulate the problem as a
constrained optimization problem. A dynamic program-
ming strategy was then developed to solve the constrained
optimization problem to obtain the optimal observation
strategies at the cost of turning a minimal number of un-
observed nodes into observed. The proposed solution is
novel and efficient because it avoids both symbolic com-
putation and matrix operations as used in other studies,
and we provided necessary theoretical justifications for
the proposed algorithm. As verified by multiple examples
(synthetic or real networks), the proposed solution is
generic and can be applied to an arbitrary DAG (recursive
SEMs) without bidirectional edges.

(a)

(b)
Fig. 6 The optimal observation strategies for the influenza A virus replication module based on a identifiability and b observability, where the yellow nodes
are observed and the green nodes are unobserved
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We also recognize that many real biological networks
are dynamic, nonlinear, or have feedback loops, which
are beyond the capability of the method developed in
this study. However, this study provides a basis for deter-
mining the identifiability-based optimal observation
remedy for more complex biological networks, and we
expect to tackle the more challenging problems in the
future.

Additional file

Additional file 1: Theoretical justifications for identifiability gain
computation. (PDF 217 kb)
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