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Abstract

Background: Protein-protein interface holds important information of protein-protein interactions which play key
roles in most biological processes. In the past few years, a lot of efforts have been made to improve interface
residue recognition by characterizing protein-protein interfaces and extracting relevant features. However, most
previous studies were carried out in a qualitative level, and there are also some inconsistencies between them.

Results: In the present work, to improve interface residue recognition, we built a novel quantitative residue
protein-protein interface propensity index (QIPI) and gained a comprehensive picture of protein-protein interface
through analyzing protein-protein interfaces on our comprehensive protein-protein interfaces dataset (Astral2.05-40-
4506). Furthermore, in order to assess the effect of QIPI in improving the protein-protein interface prediction, we
developed an interface residue recognition method SPR (Single domain based Patch Recognition) based on the
QIPI. The evaluation results proved that our novel QIPI is able to improve the interface residue recognition.

Conclusions: Through a comprehensive quantitative analysis of protein-protein interface, we constructed a novel
quantitative protein-protein interface propensity index (QIPI), which could be easily applied to improve the interface
residue recognition and helpful in understanding the protein-protein interface.

Availability: QIPI and SPR are available to non-commercial users at our website: http://www.scbit.org/QIPI/.

Background
Protein-protein interactions play crucial roles in many
biological functions [1–3]. A detailed characterization of
protein-protein interactions may provide crucial infor-
mation about the function of protein complexes which
would be helpful in medicine and drug researches [4–6].
In order to elucidate the mechanisms of protein-protein
interactions, a number of biophysical techniques [7, 8]
including X-ray crystallography, various spectroscopic
techniques, cross-linking methods, mutation studies and
so on, have been employed to investigate protein-protein

interface properties. Meanwhile, a lot of efforts have been
made to find the critical factors determining the specificity
and affinity of protein–protein interfaces [3, 9–11].
It is indicated that protein-protein interfaces are char-

acterized by several distinguishing properties from the
rest of the surfaces in terms of geometric and chemical
complementarities between interfaces, ranging from
hydrophobic forces, electrostatic forces, surface planar-
ity, interface biased residue composition to inter-residue
contacts [12–15]. Knowledge of these characteristics has
enabled the understanding of the interface as a whole.
Various hypotheses have been proposed to delineate the
interface architecture and explore the mechanisms of
protein-protein interactions. The first study is O-Ring
theory which concluded that the existence of a hot-spot
enriched region at the center surrounded by an outer
ring of non-conserved residues to occlude water [16, 17].
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Later on, a series of hypotheses were developed to refine
the O-Ring theory [18–20]. Another viewpoint proposes
that interface should be divided into core and rim area:
the former consisting largely of buried atoms and the lat-
ter formed mainly by exposed atoms [21]. However, there
are some inconsistencies between these studies. Taking
basic residues’ interface preference as an example, Arg
and His showed positive interface propensity in some
studies [14, 15] but opposite preference of these ones were
also reported by other researchers [21, 22]. Moreover,
qualitative results were given by most previous studies,
while the interface residue recognition methods essentially
need quantitative interface propensities [14, 15, 23]. There
are two main reasons leading to these contradictory con-
clusions in previous studies: lacking a comprehensive
non-redundant protein-protein interface dataset and ig-
noring the bias effect of solvent accessibility between in-
terfaces and non-interface surfaces. In order to gain a
comprehensive picture of protein-protein interface, we
first constructed a latest comprehensive protein-protein
interfaces dataset (Astral2.05-40-4506) which was ex-
tracted from the latest version of Structural Classification
of Proteins — extended (SCOPe) database (v2.05) [24].
Then we reassessed the various features excluding the bias
effect of solvent accessibility in a suitable manner on the
dataset Astral2.05-40-4506.
In this work, we performed a novel analysis of protein-

protein interface on our comprehensive protein-protein
interfaces dataset (Astral2.05-40-4506). Because the
interface and non-interface surfaces have different solv-
ent accessibility, it is not well known whether their dif-
ference is due to the differences in solvent accessibility
or differences in functionality (such as protein-protein
interaction). The bias effect of solvent accessibility
should be excluded in the protein-protein interface ana-
lysis. We analyzed the interface using non-interface sur-
face as reference to remove the bias effect of solvent
accessibility. In a convincing manner, a novel quantita-
tive residue interface propensity index (QIPI) was con-
structed from our analysis and an interface residue
recognition method SPR (Single domain based Patch
Recognition) was developed based on the quantitative
index to evaluate the interface prediction power of QIPI.
The result shows that the QIPI not only characterizes
protein-protein interfaces, but also helps to improve the
interface residue recognition.

Methods
Datasets and interface definition
Protein complexes were retrieved from the latest version
of Structural Classification of Proteins — extended
(SCOPe) database (v2.05) [24]. A previous study demon-
strates that interface properties showed consistency
across different datasets, which are from the same raw

protein database but with different constraints on se-
quence similarity and structure quality [14]. Based on
the above reason, we constructed the Astral2.05-40 data-
set, which is a subset of SCOPe2.05 with less than 40%
identity between any two domains, for large-scale ana-
lysis of interface propensities.
A dataset of protein-protein interfaces (referred to as

Astral2.05-40-4506), which consists of 4506 interfaces,
was thus obtained from the Astral2.05-40 dataset.
The Astral2.05-40-4506 was used as the comprehensive

interface dataset to analyze characteristics of protein-
protein interfaces and develop our interface prediction
method. We used the independent dataset Docking
Benchmark 2.0 [25] to evaluate the power of new interface
features especially the quantitative residue interface pro-
pensity index (QIPI) for interface prediction. The Docking
Benchmark 2.0, which contained 84 complexes and 168
monomers, consists of 168 interfaces.
Two protein-protein interface datasets were widely

used to assess interface residue recognition methods in
the previous study. The first dataset consists of 25
CAPRI targets and 176 interfaces. The second dataset
Enz35 set consists of 35 protein interfaces [26] and these
proteins in this dataset are all enzymes. In order to com-
pare SPR with the existing popular interface prediction
method directly, we carried out the tests based on these
two datasets.
For a single domain, the residue whose accessible sur-

face area (ASA) > 1 Å2 is defined as surface residue.
Surface residues were classified into two groups: inter-
face and non-interface. The interface is formed by
spatially neighboring residues whose ASA between single
domain and complex were changed more than 1 Å2 per
site and cross-interface contacts distance < 5 Å. The
other surface residues are non-interface [14, 26, 27]. The
accessible surface area (ASA) of residues was computed
using NACCESS (http://www.bioinf.manchester.ac.uk/
naccess/). Only surface residues were considered in the
analysis and assessment. Similarly, only unbound struc-
tures were used for interface prediction.

Relative Interface Ratio (RIR) and contact preferences
Let fi be the number of interface residues of type i, and
Fi be the number of non-interface surface residues of
type i. The frequency of residue i in the interface and
non-interface surface were calculated as wi = fi/∑mfm and
Wi = Fi/∑mFm (m is the residue type), respectively. The
relative interface ratio (RIR) of residue type i was given
by (wi/Wi). As the similar criteria, we analyzed the fre-
quency and RIR of secondary structure elements in
interface. In order to analyze the independent and co-
operation effect of residues and secondary structures, we
considered 60 classes of residues as defined by 20 resi-
due types multiplied by 3 secondary structure states and
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analyzed the frequency and RIR of the 60 kinds of resi-
dues at interface.
In order to describe the ASA propensities for interface

and non-interface surface residues, we got the ASA
threshold At for residue type i from the Astral2.05-40-
4506. The ASA threshold At was defined that ASA
frequency (percentage of residues in the ASA bins) of
interface residue type i was very close to the ASA
frequency of non-interface surface ones in the At bin
(Additional File 1: Figure S1). The At of 20 amino acids
were calculated and shown in Additional file 2: Table S1.
fIS(i)was the number of interface residue type i whose
ASA <At, and fIL(i) was the number of interface residue
type i whose ASA ≥At. As the similar definition, the fSS(i)
and fSL(i) are generated for the non-interface surface resi-
due type i. The relative interface ratio (RIR) of residue
type i in ASA was given by (fIL(i)/fIS(i))/(fSL(i)/fSS(i)).
Cij was the number of interface-crossing contacts be-

tween residues of types i and j. The raw contact frequency
between residues of types i and j was calculated as (Cij/
∑m,nCmn). Here, m and n are residue types in the interface-
crossing contacts. The contact preference between residue
types i and j was calculated as log2((Cij/∑m,nCmn)/(wi ×wj)),
where wi and wj were defined as above.
Interface size and residue number is calculated separ-

ately for each side of an interface. Domain size is also
calculated for each domain. The summary of statistic re-
sult was shown in histogram and probability density
function curve.

Interface prediction
Based on characteristics of interface especially the QIPI in
our analysis, a novel method SPR (Single domain based
Patch Recognition) was developed as an interface pre-
dictor to assess the effect of interface features founded by
us. Therefore, in SPR, we focus on (i) patches generated
on the protein surface as virtual interfaces, which is de-
scribed in the section of patch generation and (ii) the scor-
ing function to evaluate the quality of a virtual interface,
which is described in the section of scoring function.
Patch generation on the protein surface
In the SPR algorithm, the patch generation on the pro-

tein surface follows the four steps.

Step I: Identification of surface residues. As in the
above analysis, surface residues are defined as accessible
surface area (ASA) > 1 Å2.
Step II: Generation of residue side-chain distance
matrix. For a protein sequence, the minimum dis-
tance between side-chain atoms of each residue pair
(Cα to Cα distance in the case of glycine) was calcu-
lated as the element of residue side-chain distance
matrix.
If the minimum distance of a residue pair >25 Å,

the corresponding element in the matrix
was 25 Å.
Step III: Construction of candidate interface patches. A
random surface residue was selected as the seed
residue, and neighboring surface residues whose ASA
and distance to the seed residue satisfy the standard in
the Table 1A were included in the candidate interface
patch. All of the surface residues were sampled and a
series of candidate interface patches were constructed.
Step IV: Merging the candidate interface patches. For
candidate interface patches in a protein, two patches
were merged into a new patch when the ratio of
identity residues between two patches was not less than
the threshold (Table 1B). The merging process was
kept iterating until there wasn’t any candidate patches
could be merged.

The final predicted interface is defined as the top-
ranked candidate interface patch measured by the follow-
ing scoring function for interface-residue recognition.

The scoring function for interface-residue recognition
The score Epatch for measuring the predicting patch as
an interface is a linear combination of four terms: the
interface preference potential for residues preference
(Eres), hydrophobic score (Ehydro), residue conservation
preference (Econs) and solvation score (Esol). That is
given as follows:

EPatch ¼ Eres þ w1Ehydro þ w2Econs þ w3Esol ð1Þ

where wi are to-be-determined weight factors, which are
obtained by training on Astral2.05-40 dataset (see below).
The Eres and Ehydro are used potentials from the AAindex
database [28]. The AAindex database contains a series of

Table 1 Patch generation thresholds

A The ASA and distance with seed residue of patch residue

Distance(Å) ASA(> Å2)

(2,5) 0

(5,7) 20

(7,9) 40

(9,11) 60

(11,13) 80

(13,15) 100

B Thresholds for patch merging

Domain ASA(Å2) Identity Ratio

(0,5000) 0.8

(5000,7500) 0.7

(7500,10000) 0.6

(10000,+ ∞) 0.5
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numerical indices representing various physicochemical
and biochemical properties of amino acids and pairs of
amino acids. The calculation of Eres, Ehydro, Econs, and Esol
sees below.

1. Residue interface propensity score. We use a scoring
function to calculate similarity between patch and
interface based on the sum of residue interface
propensity which is calculated from QIPI. The score
for a given patch, whose residue interface propensity
score Eres was calculated as:

Eres ¼
X

i∈patch;r

ASAi•RIRrð Þ=REFr ð2Þ

where ASAi is the relative accessible surface area of resi-
due r at sequence position i which belongs to the patch;
RIRr and REFr are the relative interface ratio and the ref-
erence ASA of residue type r, respectively. The RIRr for
20 amino acid residues are obtained from QIPI. The
REFr is the element of JANJ780101 [29] in AAindex [28]
for residue type r. The JANJ780101 index is based on
average accessible surface area properties of amino acids;
so it is used as the reference state in the term of residue
interface propensity score.

2. Hydrophobic score. The term Ehydro is the
hydrophobic score of the query patch, which is
given below:

Ehydro ¼
X

i∈patch;r

Hi ð3Þ

where Hi is the hydrophobic score in the CASG920101
[30] matrix of AAindex for the residue type r at se-
quence position i. The CASG920101 matrix is based on
structure-derived hydrophobic potential and used for
representing hydrophobic score of amino acids in this
potential.

3. Residue conservation score. Residue conservation
was assessed by the self-substitution score based on
the sequence profile. Sequence profiles were built by
using PSI-BLAST [31] to search against non-redundant
(NR) database with the BLOSUM62 [32] substitution
matrix. The conservation score of the given patch was
defined as:

Econs ¼
X

i∈patch;r

Cir−Brrð Þ ð4Þ

where Cir is the self-substitution score in the position-
specific substitution matrix produced by PSI-BLAST for

the residue type r at sequence position i, and Brr is the
diagonal element of BLOSUM62 for residue type r.

4. Solvation energy score. The Esol was adapted from the
one used in Cyscore [33], which is formulated as follows:

E ¼
X

i∈patch

V i;out

V i;sphere−V i;out

� �
ð5Þ

where Vi,sphere is defined as the sphere volume in the solv-
ent accessible surface and Vi,out represents the volume out
of the solvent accessible surface on residue i in the patch,
respectively. The radius of the sphere is set to be 1.2 Å.
The Cyscore is a new empirical scoring function for pro-
tein–ligand scoring and outperforms famous methods in
the field. A novel curvature-dependent surface-area model
of the solvation energy score contributes obviously to im-
prove the prediction power of Cyscore. So we used this
term in our interface residue recognition scoring function.

Training and evaluation
Interface prediction has to satisfy two competing de-
mands, covering as many real interface residues as pos-
sible, meanwhile predicting as few false positives as
possible. These two demands are evaluated by coverage
and accuracy, respectively. For all predictions of inter-
face residues, the numbers of true and false positives are
TP and FP, respectively. The number of real interface
residues which isn’t identified by the predictor is false
negative (FN). Then, the coverage is

COV ¼ TP= TP þ FNð Þ ð6Þ
and accuracy is

ACC ¼ TP= TP þ FPð Þ ð7Þ
The two criteria were used as the performance assess-

ment in our study because a good interface recognition
method could identify more real interface residues with
less false positives.
The parameters used in SPR were trained on the As-

tral2.05-40-4506 dataset that consists of 4506 interfaces
from domains with less than 40% identity to each other.
Subsequently, the SPR was trained and optimized with a
cost function (F) as follows:

F ¼ COV � ACC ð8Þ
The optimization goal was to maximize the cost func-

tion F value. This training process could balance the
accuracy and coverage to avoid the overfitting of parame-
ters. To evaluate the robustness of the SPR, a 10-fold
cross-validation for SPR on Astral2.05-40-4506 dataset
was carried out.
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After training of SPR using the above process, the per-
formance of SPR was tested on two datasets CAPRI25
and Enz35 using accuracy and coverage compared with
several popular interface recognition programs [14, 23].
To gain an overall performance of SPR, we further

tested it on two independent datasets, CAPRI25 and
Enz35, by making comparison with several popular
interface prediction programs, Meta-PPISP [34], con-
PPISP [35], Promat [36], PINUP [37]. Meta-PPISP is
probably one of most popular programs in this field and
widely used as the reference method in the recent re-
search [38]. Meta-PPISP is a meta-server built on scores
from other method through linear regression. Con-
PPISP combines PSI-Blast sequence profile and solvent
accessibility in a neural network. Promate is a naïve
Bayesian method consisting of properties such as sec-
ondary structure, atom distribution and sequence con-
servation. PINUP employs solvent accessible area,
sequence conservation and side-chain energy in an em-
pirical scoring function.

Results
In this section, we first show the characteristics of protein
interfaces in our analysis and develop a novel quantitative
residue interface propensity index (QIPI). Secondly, we
explore the contribution of the QIPI to improvement of
interface-residue recognition. Finally, we demonstrate the
performance of SPR by comparing it with several existing
popular interface prediction programs.

Characteristics of interface
Each protein surface was divided into two disjoint
groups: interface and non-interface. Interface properties in-
cluding residue composition, secondary structure, solvent
accessibility, contact preference and interface size were
analyzed using Astral2.05-40-4506.

Residue composition and QIPI
Figure 1 compares the residue compositions of interfaces
and non-interface surfaces. The comparisons show that
the interfaces have more aromatic residues (Tyr, Trp,
and Phe), hydrophobic residues (Met, Ile, Leu, Pro and
Val), basic residues (Arg, His) and Cys than do the non-
interface surfaces. In contrast with non-interface sur-
faces, interface preference residues also have various
physical and chemical properties, but they have long side
chains in average. This indicates that residues with long
side chain are preferred in interfaces and disfavored for
non-interface surfaces.
We calculate the relative interface ratio (RIR) of resi-

dues by comparing the residue composition of the inter-
faces with that of the non-interface surfaces. Figure 1
shows that RIR reveals that the hydrophobic residues
(A-W) are more preferred at interfaces than polar resi-
dues (Y-Q) and aromatic residues (P-Y) are more fre-
quent at interfaces. The result also shows that interfaces
have high preferences for residues with long side chain.
The Arg, Phe, Met, Trp and Tyr have significantly high
interface propensity overall. We construct the quantita-
tive residue interface propensity index (QIPI) from the
RIR of amino acid as Table 2.

Secondary structure
The secondary structures are represented simply by three
states: helix (H), strand (E) and coil(C). Fig. 2a compares
the secondary structure compositions of interfaces and
non-interface surfaces. The comparisons show that,
among the three classes, strand (E) residues of interfaces
have the lowest fractions and significant negative interface
propensity which is measured by RIR. The opposite trend
is observed for the class C (coil). No obvious preferences
are observed for the helix (H). The class E and H interface
preference were also reported in Yan’s previous work [14],

Fig. 1 Residue composition and RIR of different amino acids. The x-axis is residue types ordered based on chemical properties (basic:H-K, hydrophobic:A-
W, polar:Y-Q and acidic:D-E) and aromatic residues (P-Y) in together. In each chemical property group, residue types are ordered based on the length of
residue side chain in ascending. The main y-axis is residue frequency and secondary y-axis is relative interface ratio (RIR). The frequencies of residues on
interface and non-interface surface are shown in black and gray columns, respectively. The RIR is shown in triangle and line
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and the preference of class C in our analysis was observed
by Raih et al. [39].
Figure 2b compares the 60 residue compositions of in-

terfaces and non-interface surfaces in order to analysis
the independent and cooperation effect of residues and
secondary structures. Combined with Figs. 1 and 2, we
could find that the principal factor of interface propen-
sity is the residue type. Within each residue types, trends
of three secondary structure classes are almost as similar
as that in Fig. 2a.
In summary, the residue composition is a crucial inter-

face feature and the QIPI could be used in improving
the interface-residue recognition.

Solvent accessibility and contact preference
In order to analyze solvent accessibility, ASA propen-
sities of interface and non-interface surface residues are
compared in Fig. 3. As the above definition, raw ratios of
ASA for interface residues are more different than that

for non-interface surface residues. The relative interface
ratio (RIR) of residue type i in ASA was calculated by
comparing ASA propensities between interface and non-
interface surface residues. The RIR results show that the
percentage of interface residues with larger ASA are
more than that of non-interface surface ones as the
above threshold At. The solvent accessibility features of
residues may be used in generating candidate interface
patches for interface prediction.
In Fig. 4, the positive contact preferences across inter-

faces were shown in red, negative in blue and neutral in
white. Figure 4a shows the contact frequency across the
interfaces given by (Cij/∑m,nCmn), where Cij is the num-
ber of contacts formed by residues of types i and j.
Figure 4b shows the contact preference given by log2((-
Cij/∑m,nCmn)/(wi × wj)), where wi and wj are frequencies
of residue types i and j, respectively. In Fig. 4c, interface
residues were classified into four groups: basic (B),
hydrophobic (H), polar (P) and acidic(A). The contact
preferences between the four group interface residues
were given by the above definition and shown in Fig. 4c.
Comparison of Fig. 4a and b shows that the raw contact
frequency normalized by frequencies of individual resi-
due types makes the high preferences for hydrophobic
contacts (A-W), aromatic contacts (P-Y : Phe-Cys, Phe-
Phe, Phe-Trp, Phe-Tyr, Trp-Tyr, Tyr-His, Tyr-Lys and

Table 2 Quantitative residue interface propensity index

H R K A V I L M P F

1.147 1.346 0.784 0.841 0.994 1.084 1.144 1.451 1.109 1.334

W Y G C S T N Q D E

1.284 1.368 0.823 1.172 0.873 0.966 0.958 0.909 0.830 0.805

Fig. 2 Comparison secondary structure and residue preference between interfaces and non-interface surfaces. The frequencies of secondary structure
and residues on interface and non-interface surface are shown in gray and black columns, respectively. The RIR is shown in triangle and line. a Secondary
structure composition and RIR. The x-axis is secondary structure types (H:helix, E:strand, C:coil). The y-axis is frequency and relative interface ratio value.
b Composition and RIR of 60 classes residues. The x-axis is residue types (secondary structure combined with amino acid). The main y-axis is residue
frequency and secondary y-axis is relative interface ratio (RIR)
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Tyr-Met) and the contacts between oppositely charged
residues (Arg-Asp, Arg-Glu) have been very noticeable.
This observation was also supported by the Fig. 4c.
Combined with the RIR of residues and contact prefer-

ences, we may conclude that Arg, Phe, Trp and Tyr have
the highest interface propensity. The reason is that RIR
of these residues >1.2 (as shown in Table 2) and the
number of contacts include these residues with high
contact preference (more than 1.5 in pink as Fig. 4b) is
at least 2. This result further supports that our QIPI
grasping the interface feature.

Interface Size
Figure 5a shows that interface sizes span a broad range
and have a gamma distribution. The average interface
size is about 800 Å2. As shown in Fig. 5a, there are
about 86% of interface sizes in the range of 0-2000 Å2.
In Fig. 5b, we could find that the size of interface residue

number also has a gamma distribution and the average of
interface residue numbers is about 20. Figure 5c shows
that domain sizes also span a broad range but have a dis-
tribution that is very different from interface ones. The
average domain size is about 9000 Å2 which is much lar-
ger than that of interface. The difference between interface
and domain sizes indicates that the interface size and resi-
due number could be used as constraints in generating
candidate interface patches for prediction methods.

The QIPI contributes to the improvement of interface
residue recognition
To investigate the contribution of different interface fea-
tures of SPR scoring function to the improvement of
interface residue recognition, simple scoring functions

with individual term and the complete scoring function
were all trained on the Astral2.05-40-4506 and tested on
the Docking Benchmark 2.0. The residue interface pro-
pensity which is built on the QIPI shows clearly the
most effective interface prediction power (F-score =
0.089). As shown in Table 3, two terms including QIPI
and hydrophobic, contributed significantly to interface
residue recognition. The coverage and accuracy could be
improved by QIPI (Coverage = 0.472) and hydrophobic
term (Accuracy = 0.238), respectively. The performance
of “QIPI + Hydrophobic” and “All-QIPI”(all features ex-
cluded QIPI) in Table 3 also suggested QIPI play an im-
portant role in the combination of features used in the
interface residue recognition and its main contribution
in improving the coverage. As expected, after incorpor-
ating all features, the result of complete scoring function
has the best performance as F-score (0.092) which is
much larger than others. At the same time, coverage and
accuracy of SPR scoring function were all close to the
best result.
To evaluate the robustness of SPR, a 10-fold cross-

validation was carried out on the training set As-
tral2.05-40-4506. The average of coverage and accuracy
were 0.506 ± 0.020 and 0.267 ± 0.019 respectively (see
Additional file 2: Table S2 for details), which indicates
the stable performance of SPR in the recognition of
interface residue.

Comparison of interface prediction methods
Tables 4 and 5 show the test result of five programs in
CAPRI25 and Enz35 dataset respectively. The SPR
achieves the highest accuracy of 0.34, the second best
coverage in CAPRI25 as shown in Table 4, and the most
coverage of 0.58 but the lowest accuracy in Enz35 as
shown in Table 5. The result also illustrates that, on the
two independent datasets, SPR which is based on the
QIPI and other characteristics of interface in our study
has comparable performance to the four popular inter-
face prediction programs especially in the coverage as
criterion. The performance of SPR demonstrates that
characteristics of interface especially the novel quantita-
tive residue interface propensity index (QIPI) extracted
from our analysis are helpful to improve interface resi-
due recognition.

Discussion
In this study, through exploring the structural and physi-
cochemical characteristics underlying various protein-
protein interfaces, we have attempted to investigate vari-
ous interface features and have successfully constructed
a novel quantitative index of residue interface propen-
sity. Identifying key features of protein-protein interface
is a crucial step in understanding protein-protein inter-
actions and exploring the function and evolution of

Fig. 3 ASA propensities and RIR of residues in interface and non-inter
surface. The raw ratios of residue ASA on interface and non-interface
surface are shown in gray and black columns, respectively. The RIR is
shown in triangle and line. The x-axis is residue types ordered based
on chemical properties (basic:H-K, hydrophobic:A-W, polar:Y-Q and
acidic:D-E) and aromatic residues (P-Y) in together. In each chemical
property group, residue types are ordered based on the length of
residue side chain in ascending. The y-axis is raw ratio and relative
interface ratio value
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protein complexes. At the same time, the quantitative
interface propensity could also be used in improving the
interface residue recognition, which is important for a
series of computational structure biology problems such
as docking and protein design. For these reasons, a
number of efforts have been devoted to characterize the

interface physicochemical properties and propose hy-
potheses such as O-Ring to depict the mechanism of
protein-protein interaction. However, previous studies
were limited by lacking a comprehensive non-redundant
protein-protein interface dataset and ignoring relative
solvent accessibility of interface residues distributions

Fig. 4 Residue contact preferences for interfaces. a Contact frequencies between residues of types i and j. b Contact preferences between
residues of types i and j. c Contact preferences between four group residues (B:basic, H:hydrophobic, P:polar, A:acidic). In a and b, residue types
ordered based on chemical properties (basic:H-K, hydrophobic:A-W, polar:Y-Q and acidic:D-E) and aromatic residues (P-Y) in together. In each
chemical property group, residue types are ordered based on the length of residue side chain in ascending. These interface prefer contacts are
shown in red and the opposite contacts are shown in blue

The Author(s) BMC Systems Biology 2016, 10(Suppl 4):112 Page 388 of 548



when analyzing interface features. This leads to some in-
consistencies in this field. For example, Arg and His
showed diverse interface preference in different previous
studies, and it is difficult to improve interface residue
recognition based on the qualitative knowledge from
these analyses [14, 15, 23].
In order to solve the above-mentioned problems, we

carried out a new quantitative analysis for exploring
various features of protein-protein interface. Compared
with previous studies, the main outputs of this study in-
cluded: 1) a large-scale comprehensive interface dataset

Astral2.05-40-4506 for analysis; 2) novel quantitative
interface propensities using non-interface surface as ref-
erence to remove the bias effect of solvent accessibility;
3) a novel quantitative residue interface propensity index
(QIPI) and other interface features improving interface
residue recognition confirmed by the interface predic-
tion method SPR.
Previously, lots of researches revealed that the inter-

faces have more hydrophobic and aromatic residues but
puzzled by the observation that Arg and His also present
more frequently at interface [14, 21, 22, 40]. For ex-
ample, in the work of Yan et al. [14], the normalized
interface propensity of residues, which is based on the

Fig. 5 Distributions of interface size, interface residue number and domain size. a Interface size distribution. The x-axis is interface size (Å2).
The y-axis is the density (fraction of interfaces). The line is the probability density function curve of interface size. b Interface residue number
distribution. The x-axis is interface residue number. The y-axis is the density (fraction of interfaces). The line is the probability density function
curve of interface residue number. c Domain size distribution. The x-axis is domain size (Å2). The y-axis is the density (fraction of domains). The
line is the probability density function curve of domain size

Table 3 Contribution of interface features to interface residue
recognition

Coverage Accuracy F

QIPI 0.472 0.188 0.089

Hydrophobic 0.321 0.238 0.076

Conservation 0.266 0.191 0.051

Solvation 0.147 0.160 0.023

QIPI + Hydrophobic 0.467 0.186 0.087

All-QIPI 0.312 0.239 0.075

All 0.475 0.194 0.092

Note: Bold values denote the best performance in each category

Table 4 Comparisons of SPR with several popular interface
prediction programs on CAPRI25 dataset

ACC COV

SPR 0.34 0.4

Cons-PPISP 0.26 0.3

Meta-PPISP 0.28 0.39

Promate 0.26 0.3

PINUP 0.25 0.43

Note: Bold values denote the best performance in each category
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accessible surface area, is highly consistent with the data
based on our RIR. They concluded that the hydrophobic
and aromatic residues had high interface propensity, but
they were not able to explain the high interface propen-
sities of Arg and His. According to our analysis, it is in-
dicated that residues with long side chain (such as Arg
and His) showed interface preference in a convincing
manner, which solves the above puzzle. Our observation
about interface preference of hydrophobic and aromatic
residues is also consistent with some previous studies.
For example, Ile, Val and Leu have high positive propen-
sities for interfaces have been reported by Bahadur et al.
[40] and Yan et al. [14]. In summary, we concluded that
characteristics of interface residues are as follows: hydro-
phobic, aromatic and long side chain. These residues
could form strong driving forces, such as hydrophobic
interactions, which drive the formation of protein com-
plexes and stabilize the resulting complexes.
The interface contact preference contacts in our ana-

lysis included three types of contacts: Cys–Cys, contacts
between residues with opposite charges, and contacts
between hydrophobic residues. The fact that Cys–Cys
contacts have one of the highest preferences indicates
the important role of this type of contacts in protein–
protein interactions. These results are consistent with
previous reports which claimed that disulfide bonds, salt
bridges, and hydrophobic interactions represent the
main forces in protein–protein interactions [13, 41–44].
This is also supported by the observations that at close
distances, interactions between pairs of hydrophilic resi-
dues are principally important; whereas hydrophobic in-
teractions are crucial at longer distances [13, 42, 43, 45].
Integrated with the interface preference residues and
contacts, we found that that Arg, Phe, Trp and Tyr have
the highest interface propensity. The residue and contact
preference in interfaces observed in this analysis are
consistent with the 'Double water exclusion’ [18] which
is refined from the O-Ring theory [16] and roles of inter-
face residues in the previous reports [46, 47].
We analyzed the distributions of interface size, inter-

face number and domain size. As shown in Fig. 5, the
average interface size is approximate 800 Å2 and about
86% of interface sizes is in the range of 0-2000 Å2. Our

observation is consistent with the interface size distribu-
tion reported by previous researches. In these studies,
Yan et al. found that the distribution of interface sizes
has a peak in the range of 600-800 Å2 (whose average is
1227 Å2) [14] and Lo Conte et al. reported that the
buried area for each side of the interface is about
800 Å2 [48]. Compared with the interface size, the
domain size has a different distribution. Our research
gives a generating candidate interface patches method
using the interface size, interface number and domain
size as constraint as Table 1.
Based on the above results, we constructed a novel

quantitative residue interface propensity index (QIPI)
which could be easily applied in the interface residue
recognition approach. We concluded that QIPI shows
clearly the effective improvement in interface residue
recognition especially the coverage but its expense is los-
ing accuracy as shown in Table 3. In order to further
confirm the interface prediction power of QIPI and
other interface features in our result, we developed a
protein-protein interface residue recognition method
SPR based on these characteristics of protein-protein
interface. Through rigorous testing on independent data-
sets, SPR using a simple empirical scoring function
shows comparable prediction power with other four
popular interface prediction programs that most belong
to the machine learning method especially for the cover-
age criterion. SPR could be applied to most protein-
protein interface but its accuracy on enzyme protein
interface (Enz35 dataset) is relative poor as shown in
Table 5. This result demonstrates that characteristics of
protein-protein interface extracted from our analysis, es-
pecially the QIPI, are effective in improving protein-
protein interface residue recognition. Through analyze
the all testing result (Additional file 2: Table S2 and
Tables 3 and 4), we could conclude that the main contri-
bution of QIPI is to significantly improve the coverage
of interface residue recognition, while the cost is the loss
of accuracy for the competition balance between cover-
age and accuracy.

Conclusion
In conclusion, we constructed a novel quantitative resi-
due interface propensity index (QIPI) through building a
comprehensive non-redundant protein-protein interface
dataset Astral2.05-40-4506 and quantitatively analyzing
the protein-protein interface by considering the effect of
relative solvent accessibility of interface residues factors
distributions. The QIPI with other interface features
from our analysis was helpful to explore protein-protein
interfaces, and solved some inconsistent observations in
previous studies such as interface propensity of Arg and
His. Moreover, the QIPI successfully improved the
protein-protein interface residue recognition, which was

Table 5 Comparisons of SPR with several popular interface
prediction programs on Enz35 dataset

ACC COV

SPR 0.36 0.58

Cons-PPISP 0.36 0.5

Meta-PPISP 0.48 0.55

Promate 0.4 0.45

PINUP 0.47 0.53

Note: Bold values denote the best performance in each category
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confirmed by the contribution test (Table 3), perform-
ance of SPR (Tables 4 and 5) and 10-fold cross-
validation test (Additional file 2: Table S2). Therefore,
the QIPI not only depicts the protein-protein interface,
but also improves the protein-protein interface residue
recognition. Our work provides a systematic study of
protein-protein interfaces, and we believe that the quan-
titative index, QIPI, will contribute to the development
of protein-protein interaction research.

Additional files

Additional file 1: Figure S1. The Frequency Distribution of ASA for
residues on interface and non-interface surface. (PDF 2687 kb)

Additional file 2: Table S1. The ASA threshold (Å2) for amino acids.
Table S2. 10-Fold Cross-Validation for SPR on Astral2.05-40-4506.
(DOCX 17 kb)
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