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Abstract

Background: Aberrant epigenetic modifications, including DNA methylation, are key regulators of gene activity in
tumorigenesis. Breast cancer is a heterogeneous disease, and large-scale analyses indicate that tumor from normal
and benign tissues, as well as molecular subtypes of breast cancer, can be distinguished based on their distinct
genomic, transcriptomic, and epigenomic profiles. In this study, we used affinity-based methylation sequencing data
in 30 breast cancer cell lines representing functionally distinct cancer subtypes to investigate methylation and
mutation patterns at the whole genome level.

Results: Our analysis revealed significant differences in CpG island (CpGI) shore methylation and mutation patterns
among breast cancer subtypes. In particular, the basal-like B type, a highly aggressive form of the disease, displayed
distinct CpGI shore hypomethylation patterns that were significantly associated with downstream gene regulation.
We determined that mutation rates at CpG sites were highly correlated with DNA methylation status and observed
distinct mutation rates among the breast cancer subtypes. These findings were validated by using targeted bisulfite
sequencing of differentially expressed genes (n=85) among the cell lines.

Conclusions: Our results suggest that alterations in DNA methylation play critical roles in gene regulatory process as
well as cytosine substitution rates at CpG sites in molecular subtypes of breast cancer.
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Background
Breast cancer is a diverse disease consisting of multiple
different molecular subtypes, such as luminal A, luminal
B, triple negative/basal-like, HER2-positive, and normal
breast [1]. As these subtypes are associated with differ-
ences in clinical outcomes [2], more completely describing
the precise molecular nature of breast cancer may eventu-
ally allow for “personalized” clinical decisions, translating
molecular information into better treatments for patients
with breast cancer [3]. In this regard, gene expression
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patterns have been widely used not only to identify breast
cancer subtypes and but also to develop clinically useful
gene signatures. Microarray-based transcriptional profil-
ing identified 50 genes used for a classifier called PAM50
(Prosigna) [4]. The 21-gene assay Oncotype DX is predic-
tive of breast cancer recurrence and the use of this 21-gene
assay has a significant impact on treatment decisions [5].
Beyond gene expression profiling, epigenetic modi-

fications, reversible, heritable and includes changes in
DNA methylation, modification of histones and altered
microRNA expression levels, have received recent atten-
tion in breast cancer subtypes [6, 7]. DNA methylation
patterns in particular have been used to distinguish breast
cancer phenotypes [8–13], and differentially methylated
regions (DMRs) as prognostic breast cancer biomarkers
(patient survival analysis) have been described [14, 15].
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Furthermore, based on the association of DNA methy-
lation with altered gene expression, a number of “inte-
grated” DNA methylation/gene expression analyses have
been performed, including those by Feinberg and co-
workers (2009) [16] demonstrating the importance of
methylation in areas surrounding CpG island (CpGI)
shores, Brenet et al. [17] reporting the importance of 1st
exon methylation, Sproul et al. (2011) [18] on the role of
aberrant CpGI methylation and transcriptional repression
in breast cancer lineages, our recent reports integrating
DNA methylation and gene expression in breast can-
cer [19, 20]. However, a comparative analysis of DNA
methylation at CpGI, CpGI promoters, and CpGI shores
regions, more specifically at transcription binding site
(TFBS) associated overlapped regions and their impact on
gene expression in breast cancer molecular subtypes on a
genome-wide level has not been reported.
Gene mutations are key events in cancer development,

and recent cancer genome projects have yielded exten-
sive comparisons of the mutational landscape in breast
cancer subtypes [11] and mutations associated with clin-
ical outcomes [21, 22]. In addition, complex relationships
between mutation prevalence and transcription [23], as
well as an association between DNA methylation and
gene mutations [24, 25] have been reported. Recently, in
[19], we reported that genome-wide methylation profiles
were distinct among breast cancer subtypes and there
were methylated sites in the promotor regions of genes
that were down-regulated in a cancer subtype specifically
way, suggesting that the methylated sites interfered inter-
actions between transcription factors and the promotor
genomic regions. However, this study did not report sig-
natures of methylation in specific genomic regions for
breast cancer subtypes and did not investigate relation-
ship between DNA methylation and gene mutation rates
among breast cancer molecular subtypes. By integrat-
ing methylation and mutation patterns, we demonstrated
that:

1. Differential CpGI shore methylation patterns were
characteristic of the basal B subtype. Furthermore,
within CpGI shores, methylation at TFBSs and
overlapping promoter CpGI regions was associated
with differential gene regulation in basal B compared
to other breast cancer subtypes.

2. Basal A breast cancer cells showed higher mutation
rates at CpG sites with low or intermediate
methylation, whereas mutation rates were higher at
hypermethylated CpG sites in the basal B subtype.

Motivation
This work was motivated by our previous works in
modeling DNA methylation susceptibility [26–28] and
conservation of CpG island sequences [29]. We and

many scientists believe that DNA methylation is not ran-
dom and probably there is an instructive mechanisms
embedded in the genomic sequences [30]. Thus our
motivation is to investigate where there is any notable
correlation between mutations (cancer-subtype specific
genomic sequences) and cancer subtype specific methyla-
tion patterns. In fact, there is recent article that suggests
associations between mutations and epigenetic changes
[31]. Thus our goal in this study is to look for any associ-
ation between genome sequence differences and methyla-
tion patterns.

Methods
30 breast cancer cell line and subtype difference estimation
Genome wide DNA methylation status was measured in
our previous work [19] by MBDCap sequencing from 30
breast cancer cell lines representing three different molec-
ular subtypes; basal A, basal B and luminal obtained from
(see Additional file 1: Supplementary Table S1 for more
information on cell lines). MBDCap-seq utilizes affinity
between MBD protein and methylated DNA sequence
and allows cost-efficient measurement of genome wide
DNA methylation status. Initial quality trimming is per-
formed by Trim Galore [32] to remove bad sequence
quality reads, and remained reads were aligned to refer-
ence genome (build hg19) by using Bowtie2 [33] with seed
length 22 and allowing zero mismatch in it. Multiple and
duplicated reads are then filtered out to mediate the pos-
sible PCR amplication bias. Aligned reads were counted
through genome-wide scanning with 100bp length win-
dow by usingMEDIPS, a R package providing fixed-length
bin methylation estimation from affinity based sequenc-
ing data in the form of relative methylation score (RMS)
[34]. The RMS value of each 100bp bin was then compared
across the tumor subtypes to extract DMRs and their
significance were tested by t-test with adjusted P-value
(Bonferroni) < 0.05.
Affymetrix microarray based gene expression data was

downloaded from [35] and expression level is measured by
R Limma package [36] in Bioconductor. Background cor-
rection and normalization is performed on signal intensity
to measure expression, and pair-wise and three classes
subtype gene expression comparison was performed to
extract differentially expressed genes (DEG)s. For the pair-
wise gene expression comparison, linear model based
Limma was used, and for three class comparison, mutual
information based DEGPack [37] was used.
Normal breast control data were obtained from TCGA

data portal (measured by whole genome bisulfite sequenc-
ing (WGBS); id: TCGA-A7-A0CE-11A-21D-A148-05)
and from genome wide methylome study [14] (measured
by MBDcap sequencing). Initial quality trimming and
aligning were performed on both data set, and genome
wide methylation status of TCGA WGBS data and
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MBDCap sequencing data was measured by methylKit
[38] and MEDIPS [34] respectively.

Targeted bisulfite-treatment sequencing
Our previous work [19] used MBDCap sequencing data
without bisulfite treatment. Thus we performed targeted
bisulfite sequencing on 85 gene regions. Among 30 breast
cancer cell lines, six samples (two lines representing each
subtypes; see Additional file 1: Supplementary Table S1)
were selected for targeted bisulfite treatment sequencing
validation. Pre-library preparation utilized 3 μg DNA and
all libraries passed a minimum fragment size of 200 to
250 bp and ≥147 ng/μl quality control. Hybridization was
performed using SureSelectTX Methyl-Seq Kit followed
by post library generation with targeted genomic region
information. Final library concentration was 250>pM.
Based on the captured library, bisulfite conversion was
performed to distinguish methylated and unmethylated
DNA regions.
Sequencing was performed on 85 distinct DEG regions

with additional 10 Kbp upstream of transcription start site
(TSS) using Illumina HiSeq2500. A total of 300 million
reads were aligned to reference genome (build hg19) with
bisulfite conversion by using Bismark [39], and each CpG
site methylation was measured by using methylKit [38].

Correlation between targeted bisulfite-treatment
sequencing andMBDcap sequencing
Affinity based MBDcap sequencing captures methylated
reads and number of mapped reads at certain range rep-
resents the methylation status on that. On the other hand,
bisulfite treatment converts only un-methylated cytosine
to uracil and given that information it provides methy-
lation level in single base pair resolution. In order to
estimate the correlation between methylation levels mea-
sured by BS seq and MBDcap seq, genome-wide single
base pair read coverage was measured from MBDcap seq
data. Then, CpG site read coverage was extracted and
intersected with targeted bisulfite treated regions to filter
out result from other regions. Lastly, 2 kb bin methyla-
tion level were computed on both methods, and Pearson’s
correlation was estimated between them.

Experimentally validated transcription factor binding site
and their methylation status
In search of the specific transcription factor binding sites
(TFBSs) located in CpGI shores and the overlapping pro-
moter region, we utilized match algorithm from TRANS-
FAC [40]. Promoter sequences were extracted from 2 Kb
upstream of the TSS in each DEGs, and TFmotif weighted
matrices were used to scan the TFBSs on the sequence
regions. Once TFBSs were predicted, we computed the
TFBS specific methylation level by averaging methylation
levels in all 100 bp bins overlapping the TFBS. Finally,
we adopted experimentally validated ChiP-seq databases

(HTRIdb [41], and ChEA [42]) to verify TF binding on
predicted TFBSs. In order to investigate potential down-
stream effect caused by methylation difference on TFBS,
differential methylation across tumor subtypes was mea-
sured on TFBSs by Kruskal Wallis test (FDR < 0.1) and
correlation with downstream gene was estimated (Spear-
man’s rho < -0.5). To remove effect of TFs on gene regula-
tion, we considered only TFs with similar gene expression
levels, allowing us to focus on the role of DNA methyla-
tion on downstream genes.

Mutation rate and subtype specific mutation
MBDcap-seq is a DNA sequencing technology captur-
ing methylated regions by utilizing affinity between MBD
protein and methylated DNA sequence. To investigate
the relationship between methyl-CpG mutation and their
methylation level, genome wide point mutation discovery
(matches short reads to the hg19 build) was performed
on MBDcap-seq data by using the mpileup algorithm in
the Samtools suite (version 0.1.19) [43]. Minimum base
quality for a base to be considered was set to 13, and
maximum reads per sample was set to 250. By incorpo-
rating sequence and quality information and mismatch
sharing rates across the samples, every read having mis-
matches with the reference genome was statistically tested
to determine whether or not the observation was due
to sequencing error. In order to reduce false mutation
detection caused by misaligments and indel, base align-
ment quality (BAQ), Phred-scaled probability of a read
based being misaligned, is applied to each base [44]. In
addition, anomalous read pairs in variant calling were
skipped. Finally, mutation rates within a certain methy-
lation range across the tumor subtypes were computed.
We defined mutation rate as the ratio of number of cyto-
sine substitution occurrence over the number of all CpG
sites. In order to estimate statistical significant of com-
puted mutation rate within certain methylation range,
the mutation rate information is pooled into subtypes
and tested by ANOVA with Bonferroni correction. In
addition to detecting variants from all samples, subtype
specific mutations were also measured. Each detected
mutation was checked as to whether the observation was
from all samples or only certain tumor subtype samples.
We defined a subtype specific mutations as those that
occurred in at least 30% of a particular subtype but in less
than 10% of the other two subtypes.
Whole schematic analysis workflow is illustrated in

Fig. 1.

Results
Genome wide methylation profile and differentially
methylated regions
Genome wide methylation landscape was determined in
30 breast cancer cell lines MBDCap-seq. Methylation
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Fig. 1Workflow for the methylation and mutation analysis of 30 breast cancer cell lines. A total of 30 breast cancer cell lines representing molecular
subtypes of the disease were examined in this study. Analysis starts with quality control and normalization on both MBDcap sequencing data and
Affimatrix gene expression data, and methylation and expression level were measured. During integrated analysis, subtype comparison was
performed to estimate differentially expressed genes (DEG)s and differentially methylated regions (DMR)s. Experimentally validated transcription
factor binding site (TFBS) information is used to estimate TFBS specific methylation level in promoter and CpGI shore overlapped region, and
correlation was measured with downstream gene expression. By utilizing mutation information estimated from MBDcap sequencing, subtype
specific mutation rate over methylation level was measured. Finally, single base pair resolution bisulfite treatment sequencing was performed to
validated the methylation status measured by MBDcap sequencing

profiling using more than 30 million reads covered
23,149,286 CpG sites, 25,974 CpG islands, 54,543 CpGI
shores, and 38,208 promoter regions (82, 91, 95, and 99%
of the total in the human genome, respectively), and for
overlapped regions, 10,910 promoter-CpGI and 16,227
promoter-CpGI shores (90 and 98% of total in human
genome) were covered. A total 4,366 differentially methy-
lated 100bp-bins corresponding to 2,055 differentially
methylated regions (DMRs; MEDIPS package, adjusted
P-value (Bonferroni) < 0.05) were determined (see Meth-
ods). 126 DMRs were identified in the luminal and basal
A pair, 1,136 in the luminal and basal B pair, and 793
in the basal A and basal B pair. Statistics of differen-
tially methylated bins were further grouped according
to the genomic regions such as 3′UTR, 5′UTR, exon,
intron, promoter, CpGI, CpGI shelf, and CpGI shore.
Notably large number of differentially methylated bins
were observed in intron and CpGI shore region from Lu-
BaB pair and BaA-BaB pair (Fig. 2a). Then, based on these
comparison results, hypomethylation ratio of each sub-
type was further measured. In both intron and CpGI shore
region, more than 75% (BaA-BaB pair) and 50% (Lu-BaB
pair) of differentially methylated bins are hypomethylated

in Basal B subtype (Fig. 2b). Hypomethylation ratio
of other regions are in Supplementary Figure S1 (see
Additional file 1).

Methylation status validation by targeted bisulfite
sequencing
Affinity-basedMBDCap-seq technology is a cost-efficient
method to estimate genome-wide DNA methylation.
However, it does not measure methylation level at the sin-
gle nucleotide resolution, especially in high CpG density
regions. In order to verify the methylation level esti-
mated by MBDCap-seq method, we conducted targeted
bisulfite-treated sequencing (BS-seq) on the genome
regions around significantly differentially expressed genes
(DEGs) (from 10Kbp upstream of the TSS to transcrip-
tion end site (TES) including the corresponding promoter;
see details in Methods). We compared methylation levels
estimated from MBDcap-seq and BS-seq, and observed
a strong average correlation (Pearson’s correlation coef-
ficient 0.77) and up to 0.91 between two techniques
(see Additional file 1: Figure S2), demonstrating that
MBDCap-seq reliably measured genome wide methyla-
tion levels.
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a b

Fig. 2 a Bar plots demonstrate the number of differentially methylated bins for each pair-wise tumor type comparisons. Significance of each bin
methylation on each genomic region between two subtypes are tested by t-test and adjusted with Bonferroni correction (P.adj-value < 0.05).
b Ratio of hypo methylation in intron and CpGI shore regions. Each color represents hypo methylation ratio of certain tumor subtype among
differentially methylated bins. Hypo methylation ratio of other regions are in Supplementary Figure S1 (see Additional file 1)

Global CpGI shore hypomethylation specific to basal B
tumor type
Based on the genome-wide methylome analysis using
affinity based MBDcap-seq data, we observed genome
wide hypomethylation in the basal B subtype at vari-
ous genomic regions. The average methylation levels in
genebody, exon, as well as Dnase I hypersensitive sites
were lowest in basal B (see Additional file 1: Figure S3).
In addition, significant differential methylation patterns
were observed in boundary areas between CpGI and
CpGI shore. Notably, while methylation level peaks were
observed in luminal and basal A, the steep peaks tapered
into a gentle slope or nearly flattened out in basal B
(Fig. 3a). In addition, from heatmap for genome wide
CpGI and their flanking area, highly methylated bound-
ary region in luminal and basal A are observed, but not
from basal B (Fig. 3b). Significance of differential methy-
lation among subtypes in entire CpGI and their flanking
regions was tested by ANOVA and the P-value is adjusted
by Bonferroni correction. From the result of statistical sig-
nificance estimation, we identified that adjacent regions
between CpGI and CpGI shore area have significantly low
adjusted P-value compared to near regions (Fig. 3c).
In order to further validate the observed methylation

patterns, we utilized two normal data set; TCGA nor-
mal breast data measured by WGBS and normal data
from genome wide methylome analysis study [14] mea-
sured by MBDcap sequencing. Genome wide methylation
level were estimated through same analysis procedure (see
“Methods”) and estimated average methylation in CpGI
and CpGI shore regions. From methylation result based
on both normal data, we observed same pattern and found
steep peaks as well in adjacent region between CpGI and
CpGI shore (Fig. 3d).
To investigate whether the differences in methyla-

tion patterns in CpGI and adjacent region CpGI shore

potentially involved in gene regulation, we focused on
promoter CpGI shore with transcription factor binding
site (TFBS). Estimated TFBS specific methylation sta-
tus (see “Methods”) in the promoter CpGI shore was
compared with downstream gene expression, and the TF
binding to these TFBS regions was also measured to
determine whether a TF influences gene regulation. That
is, we investigated whether the differentially methylated
TFBS in promoter CpGI shore regions among breast can-
cer subtypes potentially give influence to expression of
downstream genes that TF regulate.
We identified 55 genes with differentially methylated

promoter TFBS regions (Kruskal Wallis test, FDR < 0.1)
and inversely correlated (Spearman’s rho < -0.5) gene
expression (see Additional file 1: Table S2). Interestingly,
55% of these genes were hypomethylated in basal B,
including CAV1 and PTRF (caveolae associated protein
coding genes). Epigenetic modification of these caveolae
related genes was recently reported to be associated with
disease [45]. Furthermore, a significant influence of CpGI
shore methylation on CAV1 in breast cancer was previ-
ously reported [20]. We confirmed this finding, detecting
a significant DMR within the CpGI shore overlapping the
CAV1 promoter (Fig. 4). We then further investigated the
methylation status of TFBS located in the CAV1 promoter
and the overlapping CpGI shore region. Interestingly, the
experimentally validated TFBS regions showed significant
differential methylation (KruskalWallis test, FDR < 0.005).
In addition to CAV1, promoter and CpGI shore methy-
lation with TFBS of PTRF, TGFB1, and GDF15 genes are
depicted in Fig. 4. All these TFBS specific methylation
within promoter and CpGI shore overlapped had inverse
correlation with downstream gene expression that the
TFs associated. Finally, CpGI shore methylation was vali-
dated (single base pair resolution) using targeted bisulfite
sequencing (see Additional file 1: Figure S4).
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Fig. 3 Genome wide profiling identifies differences methylation status among breast cancer subtypes. a Average genome wide methylation plot of
CpG islands and flanking regions, i.e., CpGI shores. -500, 500 in x-axis represents ±500bp from each end of CpGI, and 0, 50, 100% represents relative
range within CpGI. b Heatmap demonstrates average methylation levels of each CpG island and CpGI shore within tumor subtypes. c Statistical
significance of differential methylation at CpG islands and CpG island shore regions tested by ANOVA and adjusted by Bonferroni correction. Y-axis
represents -log10 based adjust P-value. d Bar plot and line plot represent average methylation level of adjacent area between CpGI and CpGI shore
region from a normal-like TCGA breast cancer sample, a invasive ductal carcinoma with negative margins for malignancy, measured by WGBS and
from a normal sample obtained from [14] study measured by MBDcap sequencing respectively. Left and right side of y-axis shows methylation level
measured by WGBS and MBDcap sequencing respectively

Correlation betweenmutation andmethylation across
molecular tumor subtypes
In order to investigate the relationship between muta-
tions and methylation variation, cytosine substitution rate
on CpG site was computed across the tumor subtypes.
By comparing the genome wide methylation profile and
estimated mutation frequencies, the mutation rate grad-
ually changed as the methylation level increased in all
samples. We then compared mutation rates across the

tumor subtypes and found that the mutation rate pattern
over the methylation change was significantly different
in different subtypes. At CpG sites displaying low and
intermediate methylation, luminal and basal B had simi-
lar mutation rate but basal A showed a distinct and higher
mutation rate (P-value = 1.1258×10−2 by ANOVA test
with Bonferroni correction). Conversely, at highly methy-
lated CpG sites, luminal and basal A had similar mutation
rates but the mutation rate was significantly different
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Fig. 4 Differentially methylated and experimentally validated promotor TFBS in CpGI shore region having negative correlation with downstream
gene expression. The differential methylation of the overlapped region among breast cancer cell subtypes was tested by Kruskal Wallis test with FDR
< 0.1, and the methylation status was inversely correlated with downstream gene expression (Spearman rank correlation < -0.5). X-axis shows
genomic location of each genes and Y-axis represents DNA methylation level measured by MBDcap sequencing

(P-value = 6.84×10−7 by ANOVA test with Bonferroni
correction) for the basal B subtype (Fig. 5).
To find possible biological explanation of the observed

mutation rate difference across the tumor subtypes, we
investigated whether there were any regional genomic
effects. We first divided observed mutations by various
regional groups based on their genomic position infor-
mation. We then extracted subtype specific mutations, a
mutation that occurs frequently in one subtype but rarely
observed from others, by filtering out common mutation
over all subtypes in each regional group (see Methods).
Interestingly, in CpGI regions (known as “methyl pro-
tected” and thus hypomethylated regions) including CpGI
shore and shelf, basal A specific mutations occurred
the most frequently, and CpGI shore and shelf region
showed significant differential subtype specific mutation
occurrence (tested by ANOVA with adjusted P-value
(Bonferroni) < 0.05). On the other hand, basal B spe-
cific mutations were significantly more frequent in intron
regions (ANOVA, P.adj (Bonferroni) < 0.05) (Fig. 6). Our
analysis suggests that mutation rate difference may result

from regional subtype specific mutation occurrence and
their methylation difference across the subtypes.

Discussion
In this study, we report two novel findings associated with
tumor subtype differences in terms of methylation and
mutations. For the methylation pattern, we showed that
CpGI shore methylation is a distinct signature for breast
cancer subtypes and also that CpGI shore methylation is
associated with subtype specific gene regulation. For the
subtype specific methylation patterns, there are a number
of studies. Previously, Holm et al., showed that unsu-
pervised methylation pattern analysis could distinguish
molecular subtypes [9]. Jadhav et al., reported differential
methylation patterns in promoter CpGI, intragenic and
intergenic CpGI as well as non-CpGI promoter regions
compared to normal samples [46] and Kamalakaran et
al., reported differential methylation pattern and associa-
tion with clinical variable in luminal subtype [47]. More
recently, Stefansson et al., tried to define additional epige-
netic subtypes based on differential methylation patterns



The Author(s) BMC Systems Biology 2016, 10(Suppl 4):116 Page 440 of 548

Fig. 5 Significantly higher mutation rate in low and intermediately methylated CpG sites in basal A (ANOVA test, adjusted P-value (Bonferroni) < 0.05)
whereas significantly higher mutation rate in hypermethylated CpG sites in basal B (ANOVA test, adjusted P-value (Bonferroni) < 0.05). X-axis
represents each methylation level (RMS) value and y-axis represents ratio of mutational CpG site over all CpG site at certain methylation level. Box
plot to the right: extension of red box area

[13]. In agreement with previous studies, we observed sig-
nificant differential methylation pattern on CpGI shore
and promoter overlapping regions. Our further analy-
sis on TFBS specific methylation revealed strong inverse
correlation to downstream genes. We also detected
more prevalent hypomethylated DMR bins in intron

region for basal B subtype and this finding is in agree-
ment with previously described genebody hypomethyla-
tion pattern studied by Yang et al. [48]. This genebody
hypomethylation phenotype is also linked to hormone-
receptor negative/basal-like breast cancers as described in
Hon et al. [49].

Fig. 6 Subtype specific mutation occurrence associated with tumor subtypes across the genomic regions. Significance of difference among
subtype specific mutation occurrent was tested by ANOVA with Bonferroni correction. (P.adj < 0.05). In intron region significanltly more subtype
specific mutation is occurred in Basal B. On the other hand, In CpGI related regions, significantly more subtype mutation is observed in Basal A
tumor subtypes. X-axis represents each genomic regions and y-axis shows number of subtype specific mutation occurred in those regions
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In addition to genome wide differential methylation
pattern, our integrated analysis identified genes having
significant differential methylation on their TFBS located
in promoter CpGI shore region, and having inverse
correlation with their gene expression. CAV1 and PTRF
are previously reported as cancer-associated caveolae
genes [20]. GDF15 and TGFB1 genes are members of
transforming growth factor beta family, and encode mul-
tifunctional proteins associated with proliferation, differ-
entiation, adhesion, and migration. Therapeutically, these
genes are related to response of breast cancer cells to radi-
ation, specifically inhibiting radiation-induced cell death
and related cytotoxic action [50] and a direct association
between promoter methylation and expression of these
genes are reported [51]. In addition, integrated analy-
sis showed GSTP1 and PALLD genes having low level
gene expression as well as significantly higher methyla-
tion level of these gene promoters in luminal phenotype
compared to the other two subtypes. Hypermethylation
of the GSTP1 promoter has also been previously reported
as having association with prognostic values [52], and
repression of PALLD gene has been shown to con-
tribute to invasive motility [53] and cancer cell migration
[54]. Including these genes, a large number of detected
genes from our analysis have overlapping of promoter
regions with DHS region as well as polycom-associated
H3K27me3 marked region, suggesting a potential inter-
play with gene transcription and that differential methyla-
tion may play important roles across the subtypes.
Mutations play an important role in the development of

cancer. Several studies investigated relationship between
DNA methylation and mutation. Carina et al. reported
a relationship between CpG cytosine mutation rates in
intron regions in human genes and variation in methyla-
tion levels as well as a positive correlation with non-CpG
divergences, and a negative correlation with GC con-
tent [55]. In another study focusing on exonic regions
[24], methylation in first exon regions significantly corre-
lated with C to T substitution rate in CpG sites. Based
on genome wide mutation rate measurements, CpG sites
with low-to-intermediate methylation level had higher
CpG substitution rates compared to other methylated
CpG sites [25]. Our genome wide mutation rate analy-
sis shows notable differences in mutation rates across the
tumor subtypes, which correlates with methylation status.
In summary, our findings on mutation and methylation
indicates a trend for higher mutation rates in basal A
type at low to intermediate methylation level CpG sites
whereas in the basal B phenotype, mutation rates are
higher at highly methylated CpG sites.

Conclusion
By utilizing methylome data and gene expression for 30
breast cancer cell lines, we report two novel findings.

First, our genome wide integrated analysis shows signif-
icant difference in the CpGI shore methylation pattern
among breast cancer molecular subtypes. Further inves-
tigation of these regions identified 55 genes with differ-
entially methylated promoter regions overlapping CpGI
shore regions with an inverse correlation of methylation
level and transcriptional regulation of these 55 genes, but
no apparent difference in expression of TFs that could
potentially interact with their promoter CpGI regions.
This consideration of TF and TFBS provides strong evi-
dence for the suppressive role of DNA methylation on
the downstream genes. Second, we found a genome-wide
relationships betweenmutation rate andmethylation level
in the molecular subtypes. From the integrated analysis,
we report that mutation rate gradually increases as methy-
lation level increases. We further investigated this pattern
in relation with the molecular subtypes and found higher
mutation rates in basal A when the methylation level is
low-to-intermediate, but basal B breast cancer cells have
higher mutation rates when the methylation level is high.
We believe our findings addresses a timely issue regard-
ing the relation between DNA methylation and mutation
in terms of gene expression in tumorigenesis.

Additional file

Additional file 1: Supplementary file contains Supplementary Figure S1–4
and Table S1–2. (PDF 2170 kb)
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