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Abstract

Background: Time-lapse microscopy is an essential tool for capturing and correlating bacterial morphology and
gene expression dynamics at single-cell resolution. However state-of-the-art computational methods are limited in
terms of the complexity of cell movies that they can analyze and lack of automation. The proposed Bacterial image
analysis driven Single Cell Analytics (BaSCA) computational pipeline addresses these limitations thus enabling high
throughput systems microbiology.

Results: BaSCA can segment and track multiple bacterial colonies and single-cells, as they grow and divide over
time (cell segmentation and lineage tree construction) to give rise to dense communities with thousands of
interacting cells in the field of view. It combines advanced image processing and machine learning methods to
deliver very accurate bacterial cell segmentation and tracking (F-measure over 95%) even when processing images
of imperfect quality with several overcrowded colonies in the field of view. In addition, BaSCA extracts on the fly a
plethora of single-cell properties, which get organized into a database summarizing the analysis of the cell movie.
We present alternative ways to analyze and visually explore the spatiotemporal evolution of single-cell properties in
order to understand trends and epigenetic effects across cell generations. The robustness of BaSCA is demonstrated
across different imaging modalities and microscopy types.

Conclusions: BaSCA can be used to analyze accurately and efficiently cell movies both at a high resolution (single-cell
level) and at a large scale (communities with many dense colonies) as needed to shed light on e.g. how bacterial
community effects and epigenetic information transfer play a role on important phenomena for human health, such as
biofilm formation, persisters’ emergence etc. Moreover, it enables studying the role of single-cell stochasticity without
losing sight of community effects that may drive it.

Keywords: Time-lapse microscopy, Machine learning, Bacterial image analysis, Colonies segmentation, Cell segmentation,
Lineage tree construction, Visualization, Single-cell informatics, Single-cell analytics

Background specific phenotypes of interest, such as persister cells [6]
Systems biology is an interdisciplinary field with ultimate  and biofilms [7]. It has also become clear that deciphering
goal to elucidate the relationships between molecular the dynamics of evolving bacterial communities requires
states and higher order properties of complex biological — multidisciplinary approaches [8, 9]. Microscopy is an im-
systems. Microbial communities are such systems and the  portant tool that can help us capture data and correlate
study of their collective behavior is a major challenge in  information at multiple scales, from cell populations to
the post-genomic era [1-5] in order to identify the sources  molecules [9]. In particular, time lapse microscopy allows
and role of heterogeneity in the behavior of microbial us to monitor the evolution of bacterial communities and
populations and uncover the mechanisms that lead to  generate "cell movies" massively [10]. However, accurate
and fully automated image analysis and single-cell analyt-
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behaviour of microbial communities. Technical difficul-
ties hamper the automatic monitoring and tracking of
subpopulations and individual cells in growing bacterial
colonies at a large scale [9]. Studies on the variability of
individual cells behaviour rely on laborious manual an-
notation of cell movies with only a small number of cells
per frame [9-12]. Tracking cells across image frames in
overcrowded (dense) bacterial communities with many
colonies and thousands of cells in the field of view,
extracting automatically single-cell attributes (e.g. size,
elongation rate, division time, etc.) and correlating them
to molecular and other signatures (e.g. expression of
fluorescently tagged proteins) remains elusive. Develop-
ing robust and high throughput image analysis pipelines
that routinely accomplish these tasks effortlessly will en-
able single-cell analytics and provide new insights to
compelling open questions. It is the combination of ac-
curate single-cell image analysis and single-cell analytics
that will empower the development of effective stochas-
tic modeling and systems microbiology approaches. This
new capability will allow us to characterize stochasticity
in colonial growth dynamics of single-cells [13, 14],
model stochastic gene expression in single-cells [15],
measure phenotypic variation in bacteria [16], model
bacterial state transitions from regular to persister cells
[6, 17], or from planktonic to biofilm cells [6].

Bioimage analysis has evolved to become an import-
ant discipline in bioinformatics and computer vision
[18]. For bacterial image processing, well known open
source software packages for analyzing cell movies are
the TLM-Tracker [19], CellTracer [20], MicrobeTracker
[21] and its successor Oufti [22], and Schnitzcells [23].
The TLM-Tracker [19] uses multiple alternative algorithms
for cell segmentation, such as threshold-based, watershed
transform and level-set methods. To construct the lineage
tree of a colony, it matches overlapping cells in consecutive
movie frames. The CellTracer [20] employs the concept of
hybrid grey-scale/black-white images and extends image
filtering and mathematical morphology operators devel-
oped for grey-scale images to work with such hybrid im-
ages. This allows it to extract cells iteratively as it gradually
converts the original grey-scale image into a binary mask
of segmented cells. The MicrobeTracker [21] and its suc-
cessor Oulfti [22] combine several algorithms developed for
medical image segmentation and computer vision, includ-
ing clustering, template-matching, active contours, region
growing and level set methods. Schnitzcells [23] can
segment cells in either fluorescence or phase contrast
images, track cells in a frame-to-frame manner [24] and
measure fluorescence.

The main features of the aforementioned state-of-the-art
methods are summarized in (Additional file 1: Table SI).
Their most important limitations that have motivated our
work are the lack of generality and automation. Currently
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available methods fail quite often to process cell movies
acquired using diverge imaging settings (e.g. microscope
type, imaging modality etc.) and require time consuming
human involvement in a trial-and-error mode in order to
produce acceptable results. Moreover, they require extensive
parameterization thus becoming unfriendly since users need
to become familiar with image processing concepts to make
good use of them. For all these reasons, bacterial image
analysis has remained a serious bottleneck limiting the com-
plexity of cell movies that can be analyzed efficiently and
ultimately the throughput of systems microbiology studies.
It is therefore important to develop fully automated compu-
tational approaches that can analyze more complex cell
movies with many frames, many colonies per frame, many
cells per colony, and extract, characterize and track colonies
and single-cells successfully, even in movies with imperfect
image quality and multiple overcrowded colonies with
thousands of cells in the field of view.

Motivated by this need, we present here a complete
pipeline that combines image processing and machine
learning algorithms to achieve precise bacterial colonies
and single-cell segmentation, tracking and phenotypic
characterization. Our pipeline, called BaSCA (Bacterial
Single-Cell Analytics), allows the fully automated segmen-
tation and morphology/expression analysis of individual
cells in time-lapse cell movies. We employ a “divide-and-
conquer” strategy allowing the independent analysis of dif-
ferent micro-colonies in the input movie. At the colony
level, we divide again the problem in order to successively
reach down to the single-cells level. This recursive decom-
position approach allows us to analyze efficiently colonies
regardless of their cell density and deal effectively with
dense cell images. To the best of our knowledge, our bac-
terial image analysis approach is the only one in the field
following an aggressive “divide-and-conquer” computation
strategy that also facilitates a parallel processing software
implementation (work in progress).

Besides its robustness across different imaging modal-
ities and its complete automation (the only information
the user has to set is the pixel-to-um correspondence,
the imaging modality, and the type of species imaged),
our pipeline supports a high throughput analysis and
estimation of a plethora of single-cell properties, a pre-
requisite for developing a high throughput micro-
environment data analytics platform. Moreover, BaSCA
offers several unique capabilities: tracking of multiple
colonies (that may merge) in the field of view, constructing
the lineage tree of each colony, visualizing on the lineage
tree the evolution of any desirable single-cell property
(e.g. cell length, cell area, cell distance from the colony's
centroid, fluorescence intensity etc.), construction of time
trajectories of selected single-cell properties (cell property
tracks) across image frames etc. All these data analytics
capabilities favor high throughput analysis and enable
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systems biology orientated research both at a higher
resolution (i.e. zooming down to the single-cell level)
and at a large-scale (observing dense community dy-
namics). It therefore becomes possible with BaSCA to
account for single-cell stochasticity in different phe-
nomena without losing sight of the community effects
that may drive it [6, 7, 16, 17].

The rest of the paper is organized as follows. In the
Methods section we first describe the time lapse movies
and evaluation metrics used to compare BaSCA to other
state-of-the-art methods (Materials subsection), and
then elaborate on the pipeline of algorithms involved in
BaSCA (Methods subsection). In the Results and Discus-
sion section, we present evaluation results with different
datasets demonstrating the most important single-cell
analytics features of BaSCA and examples of how they
can be used in practice. Finally, in the Conclusions sec-
tion we summarize our findings and point to interesting
future research directions.

Methods

Materials

Datasets

The following datasets were used in the evaluation of
this work:

SalPhase A time lapse movie acquired by phase-
contrast optical microscopy, monitoring four single cells
of Salmonella enterica serotype Typhimurium that div-
ide to become three discrete micro-colonies (86 frames
in total, 5 min sampling period, 1360x1024 pixels reso-
lution, see [13] for more details). From now on, we will
refer to this movie as "SalPhase" and going from top left
to bottom right we will refer to the three colonies en-
countered as colony 1, 2 and 3 respectively. This dataset
is provided as Additional file 2.

Multi-SalPhase This time lapse phase-contrast optical
microscopy movie includes multiple growing micro-
colonies of S. Typhimurium (101 frames, 5 min sampling
period, 1360x1024 pixels resolution, see [13] for more
details). This more complex movie contains overcrowded
merging colonies and the total number of cells exceeds
three thousands in late frames. This dataset is provided as
Additional file 3.

Individual frames We have also analyzed several image
frames of different imaging modalities generated by different
laboratories that are publically available. MicrobeTracker’s
frame is a phase-contrast CSLM image (1344x1024 pixels
resolution) of sparse Escherichia coli cells and micro-
colonies available at MicrobeTracker’s webpage [25].
CellTracer’s frame contains a micro-colony of E. coli ac-
quired by phase-contrast optical microscopy (901x689 pixels
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resolution) and was derived from a movie produced in [26]
and provided at CellTracer’s webpage [27]. TLM-Tracker’s
image contains a micro-colony of Bacillus megaterium ac-
quired by bright-field optical microscopy (1300x1030 pixels
resolution) generated in [28] and available at TLM-Tracker’s
webpage [29]. Finally, Schnitzcells’ frame contains a micro-
colony of E. coli acquired by phase-contrast optical micros-
copy (472x538 pixels resolution) and was derived from a
movie provided at the Schnitzcells’ webpage [30]. Let us
mention that Schnitcells can handle only uintl6 format
images, thus each of the aforementioned datasets was con-
verted to this format too so as to enable comparative evalu-
ation of Schnitchells with the rest of the methods.

Evaluation metrics

Comparative evaluation was performed based on metrics
commonly used in pattern recognition, such as true pos-
itives (TP), i.e. actual cells that were correctly classified
as cells, false positives (FP), i.e. artifacts that were incor-
rectly classified as cells, and false negatives (FN), i.e. ac-
tual cells that were missed. We remark that artifacts can
be either due to noise or fragments of over-segmented
cells. Furthermore, for each method we computed the
True Positive Rate (TPR) or recall

TPR = TP/(TP + FN),

which represents the percentage of the true cells found,
the Positive Predictive Value (PPV) or precision

PPV = TP/(TP + EP),

which represents the probability that a detected cell is a
true cell. The former metric is used to characterize the
sensitivity and the latter the specificity of a method.
Additionally, we computed the F-measure [31], i.e. the
harmonic mean of TPR and PPV that is commonly used
to assess the recall versus precision trade-off:

F=2.(PPV.TPR)/(PPV + TPR).

Methods

The developed BaSCA analysis pipeline consists of five
stages: image preprocessing, bacterial colonies segmenta-
tion, single-cells segmentation, cells tracking and lineage
trees construction, single-cell attributes estimation and
visualization. Specifically, we formed a computational pipe-
line, focusing on detecting, segmenting and characterizing
each colony and individual cell in the movie. Initially, we
process the whole image and extract individual colonies.
Then we analyze each colony into a partition of “objects”
containing one or more cells. Gradually, we zoom in and
reach the desired result; accurate single-cell boundaries
detection and cell features estimation. Below, we describe
each stage of the developed pipeline in detail.
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Image preprocessing and colonies segmentation

Image preprocessing is a necessary initial step to suppress
noise and correct for image background abnormalities
(see Fig. 1(a-b)). We apply first Contourlet Transform
based image denoising, as described in [32-35]. Then,
we use Contrast-Limited Adaptive Histogram Equalization
(CLAHE) [36] to enhance cell regions in the image and sup-
press any luminous local micro-colonies background that
exists in some imaging modalities (see Fig. 1(b)). As a result,
we manage to remove noise and at the same time separate
the background from information bearing cell regions.

After preprocessing, our colony segmentation method
creates a binary mask used to separate each colony from
the image background. We first apply a mathematical
morphology operation (rolling ball method) [37] to esti-
mate the image background. Then we use Otsu’s global
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thresholding [38] and Canny’s edge detection algorithms
[39] to create a binary image (global background mask)
outlining as precisely as possible the region of each colony,
regardless of its size (see Fig. 1(c)).

After completing this task for each image frame, we
track each colony and extract its properties (e.g. number
of cells, total area, location of the colony’s centroid etc.) in
the time-lapse movie. Specifically, in order to determine
the correspondence of two colonies in two consecutive
frames, we check whether the centroid of a colony in the
previous frame lies inside the bounding box of a colony in
the current frame, and if so this colony is matched. If a
colony in the current frame matches to no colony in the
previous frame, we treat it as a new one, since we consider
it possible for a colony to enter to the microscope’s field
of view while the experiment is running. When two or

750 800 850 900 950 1000 1050 1100 750

Fig. 1 Image preprocessing and Colonies Segmentation. a Input image with three colonies (SalPhase movie). b Contourlet based denoising and
adaptive histogram equalization used to sharpen cell edges. ¢ Colony masks created using morphological filtering, Otsu’s global thresholding and
Canny edge detection; they are used to separate colony regions from image background so that each colony can be processed separately in the
pipeline (divide-and-conquer). d Adaptive thresholding is used to remove the colony’s local background pixels. @ Multiplication of the image
generated by adaptive thresholding with the corresponding extracted mask (Colony in the red rectangle) removes the noise (existing locally in
the colony) and the artifacts (produced by the adaptive thresholding algorithm) while revealing cell objects inside the colony

800 850 900 950 1000 1050 1100

4
1050 1100 750




Balomenos et al. BMC Systems Biology (2017) 11:43

more colony centroids of the previous frame lie inside the
bounding box of the same colony in the current frame,
the algorithm identifies that these colonies have merged.
This capability is important since in a large bacterial com-
munity colonies can merge or move out of the field of
view. Keeping track of colonies as they grow and merge is
important not only for archiving their time varying prop-
erties but also for knowing the colony from which each
individual cell has emerged i.e. the subpopulation to which
it belongs to, without using any fluorescent markers. To
the best of our knowledge, our divide and conquer
computational approach is the only one that can track
multiple subpopulations (colonies) that may merge, in
addition to single-cells, in cell movies.

Single-cell segmentation algorithm

Having defined a colony’s region as accurately as pos-
sible, we can now “zoom in” and detect individual cells
effectively. A visual overview of the whole segmentation
approach is provided in Fig. 2.

From colonies to cell objects Despite the applied
preprocessing, each colony may still contain local back-
ground pixels due to large illumination variations (e.g. see
Fig. 1(b)). To overcome this problem, we use adaptive
thresholding [37] to separate cells from the non-uniformly
illuminated background (see Fig. 1(d)). We remark that
this type of background variability is typical for images ac-
quired by optical microscopes (either bright field or phase
contrast) but not for images acquired using confocal laser
scanning microscopes (CLSM) [40]. Nevertheless, the
adaptive thresholding method used here has no negative
effect on CLSM images. However, as illustrated in Fig. 1(d)
adaptive thresholding introduces "salt and pepper" noise,
so in order to eliminate it we multiply the processed
image with the global background mask. The result is an
image with the global background removed and the local
noise inside each colony suppressed (see Fig. 1(e) for the
3rd colony of SalPhase movie).

However, the individual cells inside the colony may not
be fully separated (segmented) at this stage. We rather ob-
serve that the colony is partitioned into "cell objects”,
where each object is a set of cells "touching” each other
(see Fig. 3(a) for examples). The union of these objects
covers all cells in the colony and their pairwise intersec-
tion is empty (every single-cell belongs to one and only
one object). In the colony of Fig. 3 (a) three objects have
been colored for demonstration purposes, one green and
two red. The green is a so called collinear object while
the two red ones are considered complex objects. To
determine an object’s category (collinear vs. complex) we
developed a divide-and-conquer approach where we
analyze each object individually. First, we compute the
object's skeleton as presented in [37] (refer to Fig. 3 (b-d)).
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Then, if the skeleton has "junction points" (i.e. pixels that
have more than two pixel neighbors [37]) the object is
considered complex. On the other hand, if we find no
junction points, the object is either a single-cell or a
cascade of single-cells (collinear object), see Fig. 3 (c).

Collinear object analysis In order to ascertain if a col-
linear object corresponds to a single-cell or a series of
connected single-cells (i.e. a cell "sausage" like structure)
we developed a simple algorithm based on the observa-
tion that the shape of a bacterium at the fission stage
[41] resembles that of a bow tie (refer to Fig. 4 (a)). The
algorithm searches for "bow tie points" by computing
the Euclidean distances [42] of all pairs of diametric
pixels (antipodal) lying on opposite boundaries with re-
spect to the object’s centerline. Then, it identifies signifi-
cant local minima (Fig. 4 (c)) of the distance curve,
meeting the following criteria:

localMin/leftLocalMax < T and
localMin/rightLocalMax < T

where localMin is the local minimum and leftLocalMax
and rightLocalMax are the local maxima lying around
the local minimum. Such local minima (if they exist) are
called “deep valleys” (Fig. 4 (c), indicated by red circles).
Intuitively, T is the ratio of the minimum to maximum
width (i.e. the distance of diametric pixels with respect
to the object’s centerline from the center of the one pole
semi-circle to the center the other pole semi-circle)
measured at the frame before the first cell division. The
value of threshold T is automatically set by the pipeline
and is usually in the range [0.65, 0.75]. When the algo-
rithm identifies the existence of deep valleys, we split
the object into discrete cells at these locations (marked
with red dashed lines in Fig. 4(d)), that correspond to
the deep valley points on the centerline (the x-axis in
Fig. 4(c)) because the centerline pixels are ordered (see
Fig. 4(b)). Otherwise the collinear object remains intact
and is considered as a single-cell. Finally, for each seg-
mented cell, we identify its centroid by averaging its
pixel coordinates (see Fig. 4(e)).

Complex object analysis Complex objects are treated
differently than collinear objects. First we use the water-
shed transform [43] to estimate how many cells are pos-
sibly "hidden” inside a complex object. We determine
the centroids of extracted watersheds and consider them
as initial estimates for the centroids of potential cells in
the complex object (see Fig. 2 (4a)). However, a well-
known problem of the watershed transform is that it
favors over-segmentation [44]. So, we apply the “deep
valleys” algorithm again, but in a slightly modified way.
This time we need to decide whether we should merge
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Fig. 3 Cell Objects extraction and classification. a Each colony is an ensemble of cell objects corresponding to one or more “touching” cells; e.g.
see three cell objects marked with color. We first extract the skeleton of each object and classify it as complex (red) or collinear (green) according
to the presence (or absence) of skeleton junctions (i.e. skeleton pixels with more than two neighbors). b The skeleton of the smaller red object
has two junctions (marked with yellow boxes) so it is classified as a complex object. ¢ Colony object with no junctions (green) classified as collinear
object. d A complex object (large red) with four junctions. See text for details

erroneously over-segmented cell fragments, so as to
avoid generating false positive cells. Fragments in the
neighborhood of a given fragment are examined to de-
termine if they should be merged with it or not. Two
touching fragments can be merged if there is no bowtie
point between them, identified using the deep valleys

criterion. If a potential cell (watershed fragment) can be
merged with more than one neighboring cells, then the
merging that leads to maximum solidity is chosen. Solid-
ity is defined as the ratio of the resulting area to the
resulting convex hull area, based on the conjecture that
elementary objects, i.e. well-formed single-cells, tend to
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Fig. 4 Collinear objects analysis - "Bow ties" identification. a Extracted collinear object. b Skeletonized object with skeleton pixels numbered. The red
numbers mark the “bow tie" locations on the centerline. ¢ Distance curve of the object: To construct it we form pairs of opposite-side diametric
boundary pixels (w.rt. the skeleton) and compute their Euclidean distance (local width). Then we search for “deep valleys” (i.e. significant local minima
relative to neighboring local maxima (marked with red circles for illustration purposes) and, (d) we split the object at bowtie points (marked by red
dashed lines for illustration purposes), that correspond to the deep valley positions in (c). e The collinear object is segmented into three single-cells
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have a solidity value close to one. Moreover, the new ob-
ject (after the merging) is inserted into a processing
queue in order to be further examined whether it should
be merged with another watershed fragment. We call
this iterative procedure “puzzle solving” algorithm (see
Fig. 2(4b)).

In order to outline the detected cells as accurately as
possible and improve the segmentation result, we apply a
machine learning method based on Gaussian Mixture
Modeling (GMM) [45]. In [45], we have shown how to
transform image pixel intensities to a properly constructed
set of data points before applying GMM to identify protein
spots in a 2D electrophoresis (2DGE) gel image. In our
case, pixel intensities provide no information about cell
structure since they follow a uniform distribution (see
Fig. 5 (a)). So we use the minimum distance from cell
boundary (Euclidean distance transform [46], see Fig. 5 (b))
as the basis for data points generation. Specifically, we con-
sider each pixel of the object acting as a data points gener-
ator in its neighborhood (refer to Fig. 6). The total number
of data points, N, to be generated by random sampling and
used to represent each object will be proportional to the
number C of its estimated cell centroids. These N data
points are apportioned to the pixels of the object according
to each pixel’s Euclidean distance from the object’s bound-
ary, meaning that more internal pixels will be allowed to
“throw” more data points in their neighborhood. Following
this data generation scheme, the pixels closer to the object’s
centerline belong to it with higher probability than the
more distant ones.

We may think of this process (moving from pixel in-
tensities to data points) as a reverse engineering step
where the resulting data points represent best the bac-
terial shape. Specifically, a pixel i located at coordinates
(%, y;) with distance d; acts as a data generator using a
2-D Gaussian model N(y, X) with center u=(x; y,).
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Finally, we get a GMM [47] having as many Gaussian
components as the number of the pixels M in the object.
Each component has a mixing coefficient proportional
to its distance value and equal to:

(i) = di/ 2% d;.

So for each pixel i of the object we draw Nz(i) data
points from a 2-D Gaussian distribution which is centered
at the pixel’s location y = (x; y;) with diagonal covariance
matrix X having its elements set to 0.3. The variance value
(0.3) was selected to be smaller than 0.5 (half-distance be-
tween neighboring pixels) in order to ensure that data
points generated by the model (representing “cell struc-
ture”) will be distributed in a manner that guarantees that
their abundance reflects the distance, thus preventing the
generation of “hills” of data points in-between pixel loca-
tions. This variance value was determined by experimen-
tation and is kept fixed throughout the analysis,
irrespectively of the image modality.

As mentioned before, the number N of data points gen-
erated for a complex object is proportional to the number
of the estimated candidate cell centers C it may contain.
In particular we use

N—£ c CellLength x CellWidth
2 CalFactor? ’

where CellLength is the expected cell length, CellWidth is
the expected cell width of the species under examination
and can be estimated from literature. For example for
Salmonella S. Typhimurium the width (diameter) range
considered is [0.7, 1.5] pm (so we chose CellWidth =
1.1 um), and in length range is [2, 5] um (so we choose
CellLength = 3.5 um) based on literature [48]. Let us remark
that even if these cell size parameter values are overesti-
mated the approach will suffer only from a performance
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Fig. 5 Distance transform. a Cell object depicted in 3D; the image pixel intensities are shown in the z-axis. b Same object's distance transform in
3D; the distance values are shown in the z-axis. It is obvious that the distance transform [40] smoothens object abnormalities while sharpening
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Fig. 6 Complex object Analysis - Generation of a dataset representing the object. a A very complex object (large number of cells) including potentially 75
single-cells. b Data points generation for the object in (a) by random sampling (see text for details), 9240 data points generated. ¢ A less complex object
with only 6 potential cells. d Data points generation for object in (c), 740 data points generated. The number of generated data points is proportional to
the number of the complex object centroids, thus it depends on the object’s structural complexity (number of potential cells included). Also, more data
points are randomly “thrown” around the cells" medial axes, so as to best represent cell structures (see text for details)
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loss (e.g. by using a larger than needed N value). Moreover,
CalFactor is the spatial calibration factor of the experi-
ment’s microscope used to convert the size of an image
object from pixels to physical units (um).

Using an N value that is proportional to C was a delib-
erate choice because the number of identified candidate
centers can act as an object’s complexity indicator
approximating the number of single-cell structures ex-
pected to be present in a complex object's region. So, if
a complex object contains a lot of candidate centers, it is

justified to “throw” more data points (use a larger N) in
order to capture adequately the underlying structure of
the different single-cells included in it. As shown in
Fig. 6, the generated data set for the object with the six
candidate centers (Fig. 6(c)) "spent" less data points
(Fig. 6(d)) than the object with the 75 candidate centers
(see Fig. 6(a) and (b)).

After generating the data points we associate each one
of them with its closest center using Euclidean distance
[42] and nearest neighbor classification [49]. Starting
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with this initial assignment, we can determine the initial
parameters of a 2-D GMM having C components (as
many as the estimated cell centroids in the object) and
compute the log-likelihood of each data point to belong
to this initial mixture model:

C
log p(y?10) = log_ wup (¥ |6,
m=1

where ©={6;, ..., 0., wy, ..., w.} is the complete set of mix-
ture model parameters and w,, are the mixing
coefficients.

The next step is to apply Finite Mixture Modeling
(FMM) [50] in two dimensions (see Fig. 7). An import-
ant issue in mixture modeling is the selection of the
proper number of components to use. With too many
components the mixture may overfit the data, while with
too few components it may not be flexible enough to
capture the true underlying reality [50, 51]. In our case,
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this would translate to a solution with either more or
less components than the actual number of cells present
inside a complex object. In order to overcome this diffi-
culty we apply a modified Expectation Maximization
(EM) algorithm [50] which also employs the Minimum
Message Length (MML) criterion [51] for best model se-
lection. However, since the EM with MML is computa-
tionally expensive we first apply the "puzzle solving"
algorithm to estimate the initial number of components
properly i.e. start the iterative algorithm at a number not
too far from that of the best model. Using the MML cri-
terion ensures that the best model will not end up being
an unnecessarily complex one unless if it pays for itself.
Therefore, it is possible that the best model may end up
containing less than the initial number of C components
(see Fig. 7). At the end, it is possible that some circular
object fragments may still remain isolated and not
merged with the cell they really belong to, especially
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Fig. 7 Cells segmentation - Best Gaussian Mixtures Model fit. Initialization of Gaussian mixture model parameters is performed after associating data points
to cluster centers using nearest neighbor classification. For the complex object in (a) we have initially C=6 components (clusters) in the mixture and for
the model in (c) C=17 components. We then apply the Expectation-Maximization (EM) algorithm and use the Minimum Message Length (MML) model
selection criterion to identify the number of mixture model components that produces the best model fit. In (b) this results to a reduction of clusters from
6-4, and in (d) from 17-15. Each component in the final model represents a segmented single-cell (see text for details)
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when analyzing low resolution cell movies. To overcome
this difficulty, we check if a fragment’s area is under a
pre-specified threshold
1 (CellWidth\®
A=-m | —7F—
4 CalFactor

determined automatically by the pipeline using the pre-
specified parameters. Fragments with area less than A
are merged with the "touching" neighbor that maximizes
the resulting object's solidity after the merging (as
mentioned in the "puzzle solving" step of the analysis)
otherwise they remain intact and are considered to be
undersized single-cells. Intuitively, considering a cell's
projection on the plane as a curved parallelogram with
two attached semi-circles (poles), its area must be at least
the area of the two cell poles, i.e. the area of a circle
with radius equal to one half of the expected cell's
width as in A.

Lineage tree construction

A cell in a time-lapse movie frame can: 1) proliferate, 2)
divide, and 3) die or disappear from the microscope’s
field of view. In order to construct the lineage of a single
cell, first we have to segment the cells of each colony ef-
ficiently and then we have to track the colonies and their
cells along consecutive frames. In order to track cells in
overcrowded bacterial time-lapse movies, we have devel-
oped an algorithm inspired by motion estimation tech-
niques used for video compression [52] which also
follows a divide-and-conquer strategy. Our cell tracking
algorithm will not be discussed here since it has been
published in [53].

Single-cell and colony properties extraction

For each colony, we compute growth curves in terms of
the colony’s area (either in pixels or in micrometers) or
in terms of cell population (cell counts). In addition, we
extract numerous properties at the single-cell level. We
divide single-cell properties into two categories: cell
attributes and cell life attributes. Attributes are cell
properties changing with time, characterizing each cell
at each frame of the time lapse movie. For example,
cell attributes that we track are: area, fluorescent pro-
tein quantity (if any), major axis length (length), minor
axis length (width), distance from the colony’s centroid
etc. On the other hand, cell Life attributes are statistics
of attributes (e.g. min, max, average, median, standard
deviation) characterizing a cell’s whole life "trajectory”,
i.e. from its birth to its division. In addition, elongation
(i.e. how much a cell has changed length before it divides)
and division time (i.e. the duration of a cell’s life) are life
attributes too. Additionally, given an attribute’s evolution
(time-series) we can estimate life attributes e.g. estimate
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an individual cell’s elongation rate by fitting an exponen-
tial model to the cell’s trajectory. All these properties are
estimated and exported (stored) to a bio-database for each
individual cell and time frame in the movie. Moreover,
several useful visualizations can be produced for display-
ing the computed cell attribute values directly using color
on top of the input time-lapse movie videos (refer to
Additional files 4, 5 and 6) or on top of a colony’s
lineage tree or divisions tree as it will be demonstrated
in the Results and Discussion section.

Implementation

The pipeline of algorithms presented here has been coded
in Matlab version R2015b [54]. We used extensively the
image processing, statistics and machine learning, wavelet
and curve fitting Matlab toolboxes. All presented results
were obtained using a desktop computer with Intel Core
i5-3350 processor running at 3.10 GHz, 8GB RAM, under
Microsoft Windows 7 professional operating system. The
current implementation is not optimized for performance.
Nevertheless, a discussion of the trends of its running
time is provided in Supplementary Material section 5
(see Additional file 1). Due to the divide-and-conquer
strategy followed that breaks large problems into smaller
subproblems, we expect that the use of parallel processing
can significantly accelerate the analysis. All post-processing
capabilities are also implemented in Matlab, so as to enable
users to interact with the data produced using simple
function calls. The authors' intention is to complete the
software integration and performance optimization, add
a proper user interface and then make the software
accessible to the systems biology community. The em-
phasis of this methodology paper is on the innovative
methods integrated in the BaSCA pipeline and not on
the software architecture and implementation.

Results and discussion
Comparison to the state of the art
In order to compare the segmentation performance of
the proposed pipeline with state-of-the-art methods,
we chose software packages that are extensively used
by different labs worldwide to analyze cell movies and
that have been referenced in several studies [55-66].
Moreover, we analyzed representative still (single)
frames provided by the state-of-the-art software pack-
ages at their websites (see Materials), as well as two
more images, a frame from our SalPhase movie (frame
74) and a frame from our Multi-SalPhase movie
(frame 78). The Recall, Precision and F-measure was
computed for each dataset and method used in the
comparative evaluation.

The table in Fig. 8 summarizes the evaluation results.
Dashes (tildes) in table entries indicate that the specific
method did not return results (or gave very low quality
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Fig. 8 Comparative Evaluation Summary. Each section of the table
reports the evaluation results for an image suggested by one of the
methods under comparison. The table columns list the true positives
(TP), false positives (FP), false negatives (FN), as well as the Recall,
Precision and F-measure achieved by each method. SalPhase frame
74 and Multi-SalPhase frame 78 were used to assess the performance
of the methods on images with dense and overcrowded colonies.
Dashes (-) indicate failure to return results for a specific dataset. Tildes
(~) indicate very poor performance. The proposed method (BaSCA)
achieved consistently very high F-measure (>97.3% for all cases),
suggesting that it is robust across imaging modalities and datasets
produced by different labs. (Refer to Additional file 1: Figures S1-S5
for the detailed segmentation results)

results) respectively. CellTracer was able to analyze only
the frame downloaded from the CellTracer’s movie.
TLM Tracker performed well with images having only
one small-size colony in the field of view (such as in
CellTracer’s and Schnitzcells’ images). Oufti and
Schnitzcells were the most robust among the state-of-
the-art methods, returning results for all images. The
proposed pipeline exhibited a notable F-measure advan-
tage for all imaging modalities and datasets used; its F-
measure remains very high (over 96.7%) even for images
with multiple overcrowded colonies in the field of view.
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Moreover, it outperformed the other approaches even
when using images from their own repertoire. Only
BaSCA returned near perfect results (F-measure of 99%)
for the SalPhase movie, achieving perfect recall and an
almost 10% higher F-measure than Oufti. In Multi-
SalPhase, a movie containing many overcrowded col-
onies in the field of view, BaSCA achieved F-measure
96.7% in comparison with the state-of-the-art software,
Schnitzcells which achieved 90.9%. Oufti did not provide
reliable segmentation results for this dataset. The results
of the comparative evaluation for all methods along with
the used parameterizations and input images are
provided for each dataset as Supplementary Material
(see Additional file 7).

One of the main contributions of this work is that, in
contrast to the state-of-the-art methods, BaSCA can
segment successfully images with multiple overcrowded
colonies as they grow and merge, potentially with thou-
sands of bacteria in a field of view (see Additional file 5
providing a video with the segmentation results of
Multi-SalPhase movie). Figure 9 illustrates this fact.
Segmentation accuracy when analyzing frames with
overcrowded colonies is almost as high as in non-
overcrowded frames. Recall remains over 98%, precision
over 91% and the F-measure over 94%. Due to its high
segmentation robustness, BaSCA can estimate several
time-varying colony and single-cell level properties ac-
curately fulfilling the expectations of image driven
single-cell analytics for predictive microbiology.

We should emphasize that the state-of-the-art software
packages used in the evaluation require a different
parameterization for each imaging modality. Thus, we
had to perform extensive experimentation to find the
most appropriate parameter settings for each dataset
before the evaluation (see Additional file 7 for the
parameterization of each software and datasets). This is a
laborious task that requires the user has knowledge of
image processing concepts e.g. to select filter types, set
parameters, select segmentation methods etc. (refer to
Additional file 1: Table S1). In contrast, the parameterization
of BaSCA is trivial. All parameters used by the pipeline are
set automatically once the user inputs the spatial calibration
factor, image modality and the expected value for the aver-
age cell length and cell width (diameter) of the species under
examination as discussed in Methods. Eliminating the need
for an elaborate parameterization was a deliberate choice
since our objective was for the pipeline to be used trivially
by microbiologists with no expertise in image analysis and
to be easy to integrate into larger service workflows for high
throughput single-cell analytics and systems biology.

In summary, BaSCA extends the current state of the
art by being: (a) more accurate, (b) more versatile since
it can process datasets produced using different micros-
copy types/imaging modalities and return trustworthy
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Frame 65
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Fig. 9 Segmentation of overcrowded and merging colonies. The four colonies in frame 65 of movie Multi-SalPhase (left) are merged several
frames later (frame 78, right). Top panels: input image frames. Bottom panels: Segmentation results: The cyan boxes report the TP, FN and FP for
each colony. The red boxes summarize the evaluation measures for each frame. Pseudo-colors are used to make cell boundaries visible. BaSCA
achieves both high recall and high precision and an F-measure over 94%

Frame 78
Recall F-measure Precision
99.6% 96.7% 94%

Colony 1+2+3+4

rN=4

results, (c) high throughput, automated, without requir-
ing a human in the loop, and (d) able to analyze effi-
ciently and at many levels cell movies with multiple
colonies that grow and merge, resulting in overcrowded
bacterial communities with thousands of cells in the
field of view.

Comparison to the ground truth

In Fig. 10(a), we present a summary of the comparison of
our pipeline's results versus the ground truth for the whole
SalPhase movie (86 frames). We observe that BaSCA
achieves a recall over 99% and precision over 96%. Overall
it achieves a very high F-measure of 98%. In this movie we
have accounted correctly for 6856 out of the 6895 true cells
and made only 263 errors, mostly false positives. The re-
sults per frame and per colony are provided in Additional
file 8. It is significant that the proposed methodology
achieves a very high F-measure score (>93.27%) in all
frames, which proves its segmentation robustness. The

segmentation results for the frame with the lowest F-
measure (frame 63) are provided in (Additional file 1:
Figure S1). The majority of the errors appear during the
exponential phase (after the 8™ cell generation); beyond
this point the colonies start growing in the 3™ dimension.
In summary, the results suggest that the developed pipeline
remains both very sensitive and very precise as long as
colonies maintain their 2-Dimension structure.

BaSCA can provide, in a high throughput no-human in
the loop manner, accurate data to support predictive mod-
eling for systems microbiology. In order to demonstrate
this important capability we also fit the primary model of
Baranyi and Roberts [67] to the growth curves of each
colony in the SalPhase movie. This mathematical model is
commonly employed by microbiologists to estimate
growth kinetic parameters of a cell population in a given
environment. The kinetics parameters of the population
are its lag time (1) and the maximum specific growth rate
(Msmax)- To describe the abrupt transition of the observed
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the three micro-colonies in the dataset
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Fig. 10 Growth rates - Evaluation w.rt. the ground truth. a Evaluation results summary for the SalPhase movie (86 frames). The developed pipeline
achieves a very high F-measure above 98%, (b) Comparison of manual vs. automatic BaSCA counting for the three colonies of the SalPhase movie by
fitting a Baranyi and Roberts model [43]; the kinetic parameters of microbial growth are almost identical, (c) Automatically estimated growth curves of

Growth Curves

cell growth from the lag to the exponential phase the
values of the model parameters m and n were fixed to 0
and 20 respectively as in [13]. In Fig. 10(b), we present the
estimated kinetic parameters for the three growing col-
onies in the SalPhase movie extracted using manual and
automatic cell counting. We can see that the kinetic pa-
rameters using the ground truth (manual counting) are al-
most identical to those estimated using automated BaSCA
counting. In Fig. 10(c), we observe that although in the
movie we have three colonies emanating from three
single-cells and growing concurrently in the same micro-
environment, their growth dynamics are quite different as
also shown in [13]. Consequently, it becomes apparent
that our analysis pipeline not only provides trustworthy
results without any human involvement, but also provides
a useful tool for characterizing the stochasticity exhibited
in colony dynamics. This can accelerate predictive micro-
biology studies that try to elucidate the functional role of
stochasticity [3, 4, 13—15] and how it is affected by com-
munity effects [6, 7, 16, 17].

Single-cell analytics and visual exploration

Accurate and automated image analysis for large size
bacterial communities enables single-cell analytics and
high throughput systems microbiology. In Fig. 11, we
present the Entity-Relationship (ER) model [68] of a
database schema that supports the image-driven single-
cell analytics system developed. In this bio-database
representation of a cell movie, we capture essential infor-
mation regarding the settings of the underlying experiment
(Experiment table), and the time lapse microscopy charac-
teristics (Frame table). In addition, we store a plethora of
properties extracted by the image analysis for each colony
in the field of view (Colony Table), as well as for each
segmented single-cell of each colony (Cell Instant Table
and Cell Table). Specifically, we store single-cell properties
that may change at every time instant (cell attributes) as
well as properties that characterize a cell’s whole life span,

from birth to division time (cell life attributes). For
example, in the Cell Instant Table we store extracted
cell attributes (e.g. cell area), while in the Cell Table,
we store the estimated/measured cell life attributes
(e.g. the cell's elongation, division time etc.). The bio-
database stores the "big data" that result from the ana-
lysis performed at different levels (frame, colony, and
single-cell), providing essential meta-data for the ex-
periment that can accompany the imaging data, and/
or used in lieu of the imaging data in subsequent ana-
lytics and modeling efforts. This unique aspect of
BaSCA not only enables image-driven systems micro-
biology, but provides a mechanism for reducing the
cell movies massive data down to the useful informa-
tion that can be exploitable by downstream processes.
This is a very useful feature for building repositories
of annotated cell movies with meta-data that can be
searchable and usable in systems biology workflows
over the internet.

In Fig. 12, we present a visualization of the cell segmen-
tation results. We observe (Fig. 12(a)) that segmentation is
accurate since the overlaid green contours outline the real
contour of each cell. As a consequence, we can have confi-
dence that we can measure cell attributes correctly. In
Fig. 12(b, we show how a cell attribute (e.g. cell length)
can be visualized using BaSCA. The different colors
represent cell length (in micrometers, um), in the
range indicated by the color bar. This kind of simple
visualization allows the user to distinguish spatial patterns,
or even focus on specific bacteria according to the chosen
cell attribute of interest. Moreover as a byproduct of the
multi-scale image analysis BaSCA can generate time-lapse
movies of segmented growing colonies that animate
the visualization of any extracted cell attribute of the
user's choice. Additional files 4 and 5 provide video
animations of the space-time evolution of the cell
length attribute for the SalPhase and Multi-SalPhase
cell movies, respectively.
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Fig. 11 Single-cell analytics database ER-Diagram. Organization of the database storing information about the experiment that generated the cell
movie (Experiment table) and the time lapse microscopy characteristics (Frame table). In addition, we store the image analysis generated information
for each colony in the field of view (Colony Table) and for each segmented cell within each colony. Specifically, single-cell attribute values changing at
every time point are stored in the Cell Instant Table, while cell life attributes that characterize the whole cell life trajectory are stored in the Cell Table.
The database summarizes the cell movie image analysis completely and can be used for downstream single-cell analytics and visualization. Moreover
it forms the basis for building repositories of cell movies under different conditions for large scale high throughput systems microbiology experiments )

-Inf

Fig. 12 Cell attribute visualization. a BaSCA segmentation results for colony 3 of the SalPhase movie (frame 86). Green curvatures mark the
contours of segmented cells. b Cell length visualization using color, overlaid on each segmented cell. Movies of cell length visualization
are provided in Additional file 4 and 5 for SalPhase and Multi-SalPhase datasets respectively
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Automated lineage tree construction of large-size over-
crowded colonies is also an important requirement for
high throughput systems microbiology. CellTracer, TLM-
Tracker and Schnitzcells support lineage tree construc-
tion; however, they are limited to colonies with a small
number of cells and do not exploit lineage trees as drivers
for single-cell visual analytics [53].

Our methodology allows users to exploit lineage tree con-
struction to visualize the evolution of single-cell attributes
extracted from the automated image analysis of time-lapse
movies. For example, we can visualize on top of the lineage
tree the evolution of single-cell area in a colony (see Fig. 13),
and thus inspect easily how it tends to change during the
cells' life span. Moreover, we can visualize the evolution of
cell life attributes e.g. their division time. We achieve this by
constructing a condensed circular tree, called divisions’ tree,
containing as nodes only the cell division events. In Fig. 14,
we use Tulip [69] to visualize on the divisions tree, the cell
division times of the 3rd colony cells of the SalPhase movie.
This is a very useful visual analytics feature since it can help
us to quickly assess how cell life attributes evolve across
generations under different experimental conditions.

Image-driven single-cell analytics support systems
microbiology

Using the results of the analysis at the single-cell level, i.e.
cell attributes and cell life attributes, allows us to verify
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literature results and formulate interesting new hypothesis
for future research. For example, given the extracted lineage
tree of a colony and the estimated length of every cell at
every time instant, we can fit to each cell's length trajectory
(time series) an exponential model [70, 71]. Specifically, let
us consider as in [71] a single-cell length model of the form
=1, - €® where I, is the birth length of a stalked cell and k
is its growth rate (cell elongation rate). In this way we can
capture the growth characteristics of each cell and estimate
its personalized kinetic parameters. In Fig. 15(a) we provide
the growth curves of each individual cell of the SalPhase
movie estimated using non-linear least squares [72]. We
observe that single-cell growth kinetics exhibit great vari-
ability, something that cannot be observed by population
based experiments. In Fig. 15(a) we provide the average
single-cell growth curves for each colony of the SalPhase
movie. We notice that average growth curves vary among
colonies of the same movie that grow in the same micro-
environment under the same experimental conditions.
Clearly, colony 3 exhibits less heterogeneity (smaller vari-
ance) than the rest of the colonies. Single-cell analytics
enables zooming in and extracting useful information
regarding subpopulation characterization for any cell attri-
bute of interest among the many extracted by BaSCA.
Single-cell analytics also allows characterization of intra
and inter-colony as well as intra and inter-generation vari-
ability of cell life attributes. In Fig. 16, we present the best
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Fig. 13 Single-cell attribute evolution visualization on the lineage tree. The lineage tree of colony 1 (top left) of the SalPhase movie. The area
attribute is visualized using color on the tree for every cell and time instant (frame) of the movie. Triangular (circular) shape node glyphs are used
for time instants that a cell lies in the colony’s boundary or within the colony respectively. Any cell attribute available in the database produced
by the image analysis can be visualized in the same manner
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gamma distribution fits of the single-cell elongation rate &,
division time T, and cell length at division /s per colony
(cells from 3™ to 8™ generation were pooled, SalPhase
movie). The estimated best model parameters are pro-
vided in (Additional file 1: Table S2). We observe that the
cell life attribute distributions of the 3rd colony have a
lower variance than the rest of the colonies. Intuitively,
this suggests that the cells of the 3rd colony grow and
divide more synchronously across generations. This is ac-
tually confirmed by examining the cell generations movie,
i.e. a version of the SalPhase movie in which we have
colored cells according to their generation index at any
instance as determined by our automated tracking and
lineage tree construction algorithms (see generations
movie in Additional file 6). Such subpopulation investiga-
tions would be impossible without a single-cell analytics
focus; our image-driven single-cell analytics approach
enables zooming-in and characterizing cell properties at
any desirable level of community organization, in space

Divisions Tree

Fig. 14 Cell life attribute visualization on the cell divisions tree. A
circular tree of cell divisions (root cell in the middle) for colony 3 of

the SalPhase cell movie. Colors represent here division times (min) (colonies) or in time (subtrees of the lineage tree).
as indicated by the color bar. We can easily assess visually how In Fig. 17, we provide the best fit Gamma distributions
division times vary along tree branches (cell clones) and tree levels of the aforementioned cell life attributes, but now per

(cell gemeratio/ﬂs), Triangular ?cir.cu\ar) nodes represen.t cells that lie cell generation (cell data from the three colonies are
on the colony’s boundary (within the colony) respectively. Any cell

life attribute available in the database produced by the image POOled’ SalPhase rr}OVIe). We chose the Gamrr.la dlStan'
analysis can be visualized in the same manner. The Figure was tion because the histograms of the aforementioned attri-
created using the Tulip software package [67] butes have similar shape (skewness) to it (in Additional
file 1: Figure S2 and Figure S3). Moreover, the gamma
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distribution is a flexible two-parameter distribution that
belongs to exponential family and is used to model phys-
ical quantities that take positive values in microbiology,
such as the cell division time (as in [14, 73]), the cell
elongation rate (as in [73] and cell division length (as in
[71]). The estimated parameters are provided in (see
Additional file 1: Table S3). In Fig. 17(c) we observe that
there is a trend towards lower mean and smaller vari-
ance for the cell division length attribute as the gener-
ation index increases. Single-cell analytics offer the
capability to quantify the stochasticity and examine inter
and intra-generation variability by estimating epigenetic
correlations of single-cell attributes.

However, the division length does not correlate expli-
citly neither with the elongation rate nor with the division
time, since the estimated Pearson correlation coefficients
are very low for both cases (r=0.2 and r=0.01, respect-
ively for the SalPhase movie). This is a rational result

because cells growth depends both on the elongation rate
and on the life span (i.e. division time) of the cell simul-
taneously, as shown in [70, 71], factors which are both
epigenetic information inherited by the cell's progeny
as mentioned in [11, 12]. So, we cannot assume that a
cell that is going to live longer, i.e. that will have higher
division time, will necessarily become lengthier too,
given a specific birth length. In order to demonstrate
this we computed the correlation coefficients of cell life
attributes estimated by our image analysis and com-
pared them to corresponding coefficients estimated in
[70] where E. coli cells were grown individually in
microfluidic devices. Specifically, we considered single-

k-T, and

computed its correlation to the natural logarithm of the

cell elongation, defined as £ = log % =

cellular birth length (/n(y)). The Pearson correlation coef-
ficient was found to be r=-0.44 (see Additional file 1:
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Figure S4(a)), and this is in striking accordance to what
was found in [70] (see Fig. 2 of [70]). The anti-correlation
between elongation and cell birth length (see Additional
file 1: Figure S4(a)) is entirely due to a modulation of the
division time, with the elongation rate appearing to be
independent of birth length (see also Additional file 1:
Figure S4(b-c)) as it was also found in [70]. It is also in-
teresting that the correlation coefficients of (In(ly)) to
cell division time (7) and elongation rate (k) we found
through single-cell analysis match closely the values re-
ported in [70] (see Additional file 1: Figure S4(b-c)).
These findings verify that BaSCA algorithms quantify
accurately single-cell properties when analyzing bacterial
colonies growing in microenvironments accounting for
the community dynamics.

Conclusions

We presented BaSCA, a novel Bacterial image analysis
driven Single Cell Analytics pipeline which enables the high
throughput analysis, down to the single-cell level, of com-
plex time lapse cell movies with many colonies and poten-
tially thousands of cells in the field of view. The results
presented demonstrate its robustness and universality. In
contrast to other methods, BaSCA is fully automated and
does not require users to be familiar with image processing
concepts and/or provide an elaborate parameterization to
get good results any time a new movie is analyzed. BaSCA
not only improves the accuracy of segmentation but also
achieves this without requiring a human in the loop. More-
over, it tracks effectively colonies and single-cells as they
grow and divide to form overcrowded bacterial communi-
ties and extracts a plethora of colony and single-cell proper-
ties on the fly.

BaSCA is the first bacterial image analysis methodology
designed with high throughput single-cell analytics in
mind. It thus provides an important tool for dissecting the
phenotypic diversity at different levels of community
organization and understanding how inter-cellular interac-
tions play a role on important phenomena for human
health, such as biofilms formation, persister cells emer-
gence etc.

As it has been demonstrated, the proposed methodology
introduces several single-cell data analytics capabilities. It is
designed for high throughput and enables systems biology
orientated research both at a higher resolution (i.e. zooming
into the single-cell level) and at a larger scale (communities
with many dense colonies). It can therefore be used to
study the role of single-cell stochasticity without losing
sight of community effects that may drive it.

Work in progress includes algorithmic improvements,
e.g. to allow segmentation of movies with filamentous cells
(as in Oufti [22]) and the design of a suitable user interface.
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Moreover we are optimizing the performance of BaSCA by
exploiting the divide-and-conquer nature of the seg-
mentation method in order to parallelize the analysis
both at the colony and the cell object levels. The
ultimate goal is to be able to analyze efficiently and
without human intervention stacks of cell movies in a
high throughput mode as needed to construct well
annotated repositories of cell movies and calibrate
mathematical models accounting for single-cell sto-
chasticity, so as to capture and characterize adequately
the "logic" of bacterial communities’ behavior under
different stress conditions.
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