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Abstract

Background: Differential analysis of cellular conditions is a key approach towards understanding the consequences
and driving causes behind biological processes such as developmental transitions or diseases. The progress of
whole-genome expression profiling enabled to conveniently capture the state of a cell’s transcriptome and to detect
the characteristic features that distinguish cells in specific conditions. In contrast, mapping the physical protein
interactome for many samples is experimentally infeasible at the moment. For the understanding of the whole
system, however, it is equally important how the interactions of proteins are rewired between cellular states. To
overcome this deficiency, we recently showed how condition-specific protein interaction networks that even consider
alternative splicing can be inferred from transcript expression data. Here, we present the differential network analysis
tool PPICompare that was specifically designed for isoform-sensitive protein interaction networks.

Results: Besides detecting significant rewiring events between the interactomes of grouped samples, PPICompare
infers which alterations to the transcriptome caused each rewiring event and what is the minimal set of alterations
necessary to explain all between-group changes. When applied to the development of blood cells, we verified that a
reasonable amount of rewiring events were reported by the tool and found that differential gene expression was the
major determinant of cellular adjustments to the interactome. Alternative splicing events were consistently necessary
in each developmental step to explain all significant alterations and were especially important for rewiring in the
context of transcriptional control.

Conclusions: Applying PPICompare enabled us to investigate the dynamics of the human protein interactome
during developmental transitions. A platform-independent implementation of the tool PPICompare is available at
https://sourceforge.net/projects/ppicompare/.
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Background
Generally, every apparatus is better specified by the con-
nection of its parts than by the sole list of parts. In
the same way, the state of a cell is better described by
the cooperative action of its active molecular machin-
ery than by a simple list of its genome-encoded building
blocks. Consequently, decades of research have gone into
detecting physical interactions between proteins. Aggre-
gating all this effort into comprehensive protein-protein
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interaction networks (PPINs) that represent the known
protein interactome of an organism has been an important
achievement [1, 2].
However, a static representation of the full interactome

does not reflect its wiring in different tissues, cell types,
diseases or any other arbitrary cellular state. Experimental
data on protein-protein interactions (PPIs) in particu-
lar contexts is very limited and it is unclear whether
its amount will increase substantially in the near future
[1, 3]. Previous experimental studies typically focused on
very specific issues, such as the perturbation of individual
interactions by disease mutations [4, 5] or posttransla-
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tional modifications [6], and covered only small subsets of
the proteome. The general lack of context-sensitive inter-
actome data is commonly overcome by computational
methods that integrate condition-specific gene expression
data with the known PPIN of that organism so that at least
the influence of that factor is considered on a genome-
wide scale. A straightforward approach is to filter the PPIs
to the protein-coding genes that are expressed in a cer-
tain condition. This strategy was applied before in the
contexts of tissues and cell types [7–10] and of diseases
[11–13].
The aforementioned limitation concerning condition-

specific experimental evidence on PPIs as well as its
solution of integrating additional data equally apply to
the study of alterations in molecular networks [14, 15].
Most biologically-motivated differential network meth-
ods, regardless whether they depict physical interactions
between proteins or another kind of pairwise relation, uti-
lize a data-type dependent correlation measure to assess
rewiring [16–19]. Other methods put a stronger focus on
the topology of the networks [20] or additionally make use
of heterogeneous ontology information [21]. Conception-
ally, correlation of gene expression is a reasonablemeasure
of pairwise association in the context of biological inter-
actions between genes or corresponding proteins. In the
very case of protein interactions, however, the notion does
neither unveil which transcriptomic alteration caused a
rewiring nor provide sufficient information to assess the
implications of alternative splicing (AS) events. Although
AS has a substantial effect on the wiring of the interac-
tome [22–25], it is not yet accounted for by any current
computational approach.
We recently introduced PPIXpress [26], a PPIN con-

textualization method that enables users to account for
the effect of AS events on the interactome based on
transcript-level expression data. Using knowledge on the
viable interactions between protein domains and the
domain composition of protein isoforms, the method first
relates each protein interaction in the full PPIN to an
underlying domain interaction. Then it uses this corre-
spondence to infer the condition-specific presence of PPIs
given the protein isoforms indicated by the expression
data. Non-transcriptomic effects on protein interactions
are not covered by this approach. As an extension of
this work, we propose here the differential PPIN tool
PPICompare that compares the inferred interactomes
between samples of two groups and tracks the cause
of each alteration. The tool determines statistically sig-
nificant between-group rewiring events and annotates
each rewiring process with the underlying cause (one or
both corresponding genesmissing, or interacting domains
missing due to differential transcript usage). Also, PPI-
Compare constructs a small set of the most relevant
alterations to the transcriptome that explain all systematic

differences in the networks. A first application of the novel
software is presented on the example of hematopoiesis
[27] using data generated by the BLUEPRINT epigenome
project [28–30]. To our best knowledge this work repre-
sents the first study of rewiring processes of the protein
interactome during development with similar scope and
granularity.

Methods
PPICompare
PPICompare is currently designed to be used as an exten-
sion to our tool PPIXpress for constructing condition-
specific protein interaction networks [26] but can also
be applied to suitable input data generated in alternative
ways. As basis for the subsequent analysis, contextualized
PPINs are constructed with PPIXpress for each tran-
script expression sample. This is explained in detail in the
subsection “Constructing blood cell interactomes” below.
Given two groups of condition-specific PPINs built

from the same reference PPIN, PPICompare detects all
interactions that are significantly rewired between sam-
ples of the groups. In [26] we presented the underlying
principle of the statistical model and applied it to the spe-
cial type of matched datasets in a case study on breast
cancer. Here, we extended the methodology to arbitrary
groups of networks and provide a stand-alone software
tool for this type of analysis. All output is written to files
in the format of node- and edge-attribute tables that can
be imported into other tools like, for example, Cytoscape
[31]. A platform-independent Java 8 implementation of
PPICompare that is able to efficiently utilize current
multi-core CPUs is freely available at https://sourceforge.
net/projects/ppicompare/. A user guide and example data
are provided together with a precompiled executable and
the complete source code.
For both practical as well as biological reasons dis-

cussed in [26], PPIXpress only adjusts the presence of
interactions according to the expression data but does
not alter their weight annotations. Consequently, a dif-
ferential analysis of the derived networks is done based
on discretized information. While discretization always
implies a loss of information, it also simplifies the state
space of the problem considerably and it can deflate noisy
data. Advantages and disadvantages of using discretized
expression data are discussed in [32], for example.
Figure 1 outlines the individual steps in the workflow of

PPICompare. The details of panels A) to C) are described
in the following three paragraphs.

A) Examining the interactome differences between all
inter-group pairs of samples
In the first stage of the differential analysis (Fig. 1a), each
sample in the first group is compared to each sample in
the second group in terms of their PPIs. Ideally, a group
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Fig. 1Workflow of PPICompare. a Examine the interactome differences between all inter-group pairs of samples. b Assess the significance of and
the reasons for each rewiring event. c Discern a small set of likely changes in the transcriptome that explain the rewiring. Details are described in the
main text

of samples stands here for a representative distribution
of interactomes for a condition under study. For every
pairwise comparison i a differential network �i monitors
whether a particular interaction (u, v) between proteins
u and v is only found in one of the two groups. PPI-
Compare considers the first group as the reference system
and the second group is compared to it. An interaction
(u, v) that is exclusively found in the sample of the sec-
ond group is thus noted as �i(u, v) = +1. Likewise,
an interaction (u, v) lost in the second group is noted
as �i(u, v) = −1. All N individual pairwise observa-
tions are weighted equally and summed up to obtain a
global differential network � whereby each edge (inter-
action) is annotated with the signed number of changes
affecting it in the inter-group comparisons: �(u, v) =∑N

i �i(u, v). As a result of this, rewiring events with
opposing observations, where both addition and removal
events were detected for the same interaction, are down-
weighted in a natural way. The unchanged portion of
the interactome does not appear at all in the differen-
tial network. Potentially emerging null-sum annotated
edges in the cumulative network � are removed after the
summarization.
Besides tracking the amount of rewiring per edge, PPI-

Compare quantifies the fraction of interactions that are

changed in each pairwise comparison i by a rewiring
probability Prewi . We defined Prewi as the number of
rewired interactions normalized by the size of the union of
interactions in both samples. This is basically the Jaccard
distance [33] of the edge set. Thus Prewi = 1 − |ai∩bi|

|ai∪bi| ,
where ai and bi are the respective sets of interactions in
the samples compared in comparison i. In the matched
comparison scheme of [26] we used the number of inter-
actions of the smaller one of both PPINs as a stringent
normalization factor. Taking here the union of the corre-
sponding interaction sets for normalization in the Jaccard
distance allows application of themethod tomore variable
non-matched data, because a value in [ 0, 1] is ensured.
Note that all pairwise comparisons are independent from
each other. The final inter-group rewiring probability Prew
is then obtained as the average of all individual pairwise
probabilities Prewi : Prew = 1

N
∑N

i Prewi .

B) Assessing the significance of and the reasons for each
rewiring event
Prew can be interpreted as the probability of each inter-
action to be rewired. A one-tailed binomial test is then
used to assess the statistical significance of candidate
rewiring events (u, v) in the differential network � against
this background (Fig. 1b). For each candidate (u, v) ∈ �
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and a given Prew, PPICompare computes the likeliness
of observing at least the annotated number of rewiring
events |�(u, v)| over all N pairwise comparisons by
chance:

p(u,v) = 1 −
|�(u,v)|−1∑

i=0

(
N
i

)

(Prew)i(1 − Prew)N−i.

The p-values are subsequently adjusted using the
Benjamini-Hochberg procedure [34]. Only rewiring
events below a user-defined false discovery rate (FDR)
threshold are processed further and reported.
Since version 1.05, PPIXpress can optionally report the

major isoform that was associated with each individual
protein during the construction of the condition-specific
interaction network. As a consequence, PPICompare can
use the output of PPIXpress to exactly reproduce and
annotate which change or which changes in the transcrip-
tome altered an interaction between samples of the two
groups. Since each interaction depends on the presence
as well as the compatibility of both interacting proteins,
the two essential causes of rewiring events are either a
major shift in the abundance of at least one interaction
partner between groups (differential expression, DE), or
a switch of the major isoform of at least one of the pro-
teins that alters the domain composition in a way that
affects the interactome (alternative splicing, AS).Whereas
alterations to both proteins are in principle not necces-
sary to explain changes to an interaction, even redundant
pairs of causes are explicitly monitored by PPICompare
because they could point to a different mode of regulation,
such as the purposeful coexpression of complex partners.
PPICompare determines and reports the individual distri-
butions of all causal reasons for each significantly rewired
interaction.

C) Discerning a small set of likely changes in the
transcriptome that explain the rewiring
To identify the events that caused the systematic rewiring
of the PPINs between the groups under study, it is reason-
able to look for a set of transcriptomic changes that is both
very likely given the data and of small cardinality.
The association of causes and affected interactions can

be thought of as a bipartite graph, where one class of
nodes are the significantly rewired interactions and the
second class are individual causal reasons (change in
expression or splice form of a single protein). In such a
graph, the alterations point to the interactions they affect
(see Fig. 1c). Here, we tracked how often a transcrip-
tomic cause i is relevant for each rewiring event. Thus, we
know the number of pairwise comparisons pwi in which
the alteration happened and the number of significantly
rewired interactions rwi that were affected by it. Since the
importance of a rewiring reason i should be related to

its frequency across all comparisons and rewired interac-
tions, we score each one with si = pwi × rwi. Determining
then a small set of those reasons that explain all rewiring
events and consists of preferably important members is a
weighted set-cover problem [35].
As this problem is classically defined as a minimization

problem, we converted the scores si into weights wi by
settingwi = smax−si, where smax = max(si)+1. The addi-
tion of one prevents the possibility of numerical equality
and subsequent loss of information in the ratio that is then
optimized. To efficiently solve this weighted set-cover
problem for large instances, PPICompare implements a
greedy algorithm with provable performance guarantees
[36]. The algorithm repeatedly selects the rewiring rea-
son i with the minimum ratio of wi divided by the number
of rewiring events that it additionally explains. This is
done until all significant rewiring events are covered. The
resulting solution set is part of the standard output of
PPICompare.
Note that the notion of a reduced set refers here to the

relevance in the interaction networks only. At a higher
level, some crucial alteration which is not necessarily of
transcriptomic origin and is simply not reflected in the
differential interactomemay, of course, reside upstream in
the hierarchy of causal regulatory effects and thus be of
more importance.

Constructing blood cell interactomes
Specific PPINs for samples of 11 hematopoietic cell
types were constructed on the basis of transcript expres-
sion data from the 7th data release (Sept. 2015) of the
BLUEPRINT epigenome project [28–30]. From the pro-
vided preprocessed data of the consortium we considered
all samples of blood stem cells and precursors derived
from cord blood and all samples of common mature
cell types derived from venous blood that had at least
3 samples for this tissue of origin. The downloaded
data included RNA-seq data on hematopoetic stem cells
(HSCs, 6 samples), multipotent progenitors (MPPs, 3
samples), common myeloid progenitors (CMPs, 3 sam-
ples), common lymphoid progenitors (CLPs, 5 samples),
megakaryocyte erythrocyte progenitors (MEPs, 4 sam-
ples), granulocyte monocyte progenitors (GMPs, 3 sam-
ples), erythroblasts (EBs, 7 samples), and megakaryocytes
(MKs, 5 samples). Regarding common mature cell types
that met those criteria we obtained data for neutrophils
(Ns, 10 samples), monocytes (Ms, 5 samples), and naive
CD4 T cells (CD4s, 8 samples).
For consistency, we followed the strategy used in [30]

from which we took our input data and of others who
investigated blood cell types during development [37–39].
Thus, we based our analyses on the ontological rela-
tionships defined by the classical dichotomy model of
hematopoiesis [27, 40]. Although recent insights based
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on data from single-cell sequencing challenge this estab-
lished model of hematopoiesis, the model characterized
by the BLUEPRINT data was not analyzed with respect
to protein interactions so far and there appears to be no
clear consensus on a revised model yet [41–45]. Figure 2
shows a schematic representation of the developmental
relationships among the cell types we examined.
The preprocessed RNA-seq data of the 7th BLUEPRINT

release was quantified with RSEM [46]. For better
comparability between samples [47, 48], PPIXpress uses
transcripts per million (TPM) as the relevant expres-
sion measure for RSEM output files. For all transcript
expression samples we built protein interaction networks
with PPIXpress (version 1.08) for a range of TPM thresh-
olds from 0.0 TPM to 1.0 TPM in steps of 0.01. This
means that only proteins with an associated transcript
that was expressed above this cutoff were considered in
the respective network contextualizations. Using PPIX-
press, we retrieved the full protein interaction network
for human (taxon 9606) from mentha [49] (data of 18.
Jan 2016). Outdated Uniprot accession numbers (release
2015_12) [50] were updated automatically by PPIXpress.
The resulting human reference protein interaction net-
work contained information on 221,158 physical interac-
tions between 17,292 proteins. Furthermore, PPIXpress
retrieved annotation data from Ensembl (release 83) [51]
and domain interaction data from 3did (release July 2015)
[52] and iPfam (version 1.0) [53] for the mapping of pro-
tein interactions to domain interactions. With this data,

49.1% of the proteins in the reference PPIN were anno-
tated with at least one domain that contributed to the PPI
association. 20.3% of the PPIs were covered by domain
interactions and thus may be potentially altered by AS
events that our model can capture. Note that this partial
coverage is in an expected range for domain annota-
tions and domain-domain interaction data [26]. Intera-
tions that are mediated by disordered regions between
such conserved domains are currently not considered
by PPIXpress. These practical limitations certainly con-
fine the ability of the pipeline to detect the contribu-
tion of AS on the in-vivo rewiring of the proteome in
its entirety. See [26] for more details concerning the
methodology.
To establish a good TPM threshold, we utilized addi-

tional independent data on proteome abundance from
the Human Proteome Map (HPM) [54] on individ-
ual hematopoietic cell types. We used their mass-
spectrometry data on the abundance of proteins mapped
to HGNC protein-coding genes [55] and considered each
protein as present if its corresponding abundance value
was larger than zero.

Data evaluation
Participation in complexes, annotational homogeneity,
and betweenness of interactions
To determine whether an interaction within a known
complex is rewired, we downloaded the data on human
protein complexes from CORUM (release Feb. 2012) [56]

Fig. 2 Hierarchy of hematopoietic differentiation stages used as basis for our study. For reasons discussed in the main text, we only considered
classical ontological relationships for all analyses (solid lines) and did not include more recent models and their accompanying novel entities.
Lymphomyeloid-restricted progenitors (LMPPs, first proposed by [44]) are shown as an example for emerging relationships that are not covered by
our data (dotted lines). In this model, MPP, CMP, MEP and GMP are developmental branching points and will be investigated in detail later
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and checked whether interacting protein pairs belong to a
known complex.
Furthermore, we annotated all interactions in our

reference PPIN with the semantic similarity of the
interactors concerning the three GO ontologies biological
process (BP), molecular function (MF), and cellular com-
partment (CC) [57]. Semantic similarities were obtained
using GOSemSim (version 1.28.2) [58] with default
options and annotation data from org.Hs.eg.db (version
3.2.3) [59]. Also, we determined the betweenness of the
interactions, which is the normalized sum of the fraction
of all-pairs shortest paths that include this interaction.
Betweenness values were computed with NetworkX (ver-
sion 1.10) [60] on the basis of the reference PPIN.

Association and enrichment of rewiring events within
pathways
We mapped deregulated interactions to the biological
pathways they might affect. A related approach based
on the coexpression between adjacent genes in pathways
was proposed by [16] and termed Edge Set Enrichment
Analysis (ESEA).
We retrieved preprocessed KEGG [61] and Reactome

[62] pathway data as undirected graphs from the ESEA
R package (version 1.0) [16] and converted the HGNC
gene names to UniProt accessions using mapping data
from the HGNC webservice (accessed on March 26th,
2016) [55]. We followed the example of [16] and only
considered pathways with at least 15 and at most 1,000
connections in the original pathway data. The remaining
pathway-annotated links were then related to the exact
interactions in our reference interactome data. 3,394 PPIs
(1.5% of our reference PPIN) among 1,624 proteins (9.4%
of our reference PPIN) could be exactly mapped to 106
KEGG pathways. 7,318 PPIs (3.3% of our reference PPIN)
among 2,617 proteins (15.1% of our reference PPIN) cor-
responded to 495 Reactome pathways. Enrichment of
pathways was calculated on the basis of a hypergeomet-
ric test as is often done for gene sets [63]. P-values were
subsequently adjusted for KEGG and Reactome path-
ways independently using the Benjamini-Hochberg proce-
dure [34]. Since PPICompare only distinguishes between
rewiring events that are statistically significant and those
that are not, the GSEA-based approach [64] of ESEA to
identify pathway enrichment is not applicable for our task.

Unspecific enrichment analysis of deregulated proteins using
DAVID
Unspecific protein-set enrichment analysis was con-
ducted with the DAVID webservice (version 6.7) [65]
using default settings. We set all proteins in the reference
PPIN as the background for the analysis. The reported
significances of term enrichments refer to the p-values
adjusted using the Benjamini-Hochberg correction [34].

Proteins relevant to hematopoiesis and their regulatory
targets
As proteins relevant to blood development, we con-
sidered all human proteins annotated with GO term
GO:0030097 (“hemopoiesis”) usingQuickGO [66] onMay
30th, 2016. In our reference PPIN this was the case
for 480 proteins. We refer to these as “hematopoiesis
proteins” in the remaining text. Additionally, we down-
loaded literature-curated annotations of experimentally
validated gene regulatory relationships in human from the
TRRUST database (version 12/08/2014) [67]. The regula-
tory network contained data on 727 transcription factors
and 7906 interactions between proteins in the reference
interactome. Among these transcription factors were 101
hematopoiesis proteins. Combining both data sources,
1274 proteins were either hematopoiesis proteins or pro-
teins directly regulated by a hematopoietic transcription
factor.
Enrichment of a query regarding a specific protein set

defined by this data was then determined using a hyper-
geometric test. As protein sets we analysed the combined
set of hematopoiesis proteins and targets of hematopoi-
etic transcription factors, the set of hematopoiesis pro-
teins, and its subset of hematopoietic transcription
factors.
Furthermore, we determined enrichment of targets

associated with transcription factors covered by our reg-
ulatory data. Since the sets of targets of each transcrip-
tion factor were tested individually, the p-values for each
transcription factor were subsequently adjusted using the
Benjamini-Hochberg procedure [34].

Results and discussion
Using PPIXpress and transcript expression data from
BLUEPRINT we constructed the protein interactomes
of 59 samples representing 11 different types of blood
cells for different expression thresholds (see “Methods”
section). To ensure that the biological analyses regard-
ing developmental transitions were based on a single
expression discretization parameter that best reflects
the actual protein concentrations in the cell, we used
mass spectrometry-based proteome abundance data
from HPM [54] for guidance (see Additional file 1:
Results S1.1). All further analyses presented were per-
formed on the protein interaction networks constructed
with the HPM-derived threshold of 0.31 TPM. Further-
more, we checked by a subsampling approach how robust
the rewiring detection methodology was if only a small
number of samples was available for comparison (see
Additional file 1: Results S1.2). Apparently, groups with
at least 3 samples provide meaningful results. As there
is no computational pipeline with comparable fea-
tures and scope, we did not contrast PPICompare with
other tools.
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The rewiring of the blood interactome during development
For a biological interpretation of the derived protein inter-
action networks, we compared all cell types that are
adjacent in developmental progression according to the
classical model of hematopoiesis as depicted in Fig. 2.
PPICompare (version 1.0) was applied to the correspond-
ing PPINs generated with HPM-optimal threshold and
the default FDR of 0.05. Table 1 summarizes the differ-
ences in the interactome sizes detected at developmental
transitions.

Developmental branching points associated with lineage
commitment aremost distinct in terms of quantitative
rewiring
Without a tool such as PPICompare, the average net dif-
ference in the number of interactions between proteins
�ni → nj (third column) is the only differential measure
that can be analyzed. On its own, it provides little infor-
mation on how many and no information on which inter-
actions actually emerged or vanished during a conversion
from i to j. For two of the four developmental branch-
ing points that were considered in our model of blood
development (see Fig. 2), the net difference even had a dif-
ferent sign depending on the direction of the transition in
the branch. Interestingly, this was exactly the case when
a bifurcation is passed that determines a lineage choice,
namely, when descendant cells of MPPs either evolve
toward the erythro-myeloid (MPP→CMP) or toward the
lymphoid lineage (MPP→CLP) and, later in the devel-
opmental tree, when descandants of MEPs belong either
to the erythroid (MEP→EB) or to the myeloid lineage
(MEP→MK).
As a consequence of the high variance among the net-

work sizes of most cell types, the standard deviation

σ(�ni → nj) was larger than its mean change for most
developmental steps. We analyzed whether this within-
group variance is an artefact from the network discretiza-
tion. Yet, the interactome sizes showed a similar variability
when all transcripts with non-zero expression (equivalent
to a TPM threshold of 0.0) were presumed abundant for
each cell type instead of the stricter threshold used in the
analyses (see Additional file 2: Table S1). Furthermore,
hierarchical clustering of the original expression data was
not able to distinguish the progenitor cell types properly
(see Fig. 3a). Thus, the high variability seems inherent to
the data. Besides, clustering on the basis of the inferred
interactomes had problems to properly separate some
other cell types (see Fig. 3b) which were also grouped
suboptimally when clustered by discretized expression
data (see Additional file 1: Figure S1). Heterogeneity is
common in this context because cell populations that were
separated by specific surface markers often still contain
hidden diversity in the form of subpopulations. Sam-
ple variability, but also the dilution of it, is therefore a
general issue for averaged snapshots made in bulk mea-
surements of such samples [68, 69]. A high degree of
transcriptomic heterogeneity within grouped cell types
of the hematopoietic system is well-described for early
developmental stages [42, 43, 45, 70] and also for various
terminal cell types [71–73].

PPICompare reports a reasonable amount of rewiring events
With PPICompare we identified for all developmen-
tal steps the statistically significant subsets of emerging
(rew+) and vanishing (rew-) interactions. From this, the
net change rew+ − rew- was computed. The direction
of this net change of detected interactions was always
the same as that of the observable mean net difference

Table 1 Quantitative changes of blood interactomes during developmental transitions

Protein interaction networks PPICompare results

Transition Interactome sizes ni → nj �ni → nj Prew obss/obsall rew+/rew− rew+ − rew−
HSC→MPP 101,235 ± 30, 315 → 111, 556± 10,069 10,321± 31,944 0.372 15/18 (0.83) 311/123 188 (0.32σ )

MPP→CMP 111,556± 10, 069 → 117, 254± 3176 5698± 10,558 0.278 9/9 (1.00) 856/423 433 (0.50σ )

MPP→CLP 111,556± 10, 069 → 79, 383± 31,849 –32,173± 33,402 0.455 15/15 (1.00) 1/705 –704 (0.94σ )

CMP→MEP 117,254± 3176 → 117, 768± 8692 513± 9254 0.261 8/12 (0.67) 3955/2532 1423 (0.10σ )

CMP→GMP 117,254± 3176 → 121, 051± 6427 3796± 7169 0.256 6/9 (0.67) 8468/5556 2912 (0.12σ )

MEP→EB 117,768± 8692 → 111, 326± 28,549 –6441± 29,842 0.348 20/28 (0.71) 3021/4146 –1125 (0.18σ )

MEP→MK 117,768± 8692 → 132, 598± 8456 14,831± 12,126 0.293 12/20 (0.60) 10,574/3848 6726 (0.67σ )

GMP→N 121,051± 6427 → 67, 007± 9203 –54,044± 11,225 0.585 24/30 (0.80) 3895/41,599 –37,704 (1.46σ )

GMP→M 121,051± 6427 → 113, 534± 2762 –7517± 6995 0.337 10/15 (0.67) 15,763/21,407 –5644 (0.27σ )

CLP→CD4 79,383± 31, 849 → 120, 282± 19,498 40,898± 37,343 0.512 30/40 (0.75) 17,181/1919 15,262 (0.69σ )

The net change in number of interactions �ni → nj is reported as the mean difference between all samples per cell type and its standard deviation. obss is the minimum
number of rewired obervations out of all pairwise comparisons obsall that were necessary for a rewiring event to be called significant in PPICompare applied to that
transition. For increased comparability, the fraction as a floating-point number is given in brackets. The number of rewiring events deemed significant by PPICompare is
depicted as rew+ for emerging interactions and rew- for vanishing interactions. In addition to the net change among significant rewiring events, its absolute deviation to
�ni → nj in terms of standard deviations σ(�ni → nj) is shown in brackets
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Fig. 3 Hierarchical clustering of hematopoiesis cell types. Results of average linkage clustering (UPGMA) applied to all samples based on a the
correlation of the transcript expression data (vector of expression values for transcripts associated with a Uniprot accession in Ensembl 83) and b the
normalized Hamming distance between inferred protein interactomes (boolean vector of abundance concerning all significantly rewired
interactions). Cell types are additionally distinguished by colored labels

although this must not necessarily be the case. With
the exception of the transition CMP→MEP, the abso-
lute change according to rew+ − rew- was always smaller
than �ni → nj. Considering that the tool requires rele-
vant rewiring events to occur sufficiently more often than
expected from the rewiring background, it is not sur-
prising that it provided smaller absolute estimates. Still,
the deviation of the PPIXpress estimate from the mean
net rewired interactions was within 0.5σ for most transi-
tions and well below 1.5σ for all transitions we examined.
Furthermore, Prew and σ(�ni → nj) were positively cor-
related (Pearson corr. coeff. 0.82). The statistical criterion
used to filter out the significant portion of the differen-
tial interactome ensures to withdraw all rewiring events
of questionable relevance. If one aims at also uncov-
ering slight alterations, PPICompare is best applied to
grouped samples that deviate as little as possible between
groups.
Adding to that, the magnitude of the absolute net

change hides the actual amount of rewiring. In the devel-
opmental transition GMP→M, for example, the 37,170
rewired interactions (17% of the complete interactome
known in human) considered significant by PPICompare
only entailed an absolute net change of 5644 interac-
tions. As a side note, neither obss/obsall and Prew (Pearson
corr. coeff. 0.3) nor obss/obsall and obsall (Pearson corr.
coeff. -0.15) were correlated and PPICompare determined
a wide range of significance thresholds from 60% of all

observations up to all comparisons for individual tran-
sitions. This shows that the statistical model adapted to
the individual set of between-group rewired interactions
independent of the rewiring probability and the number
of samples.
Unfortunately there is neither a gold-standard nor a

representative set of qualitative statements for compari-
son. For the non-terminal developmental stages in human
bone marrow (all but the lower 3 rows) the very first
transition HSC→MPP was reported to be mostly driven
by the deregulation of non-protein-coding transcripts,
whereas protein-coding transcripts were more impor-
tant in later stages [30]. Furthermore, quantitative pro-
teome and transcriptome analyses of mouse HSC and
MPP populations likewise showed that protein abun-
dance and transcript levels were correlated positively and
few proteins were differentially expressed (47 of 4037
assessed proteins) [74]. If those findings are transferred
to the interactome, fewer changes should be expected
in the transition at the apex of the hierarchy than
in later transitions. This was indeed the case for the
results of PPICompare but less so for the mean net
difference.

A causal view on the rewiring of the blood interactome
during development
Next we examined which changes to the transcriptome
caused interactions to emerge or vanish when direct
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developmental descendants were compared. For each sig-
nificantly rewired interaction, PPICompare automatically
tracks how often transcriptomic alterations of the inter-
actors occur during the pairwise comparison between
groups. The causal deregulation events that are covered by
the method can be classified either as differential expres-
sion of one of the two genes coding for the interaction
partners (DE), alternative splicing of one partner (AS), or
corresponding transcriptomic changes to both partners
(DE/DE, DE/AS and AS/AS). We analyzed in two differ-
ent ways how these modes of PPI-regulation contributed
to the differential interactome during hematopoiesis.
First, since more than one type of transcriptomic alter-
ation may have been detected, we weighted the con-
tribution of each type proportionally to its occurrence
in each rewired interaction (cause proportional). Sec-
ondly, we only allowed a single type per rewired inter-
action and else classified its causing type as ”mixed”
(cause exclusive). Table 2 lists aggregated results over all
state transitions. Figure 4 provides details for individual
transitions.

Differential gene expression of a single protein is the
prevalent cause of rewiring for developmentally sequential
adjacent blood cell types
Overall and for both types of analyses, most statis-
tically significant changes to the interactome during
hematopoiesis were driven by differential expression of a
single protein, followed by differential expression of both
partners, and by AS of a single one. The combinations
of differential expression and AS of one partner each
and AS of both interacting proteins were only relevant
in few cases (see Additional file 3: Table S2). Imbalance
concerning the direction of changes for individual modes
of deregulation (see upper panels of Fig. 4) was mostly
caused by the considerable share of individual transitions
to all rewiring events. More than half of the “mixed”
events describing emerging interactions can be attributed
to the strongly net positive change of the transition

CLP→CD4. An even larger fraction of the vanishing
“mixed" events and more than three quarters of the van-
ishing DE/DE events stem from GMP→N (see Additional
file 3: Table S2). Rewiring events solely driven by AS
ocurred more frequently in emerging interactions. This
directional bias was independent of the net change of all
contributing transitions (see Additional file 3: Table S2).
We noted no preference of rewiring events driven by AS
of one interaction partner towards either early or late
developmental stages (see lower panels of Fig. 4).
This general order of importance that we observed

for the different modes of deregulation, in particular
DE being more prevalent than AS, seems plausible. We
already mentioned possibly confounding factors such as
the incomplete coverage of the interactome with domain
annotation data that PPIXpress uses to detect AS events
of influence (only about half of the proteins and a fifth of
the interactions in the reference interactome are covered,
see “Methods” section). Despite of this missing informa-
tion, regulation of gene expression is generally considered
to be the main determinant of cellular specificity [75, 76]
whereas splicing is more relevant between individu-
als [77]. The contribution of AS, however, certainly
depends on the developmental system under study and
is likely to be higher in the human brain [78, 79], for
example.

Alternative splicing is necessary to explainmany significant
rewiring events in hematopoiesis
Although the contribution of AS seems minor in com-
parison to differential gene expression (below 1% in
exclusive causes), 871 rewiring events across all devel-
opmental transitions considered here could only be fully
explained by including AS (see AS, DE/AS and AS/AS
in Additional file 3: Table S2). These cases would have
been missed by methods that only rely on gene expres-
sion. Rewiring events that were exclusively regulated by
AS across all comparisons in a transition were enriched
(adj.p < 0.05) in pathway annotations concerned with

Table 2 Distribution of the transcriptomic alterations that entailed significant rewiring events

Type Cause proportional [%] Cause exclusive [%] Absolute loss [%] Relative loss [%]

DE 84.73 69.14 15.59 18.40

AS 1.03 0.53 0.49 48.06

DE/DE 13.81 4.67 9.14 66.19

DE/AS 0.41 0.06 0.36 85.81

AS/AS 0.02 0.00 0.01 87.23

mixed 0.00 25.60 / /

Shown is the impact of conceivable types of expression changes on interaction partners regarding all individual rewiring events per transition. The six types of expression
changes were weighted by their proportional contribution to each event during the pairwise comparison step (cause proportional) or as the sole contributing cause (cause
exclusive). In the latter case, rewiring events that had more than one explanatory transcriptomic cause in a transition were annotated as “mixed”. Additionally, the amount of
causal relevance lost due to this stricter notion is given as percentage in absolute and relative terms
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Fig. 4 Distribution of the transcriptomic alterations that entailed significant rewiring events. Shown is the impact of the considered types of
expression changes on interaction partners regarding all individual rewiring events per transition. The types were weighted by their proportional
contribution to each event during the pairwise comparison step (left plots) or as the sole contributing cause (right plots). In the latter case, rewiring
events that had more than one explanatory transcriptomic cause in a transition were annotated as “mixed”. The types of causes were either
normalized by the direction of the rewiring events (upper plots) or by their contributions to individual transitions (lower plots). In the top plots, “+”
(blue) means emerging interactions and “-” (green) means vanishing interactions. The bottom three developmental transitions are those towards
terminally differentiated cell types found in blood (GMP/N, GMP/M, and CLP/CD4)

the post-elongation processing of mRNA (affecting genes
associated with splicing and polyadenylation), the cell
cycle (G2-M checkpoint and control of the pre-replication
complex by the activator of S phase kinase DBF4), tran-
scription initiation, the transport of mRNA, as well as the
regulation of phagocytosis (see Additional file 4: Table S3
for details on interactions, databases and pathway terms).
Our approach to determine interaction-centric enrich-
ment of pathway annotations is outlined in the “Methods”
section.
For example, we found that three genes which code

for components of the spliceosome complex (PRPF4B,
SNRNP70, SRSF3) switched their major isoform to a vari-
ant that undergoes nonsense-mediated decay (NMD) at
specific points during blood development and therefore
did not produce functional protein products anymore.

This regulatory mechanism has been described for several
splicing factors like SRSF3 (Serine/arginine-rich splicing
factor 3) [80, 81], which we found to be turned off dur-
ing the transitions GMP→N and CLP→CD4. We found
that this was also the case for SNRNP70 (U1 small nuclear
ribonucleoprotein 70 kDa) in the transition CMP→GMP.
The protein was then activated again in the GMP→M
transition but not in the branching to neutrophils (where
SRSF3 was also deactivated). In [76], spliced protein
isoforms detectable in mass spectrometry were also
enriched with nuclear ribonucleoproteins. Furthermore,
PRPF4B (Serine/threonine-protein kinase PRP4 homolog)
switched to an active isoform in GMP→M. Since
PPIXpress (version 1.08) only uses domain annotations
of protein-coding transcripts, protein interactions that
were associated with a domain interaction were correctly
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predicted to vanish if the corresponding transcript was
classified to undergo NMD. Additional file 5: Table S4
provides a detailed listing of rewiring events asso-
ciated with known protein complexes across all stages of
hematopoiesis.

Different types of alterations can cause the same rewiring
event
When we required each rewiring event to be consistently
deregulated in the same way in all between-group com-
parisons for the respective transition, the contributions
of most alteration types decreased severely by up to 87%
compared to their proportional contribution. The rea-
son for this is that they mostly occurred together with
other transcriptomic changes (see last two columns of
Table 2). To associate rewiring events with modes of
deregulation in a definitive manner, we will use this strict
interpretation of regulatory changes in the remaining
text. Still, considering that individuals can show a vary-
ing composition of major protein isoforms in the same
cell type [77], it is plausible that different alterations to
the transcriptome may drive the same net change to their
interactomes.
With the exception of the transition GMP→N, events

caused by a mixture of alteration types were more preva-
lent in transitions with higher Prew (see lower right distri-
bution in Fig. 4, Pearson corr. coeff. 0.90 when GMP→N
was left out). The relative loss in that regard was largest for
what we will call “co-deregulatory” types of regulation in
the following (rewiring events caused by DE/DE, DE/AS
and AS/AS events, see last two columns of Table 2). This
raises the question if simultaneous deregulation of inter-
action partners is actually ameaningful mode of control or
if the observations where this was noted were the result of
concealed individual deregulation events across different
intermediate stages of development.

Simultaneous deregulation of interaction partners shows
tendency towards rewiringwithin functional modules
Protein interaction networks are thought to be organized
in a modular fashion. Several studies, mainly concerned
with highly connected (hub) proteins in yeast, showed that
there are two basic types of such proteins in interaction
networks. Hub proteins either operate intramodular and
are coregulated with their interaction partners to work
together on the same task as a cohesive unit, or they act
as intermodular connectors of different functional mod-
ules and are expressed independently of their neighbors
[82–85].Whereas those essential implications of themod-
ular structure also apply to the human interactome, the
complexity there is beyond dichotomous classification
[85]. Yet, interaction partners that are specifically regu-
lated together should more likely belong to the same func-
tional module in the PPIN. Therefore they should also be

more likely involved in the same protein complexes, work
in the same biological process, have similar function, and
be colocalized [82, 84]. Furthermore, the betweenness, a
measure from graph theory to delineate modules, should
be lower for intramodular interactions than for intermod-
ular interactions [86, 87].
We compared rewired interactions caused by deregu-

lation of only one interaction partner with those where
the expression of both interaction partners was altered
and to those with mixed causes in this respect. To test
their tendency to reside in functional modules, we consi-
dered the involvement of the affected interaction partners
in known CORUM protein complexes [56]. Also, we ana-
lyzed the similarity of their interaction partners regarding
all GO ontologies (biological process, molecular function
and cellular compartment) [57], and the betweenness of
the affected interaction in the reference PPIN. The results
are visualized in Additional file 1: Figure S2.
We found that rewiring events caused by simultane-

ous deregulation affected indeed more often known pro-
tein complexes (fraction of interactions associated with
reference complexes increased from 3.8 to 5.3%) and
had significantly lower betweenness (median between-
ness decreased by 14%, two-sidedWilcoxon rank-sum test
p < 10−30). Also, co-deregulated interaction partners
were more likely to work on similar processes (median
GO biol. process similarity increased by 2%, two-sided
Wilcoxon rank-sum test p < 0.03) and had comparable
similarities of GO mol. functions and GO cellular com-
partments. Taken together, these soft factors support the
interpretation that co-deregulated partners in the PPIN
are more likely part of the same functional module.
Interestingly, rewiring events caused by DE/DE and

DE/AS were predominantly (relative and absolute) found
in transitions towards the terminal developmental stages
(see lower right panel of Fig. 4 and Additional file 3:
Table S2). Among those, vanishing interactions during
the progression of GMPs to Ns and Ms were highly
enriched with annotations concerning cell cycle progres-
sion (see Additional file 6: Table S5). More specifically,
interactions disappeared that are important for the G2-
M checkpoint and for the activation of the pre-replication
complex. For the transition CLP→CD4, this was not
the case for any mode of regulation. Since T cells are
proliferating [88] and Ns and Ms are cell types that are
generally non-proliferating [89, 90], some of these alter-
ations of protein interactions are likely associated with cell
cycle exit.
Furthermore, GMP→N was of special interest in that

regard, because it showed by far the highest amount of
co-deregulation (4,786 rewiring events caused by DE/DE,
DE/AS or AS/AS, see Additional file 3: Table S2) and
also the largest overall amount of rewiring as indicated by
Prew (see Table 1). When analyzed in detail, the transition
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to terminal neutrophils is a stepwise process with five
intermediate stages that are, unfortunately, not resolved
by the BLUEPRINT data. Within those finer-grained
steps, proliferation, in fact modulated by the expression
of cell-cycle proteins, steeply decreases during an early
stage and is completely absent after the very next [89].
Whereas this regulatory process is thus not completely
synchronous, the net effect is still correctly described by
our analysis.
Besides the deactivation of the cell cycle, a surpris-

ingly large number of co-deregulated changes to the
interactome were associated with the depletion of inter-
actions of other coherent molecular machineries, namely
RNA polymerase III (Pol III) and tRNA processing (see
Additional file 6: Table S5) as well as mitochondrial ribo-
somes (see also Additional file 5: Table S4). This latter
finding matches the fact that mitochondria are very rare
in Ns and not used for energy metabolism [91, 92]. In con-
trast to this, the (partial) depletion of Pol III has, to our
best knowledge, not been explicity described in the liter-
ature. Pol III is responsible for entirely different functions
in immune cells. Its inhibition restrains phagocytosis and
cytokine secretion in macrophages due to its role in tRNA
production [93], but it can also act as a sensor to detect
foreign DNA [94]. However, its inhibition does not alter
the response of Ns in that regard [95]. Owing to the short
lifespan of Ns, it may simply be an economical decision of
budgeting cellular resources.

Small set of likely transcriptomic alterations
PPICompare provides an optimization approach that sug-
gests a small set of likely changes in the transcriptome
that explain all significant rewiring events. In every tran-
sition each of these alterations to a single protein yielded
between 6.6 and 17.4 rewiring events on average (average
of 11.4 over all transitions). The number of all proteins
affected by any significant rewiring event was on average
5.3 times larger than the number of proteins in the respec-
tive small set of changes (see Additional file 7: Table S6).
From now on, we will refer to this smaller set of proteins
as the “reduced set” of proteins affected by rewiring.
The optimization approach tends to select hub pro-

teins in the differential network (see Fig. 5 (left) for an
example and Additional file 1: Figure S3 (upper half )
for complete results). This is not very surprising given
that the score si increases if such a protein was tran-
scriptionally deregulated. Also, it is biologically reason-
able because an appropriately deregulated protein will
cause rewiring around itself. Interestingly, selected pro-
teins were not necessarily highly connected proteins in the
reference interactomewhereas those rewired proteins that
were not in the reduced set tended to have above aver-
age degrees in the complete network (see Fig. 5 (right) for
an example and Additional file 1: Figure S3 (lower half )

for the complete results). The latter observation likely
increased their chance of acting as interaction partner of
a deregulated protein and thus be part of the differential
network.
Figure 6 outlines the contributions of the two elemen-

tary modes of transcriptomic alterations per protein, DE
and AS, to the individual sets and altogether. Also in the
reduced set, most of the deregulation events were driven
by DE. Yet, the overall proportion of AS was about twice
as large as in the comparisons shown previously (in each
transition at least 1.3%). Also, the fraction of AS was larger
among emerging interactions. The usage of alternative
protein isoforms was equally important in all transitions
we analyzed.

Important alternative splicing events are found in proteins
broadly associated with transcriptional control
To assess the functional scope of alternative transcript
usage, we submitted the set of all 134 proteins which
underwent AS in the sets of most relevant events in
any transition to enrichment analysis using the DAVID
webservice [65] (see “Methods” section).
DAVID characterized the gene set to be preferen-

tially located in the nucleus (e.g., “nucleoplasm” 2.6 fold
enriched), and preferentially concerned with the orga-
nization and regulation of chromatin (e.g., “chromatin
organization” 3.7 fold enriched and “chromatin mod-
ification” 3.2 fold enriched) and with transcriptional
regulation (e.g., “DNA binding” 1.9 fold enriched and
“transcriptional regulation” 1.9 fold enriched). The fam-
ily of Basic-Leucine zipper transcription factors seemed
to be especially relevant (e.g., “Basic-leucine zipper
(bZIP) transcription factor” 9.8 fold enriched, but not
significant after adjustment). Further enriched clusters
involved post-translational regulatory mechanisms like
ubiquitination and related processes (e.g., “Ubl con-
jugation pathway" 3.8 fold enriched). A detailed list-
ing of all results is provided in Additional file 8:
Table S7.
The accumulation of such terms in the altered interac-

tion partners points to the combinatorial and synergistic
control of transcription, which is of central importance in
all critical developmental circuits in eukaryotes [96–99].
This specificity is of special interest because individ-
ual interactions between different transcription factors or
transcription factors and cofactors seem to be deliberately
switched in a targeted way by AS although both factors are
expressed in the cell.

Interactions between proteins in the reduced set are likely
connectors of functional modules
Co-deregulation of proteins in the small set of changes
could hint at important coregulated processes. We started
to inspect this possibility by evaluating significantly
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Fig. 5 Cumulative degree distributions of rewired proteins. Cumulative degree distributions of the rewired proteins of the transition HSC→MPP
in the corresponding differential network (left) and the distributions of the rewired proteins in the reference protein interaction network (right).
The rewired proteins are additionally split up into those in the reduced set and the remaining ones, ”all proteins” depicts all proteins in the
reference network

rewired interactions among proteins of the reduced set in
the same fashion as for the general case of simultaneous
deregulation. The results are also visualized in Additional
file 1: Figure S2.
Interactions altered by those events are associated

with more reference protein complexes than the network
average but with fewer than the co-deregulated events.
They did not differ from co-deregulation events concern-
ing the similarity of processes and colocalization.Whereas
the functional similarity was only slightly increased
(median GO func. similarity increased by 6%, two-sided

Wilcoxon rank-sum test p < 0.02), there was a striking
increase in the betweenness values compared to simul-
taneous deregulation (median betweenness increased by
31%, two-sided Wilcoxon rank-sum test p < 10−78). The
betweenness values were even significantly higher than
those of rewiring events for which consistently only one
protein was deregulated (median betweenness increased
by 13%, two-sided Wilcoxon rank-sum test p < 10−69).
This speaks against a possible intramodular role of such
interactions in the interactome, but rather hints at a
function as intermodular connectors between functional

Fig. 6 Distributions of alteration types for the minimum amount of explanatory reasons for rewiring events. Shown is the contribution of the two
elementary types of conceivable protein alterations in PPICompare, DE and AS, to the solutions of the optimization regarding the small sets of likely
changes that explain all rewiring. The contributions are normalized by their direction (left plot) or by their proportion in individual transitions (right
plot). In the left plot, “+” (blue) means emerging interactions and “-” (green) means vanishing interactions
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modules. Such connections are very important in sig-
naling, for example, and their dysregulation can be cru-
cial [100]. In fact, the interactions between proteins in
the reduced set were enriched in signaling pathways
for all developmental transitions (see Additional file 9:
Table S8). The apoptosis-relevant interaction of Bcl-2
(BCL2) with the Bcl-2 modifying factor (BMF) [101], for
example, emerges in the transition HSC→MPP and is an
interaction between proteins of the reduced set (first tab
Additional file 9: Table S8).
Complementing this, we used the respective sets of

emerging and vanishing interactions individually to deter-
mine direction-consistent connected components (CCs)
among the reduced protein sets in each transition. The
results are listed in Additional file 10: Table S9. Although
there existed very large CCs among those interactions
(including up to 2,005 proteins in GMP→N, for exam-
ple), even the large CCs contained comparably few (at
most 27) and rather small known CORUM complexes (the
largest complex overlapping a CC contained 5 proteins).
Within functional modules, one would rather expect
that deregulated CCs would preferentially coincide with
complexes, though.

The reduced set of affected proteins is representative to blood
development
In our study, significant rewiring events can be expected
to affect proteins that are related to hematopoiesis. We
examined this hypothesis by testing how likely it was to
sample at least a certain amount of proteins deemed rel-
evant in this context from the reference PPIN by chance.
The importance of proteins in that regard was classified
according to protein sets that we compiled fromGO anno-
tation data and regulatory data from TRRUST [67] (see
“Methods” section for details).
We first checked for overrepresentation of hematopoiesis

proteins and the regulatory targets of hematopoietic tran-
scription factors. The latter ones were included to also
account for proteins that are not obviously associated
with hematopoiesis, but that are equally probable to
be deregulated due to their direct dependency on reg-
ulators of blood development. The set of all proteins
affected by rewiring events was highly enriched for those
proteins across all transitions (for all transitions p <

10−5, see left half of first sheet in Additional file 11:
Table S10). Except for the transition MPP→CMP, the
reduced set of deregulated proteins always contained in
all other transitions significantly more of those relevant
proteins than expected by chance (for all other transitions
p < 0.022, see right half of first sheet in Additional file 11:
Table S10).
Similar results were obtained for the set of

hematopoiesis proteins without the targets (see second
sheet in Additional file 11: Table S10 for details).

Known hematopoietic transcription factors are among the
drivers of rewiring events
Then, we investigated if known hematopoietic transcrip-
tion factors were rewired more often than expected by
chance and if targets of certain transcription factors were
overrepresented in the two protein sets determined (see
“Methods” section for details).
Whereas the complete set of proteins involved in

rewiring events was highly enriched in hematopoietic
transcription factors (for all transitions p < 3 ∗ 10−4), this
wasmostly not the case for the reduced set of proteins (see
third sheet in Additional file 11: Table S10). Examples of
such rewiring events are discussed below.
Likewise, we found an enrichment of transcription fac-

tor targets in the complete set for all transitions. In all but
one case this even included known hematopoiesis regu-
lators (see left half of fourth sheet in Additional file 11:
Table S10). Again, enrichment was only reported in four
transitions for the reduced protein sets (see right half
of fourth sheet in Additional file 11: Table S10). Thus,
while the optimization procedure can help to effectively
decrease the number of proteins of interest, depending on
the task at hand the reduction may come along with a loss
of information.
Transcription factors for which targets were overrepre-

sented in different developmental transitions are listed in
Additional file 11: Table S10.

Consequences of rewiring during blood development
At last, we took a brief look into which interactions were
changed. The output files of PPICompare are formatted
as node- and edge-attribute tables to enable seamless sup-
port of network visualization tools such as Cytoscape.
Figure 7 shows an illustration of the resulting differential
network for the transition HSC→MPP whereby the dense
central region is enlarged. Remarkably, this highly con-
nected part of the network is characterized by changes to
the interatome between different transcription factors and
between transcription factors and cofactors. Such assem-
blies of transcriptional regulators indeed often have a piv-
otal role in the context of developmental control [96–99].
Thus, we will focus our attention on this subset of proteins
and discuss some of the rewiring events involving proteins
considered most relevant by the internal optimization of
PPICompare (blue nodes in the visualization).
The transcription factor Fos-related antigen 1 (FOSL1)

is a prime example for alternative transcript usage.
Upon transition from HSCs to MPPs, its most abun-
dant transcript was switched from ENST00000448083
to ENST00000312562 in every between-group compar-
ison. This shift resulted in the inclusion of a basic-
leucine zipper domain (PF00170) which is needed for
any dimerization of the protein and thus enabled for-
mation of several new interactions to other regulatory
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Fig. 7 HSC→MPP rewiring events in Cytoscape. We visualized the differential network of the transition HSC→MPP in Cytoscape 3.3 [31] using the
default output files of PPICompare. The nodes depict all proteins affected by significant rewiring events. All proteins (internally Uniprot accessions)
are displayed with their associated gene’s name. Proteins that belong to the “small set of likely changes” are colored blue. The size of nodes
increases with their importance score as described in the “Methods” section. Furthermore, protein nodes with a rectangular shape were solely
deregulated by AS (here: FOSL1). Green edges depict emerging interactions and red edges the vanishing ones. The edge thickness indicates how
often the event was observed throughout the pairwise comparisons (here either in 15 or in 18 of 18 comparisons). Here, only the largest connected
component of the differential network is shown (lower left)

proteins. Among those were coactivator proteins like
the (histone) acetyltransferases p300 (EP300) and CREB-
binding protein (CREBBP) which are both important
integrators of regulatory signals in the hematopietic and
other developmental systems [102]. Since such proteins
are ubiquitously expressed in all cells, a sole analysis of
differential expression would not have been able to detect
a difference in that regard betweenHSCs andMPPs. Inter-
actions of FOSL1 with other transcription factors that
were viable after splicing involved c-Jun (JUN), Jun-D
(JUND), c-Maf (MAF) or Activating Transcription Factor
4 (ATF4). Together with factors from the Fos-family, these
are exchangeable constituents of the transcription factor
complex AP-1 and as such control processes including

proliferation, differentiation and apoptosis [103, 104].
Further emerging interactions to transcription factors
included binding to DNA damage-inducible transcript 3
(DDIT3), that is involved in response to cellular stress,
and c-Myc (MYC). Besides its general implication in
processes such as cell division, apoptosis, cellular growth,
angiogenesis and differentiation, c-Myc is specifically con-
cerned with the balance of self-renewal and differentiation
of HSCs [105].
Lymphoid enhancer-binding factor 1 (LEF1) is another

protein that changed its expression state in each single
comparison and possesses regulatory capabilities in
developmental processes beyond the lymphoid lineage
[106]. The PPICompare results help in explaining how
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LEF1-binding may affect its targeted sequence regions
mechanistically in MPPs compared to HSCs. Facilitated
by the detected differential recruitment of various histone
modifying proteins (EP300, HDAC1, SETD8), it could act
as the DNA-binding factor for chromatin remodel-
ing events in MPPs, for example. Also, LEF1 may
form complexes with β-catenin (CTNNB1), T-Cell
Factor 4 (TCF7L2), and other proteins (HINT1, RUVBL1)
implicated in Wnt/β-catenin signaling, a crucial devel-
opmental pathway [107–109]. It may also bind to c-Myb
(MYB), a transcription factor controlling regulation of
hematopoietic progenitors [110].Moreover, its abundance
in MPPs enabled interactions with the Bcl-2 associ-
ated X protein (BAX), which also binds to the impor-
tant apoptosis regulator Bcl-2 (BCL2). The expression
of the latter was upregulated here when hematopoietic
progenitor cells become more commited. As correctly
determined by PPICompare, Bcl-2 has plenty of new
interaction partners in MPPs and thereby ensures a bal-
ance of complexes with pro- and antiapoptotic influ-
ence (besides BAX: BCL2L1, BAK1, both not visible in
figure) [111].
Another upregulated protein deemed important by

us was the adaptor protein Sin3b (SIN3B) which facil-
itates the association of other proteins to epigenetic
silencers (REST, HCDA2). Although it apparently did not
exert this function in HSCs, it provided c-Myc (MYC)
with this capability after the progression to a progeni-
tor cell and furthermore enabled a repressive function of
the important hematopoietic transcription factor Helios
(IKZF2) of the Ikaros-family [112].
Besides those examples for transcriptional control in

HSC→MPP, Additional file 12: Table S11 lists all path-
ways that are affected by rewiring events. We grouped
the events into changes to interactions that were shared
between transitions or those exclusive to a certain transi-
tion at a developmental branching point.

Conclusion
Combining PPIXpress and PPICompare enabled us to
investigate the dynamics of cause and consequence
within the human protein interactome during devel-
opmental branching and progression to the extent
that this is reflected by transcript expression data.
In principle, one can easily detect alterations to any
pathway or changes to functional protein complexes,
like those concerned with transcriptional regulation.
Furthermore, the provided software can aid in suggest-
ing promising targets for the development of new PPI
inhibitors, an emerging class of molecules in drug discov-
ery [113]. Beside the general genome-wide trends stud-
ied here, the presented pipeline is equally powerful to
address very specific questions about rewiring of protein
interactions.

Additional files

Additional file 1: Supplementary information. This PDF contains
supplementary results, references and Figures S1–S5 that are not
included in the main text. (PDF 8340 kb)

Additional file 2: Table S1. Interactome sizes per cell type for all TPM
thresholds examined. Shown are the average number of proteins and the
average number of interactions as well as their standard deviations for the
constructed protein interaction networks for different discretization
thresholds. (XLSX 89.5 kb)

Additional file 3: Table S2. Occurrence of each considered type of
transcriptomic alteration per transition. Shown are the number of rewiring
events for all observed types of transcriptomic alterations when only
exclusive causes were considered. (XLSX 9.79 kb)

Additional file 4: Table S3. Pathway enrichment analysis of rewiring
events controlled by different types of regulation. Listed are pathways for
which annotated interactions could be associated with rewiring events
across all transitions that were caused by a certain type of regulation. The
exact methodology is described in the “Methods” section. In all tables,
significantly enriched pathway terms (adj.p < 0.05) were marked in green.
Very small p-values were reported as 0.0 due to numerical reasons
(computed in Python using SciPy version 0.17 [114]). (XLSX 168 kb)

Additional file 5: Table S4. Association of rewiring events with protein
complexes. Listed are all rewiring events that affected at least one human
CORUM complex [56] separated by transition, type of regulation, and
direction. (XLSX 193 kb)

Additional file 6: Table S5. Pathway enrichment analysis of rewiring
events controlled by different types of regulation separated by transition
and direction. Listed are pathways for which annotated interactions could
be associated with rewiring events that were caused in a certain transition
in a certain direction by a certain type of regulation. The exact
methodology is described in the “Methods” section. Significantly enriched
pathway terms (adj.p < 0.05) were marked in green. Very small p-values
were reported as 0.0 due to numerical reasons (computed in Python using
SciPy version 0.17 [114]). (XLSX 455 kb)

Additional file 7: Table S6. Sizes of resulting small sets of likely changes
in the transcriptome that explain the rewiring in each transition. Listed are
the sizes of the resulting small sets of likely changes in the transcriptome
that explain the rewiring in each transition, the overall number of rewired
interactions for comparison, as well as the number of proteins that are
affected by the rewiring. (XLSX 455 kb)

Additional file 8: Table S7. DAVID enrichment analysis of AS-driven
deregulation events among all sets of likely changes to the transcriptome
across all transitions. Results of the analysis were converted to an Excel
sheet without further changes. The exact methodology is described in the
“Methods” section. (XLSX 101 kb)

Additional file 9: Table S8. Pathway enrichment analysis of rewiring
events between proteins of the reduced set. Listed are pathways for which
annotated interactions could be associated with rewiring events between
proteins of the reduced set that were caused in a certain transition. The
exact methodology is described in the “Methods” section. Significantly
enriched pathway terms (adj.p < 0.05) were marked in green. Very small
p-values were reported as 0.0 due to numerical reasons (computed in
Python using SciPy version 0.17 [114]). (XLSX 114 kb)

Additional file 10: Table S9. Connected components within the reduced
set of rewired proteins. Listed are all connected components (CCs) of the
direction-specific subnetworks of the reference PPIN (up- and
downregulated interactions) defined by the reduced set of rewired
proteins. We only included CCs spanning at least 3 proteins. For each CC,
we report the number of proteins that were members of the component,
the direction of the regulation, and which CORUM complexes were
completely included in the component. The size of the respective
complexes is given in brackets. (XLSX 16.5 kb)

Additional file 11: Table S10. Enrichment of hematopoiesis-specific
protein-sets. Listed are the results of hematopoiesis-specific protein-set
enrichment analyses for each developmental transition. Query protein-sets
were the set of all proteins in the differential network (termed “all”) and the
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reduced set derived by the internal optimization procedure (termed
“reduced”) in the respective transition. We tested the enrichment of the
query sets regarding hematopoiesis proteins and the regulatory targets of
hematopoietic transcription factors (first sheet, abbreviated as “Hemato.
proteins + reg. targets”), hematopoiesis proteins (second sheet,
abbreviated as “Hemato. proteins”), and hematopoietic transcription
factors (third sheet, abbreviated as “Hemato. TFs”). Furthermore, we
determined which transcription factors (not restricted to hematopoietic
transcription factors) had more regulatory targets than expected by
chance in the queried set (fourth sheet, abbreviated as “Enriched hemato.
TF”). The exact methodology is described in the “Methods” section. Here,
significance was reported if adj.p < 0.05. In all tables, test cases that were
not significant ((adj.)p ≥ 0.05) were highlighted in red. Very small p-values
were reported as 0.0 due to numerical reasons (computed in Python using
SciPy version 0.17 [114]). (XLSX 15.5 kb)

Additional file 12: Table S11. Pathway enrichment analysis of rewiring
events grouped into shared and exclusive events in each developmental
branching point. Listed are pathways for which annotated interactions
could be associated with rewiring events that were shared between
transitions or exclusive to a transition at a developmental branching point.
The exact methodology is described in the “Methods” section. Significantly
enriched pathway terms (adj.p < 0.05) were marked in green. Very small
p-values were reported as 0.0 due to numerical reasons (computed in
Python using SciPy version 0.17 [114]). (XLSX 300 kb)
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