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Abstract

Background: Boolean network modeling has been widely used to model large-scale biomolecular regulatory
networks as it can describe the essential dynamical characteristics of complicated networks in a relatively simple
way. When we analyze such Boolean network models, we often need to find out attractor states to investigate the
converging state features that represent particular cell phenotypes. This is, however, very difficult (often impossible)
for a large network due to computational complexity.

Results: There have been some attempts to resolve this problem by partitioning the original network into smaller
subnetworks and reconstructing the attractor states by integrating the local attractors obtained from each
subnetwork. But, in many cases, the partitioned subnetworks are still too large and such an approach is no longer
useful. So, we have investigated the fundamental reason underlying this problem and proposed a novel efficient
way of hierarchically partitioning a given large network into smaller subnetworks by focusing on some attractors
corresponding to a particular phenotype of interest instead of considering all attractors at the same time. Using the
definition of attractors, we can have a simplified update rule with fixed state values for some nodes. The resulting
subnetworks were small enough to find out the corresponding local attractors which can be integrated for
reconstruction of the global attractor states of the original large network.

Conclusions: The proposed approach can substantially extend the current limit of Boolean network modeling for
converging state analysis of biological networks.
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Background
In the realm of systems biology, mathematical modeling is
essential to unravel the hidden principles underlying
complex biological phenomena [1]. Among various math-
ematical modeling frameworks, the Boolean network is
particularly useful for modeling large-scale biomolecular
regulatory networks as it is a parameter-free logical model
and thereby we can avoid parameter estimation which is
often a critical limitation in mathematical modeling of
such large-scale networks [2–5]. Once a Boolean network
model is obtained, the converging state characteristics of
the modeled network can be investigated by identifying
attractor states which were known corresponding to cell

phenotypes [6–11]. Finding attractors of interest is,
however, an NP-hard problem [12–14] since we have to
search the full state space and this is only possible for
small networks with less than about 20 nodes [15, 16].
To tackle such a problem, there have been several

attempts to reduce the original Boolean network model
by eliminating some nodes or logically simplifying
Boolean functions [17–27], or focusing only on point
attractors [28, 29]. Another attempt was partitioning the
original large Boolean network into smaller blocks and
reconstructing the original attractors by integrating the
local attractors of partitioned blocks [30, 31]. However,
none of these could resolve the fundamental problem of
computational complexity since both the reduced
network and the partitioned subnetwork are still too
large in most cases of biological networks. Even if the
reduced network is small enough to search the full state
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space, the resulting attractor states of the reduced
network can be different from the attractor states of the
original network (this will be shown in the Results
section). The existing partitioning approaches retain the
complicated logic of the original network even after
partitioning such that the whole set of attractors can still
be found from the partitioned subnetworks. We found
that the fundamental limitation of the previous
partitioning methods lies in this point. To overcome
such a limitation, we propose a different approach in
this paper. The main idea is focusing only on particular
phenotypic attractors of interest and simplifying the
Boolean update rules of the original network by introdu-
cing some constraint equations such that the particular
attractors are not affected. In this way, we can efficiently
reduce the original large network. Then, we further
partition the reduced network hierarchically and find
out the local attractors of each partitioned subnetwork.
We can finally obtain the global attractors for represent-
ing the particular phenotype in the original network by
sequentially concatenating the local attractors. Our
approach is based on the previous concept of strongly
connected component (SCC) [30, 31], but the main
difference is that our approach can efficiently find out
the particular phenotypic attractors of interest by
hierarchically partitioning the reduced network obtained
by simplifying the state update rules using some
constraint equations, whereas the previous approach
attempts to partition the original network while retain-
ing all the complicated state update rules and thereby
results in still a large subnetwork even after partitioning.
We validated the usefulness of our approach by

applying it to several large and complicated biological
Boolean network models.

Methods
In this section, we describe the procedure of finding
global attractors for the phenotype of interest from a
large and strongly connected network and explain how
to hierarchically partition the network into smaller-size
subnetworks. We then describe a way of constructing
the global attractors by sequential concatenation of local
attractors of the subnetworks.

Procedure for construction of global attractors by
concatenating local attractors
Let us consider that a large and complicated synchronous
Boolean network is given and the states of nodes in the
network are updated by logic functions or threshold (sign)
functions. Our goal is to find attractors for a phenotype of
interest (for example, apoptosis or proliferation) in the
given network. The idea is to transform the original
update rules into simplified update rules by fixing the state
values of some nodes (Steps 1 and 2) and to convert the

original network into a simplified network using the
simplified update rules. After hierarchically partitioning
the simplified network into their SCCs (Step 3), the local
attractors of each SCC can be found by using a full search
algorithm (Step 4). Finally, we can find the global attrac-
tors by concatenating the local attractors (Step 5). Each
step of the procedure is as follows:

Step 1-1. Determine the fixed state values of nodes for
external environment. The environment is a stimulus,
a tumour-promoting microenvironment or perturb-
ation of a node as in [6, 9, 10]. Nodes for representing
the environment are referred to as “external nodes”.
Step 1-2. Insert the fixed values of the external nodes
into the system of update equations. Applying Step1-2,
we can obtain the fixed state values of some nodes,
which are different from the external nodes and
referred to as “secondary-external nodes”. As a result,
the original update rules are divided into two parts.
The first is the set of external and secondary-external
nodes (ESENs) with their fixed values. The other is the
new update rules for those nodes except ESENs, which
are called as “the semi-simplified update rules”. We
refer to the two parts as “the external condition”
(Fig. 1 STEP1). Examples for Step 1 are given in
S.Example 1 in Additional file 1 (see Additional
files 2(c), 3(b), 4(c), 5(b) and 6(c) for details).
Step 2-1. Determine the nodes and their fixed state
values for the definition of the phenotype. We consider
networks with a node that is the phenotype as in [6, 9,
10]. For instance, in case that the network has the state
update rule, Proliferation* = p70 & MYC & !p21, the
network is said to have the node for proliferation,
where the symbols * and (&,!) denote the next time
step and the logic operators (and, or), respectively.
Consistent activation of the phenotype is defined by
both nodes and their fixed state values, which are
referred to as “phenotype nodes and values”. For the
update rule, Proliferation* = p70 & MYC & !p21, the
phenotype nodes are (p70, MYC, p21) with fixed
values (1,1,0). Therefore the desired global attractor
states for the proliferation phenotype must satisfy the
constraints (p70, MYC, p21) = (1,1,0). The step is
described in detail in Additional file 1.
Step 2-2. Insert the fixed values of the phenotype
nodes into the semi-simplified update rules. After
applying Step 2-2, we can obtain the fixed state values
of some nodes, which are neither ESENs nor phenotype
nodes and referred to as “secondary-phenotype nodes”.
Consequently, the semi-simplified update equations
are divided into three parts. The first is the set of
phenotype and secondary-phenotype nodes (PSPNs)
with their fixed values. The second is constraint
equations, which are introduced due to the constraints
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in Step 2-1 and explained in S.Example 3 in Additional
file 1. The third is the new update rules for nodes
except both ESENs and PSPNs, which are called as
“the fully-simplified update rules”. The three parts are
referred to as “the phenotype condition” (Fig. 1 STEP2).
Examples for Step 2 are given in Additional files 2(d),
3(c), 4(d), 5(c) and 6(d). Note that if update rules are
defined by threshold (sign) functions, then constraint
equations are changed to constraint inequalities as in
the SCP network of the Result section and S.Remark
1 of Additional file 1.
Step 3. Construct the hierarchical partition of the
network corresponding to the fully-simplified update rules.

Note that this partition is for nodes except both ESENs
and PSPNs not for all nodes in the original network.
The partition is referred to as “the hierarchical partition
for the phenotype (HPFP)” as in Fig. 1 STEP3 and this
step is explained in the Construction of HPFP section
below. Examples for Step 3 are shown in Fig. 2 and the
Result section.
Step 4-1. Find the local attractors of subnetworks in
the HPFP.
Step 4-2. Construct the global attractors of the HPFP
(Fig. 1 STEP4) by sequential concatenation of the
local attractors satisfying the secondary-phenotype
equations. Step 4 is explained in detail in the section

Fig. 2 Phenotype nodes and HPFP. Arrows and blunt arrows denote activation and inhibition, respectively. Dotted circles means SCCs. a-b The
original network has five SCCs. c Partition obtained from [30, 31]. d The HPFP is obtained under the assumption that x1 is phenotype and (x2, x3)
are the phenotype nodes

Fig. 1 The overall procedure of the proposed method. The STEPs explain how to find the attractors for a phenotype of interest in a given Boolean
network step by step. The environment of the network defines the external condition in STEP1. The consistent activation of nodes for representing
the phenotype provides the phenotype condition in STEP2, where the desired global attractor states for the proliferation phenotype must satisfy the
constraint equations (b2). The network with the fully-simplified update rules (b3) is partitioned in STEP3. Concatenating the local attractors obtained
from each partition yields the global attractors of the fully-simplified network in STEP4. Finally, in STEP5, the global attractors of the original network
can be found by combining the global attractors of the simplified network in STEP4 and the fixed state values of ESENs (a1) and PSPNs (b1)
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of ‘How to concatenate the local attractors of
subnetworks?’ and Additional files 7 and 8.
Step 5. Combine the global attractors of the HPFP with
fixed values of ESENs and PSPNs as shown in STEP5
of Fig. 1. After applying Step 5, we can obtain all the
desired phenotype attractors of the original network.
Examples for such phenotype attractors are given in
Additional files 2(g), 3(f ), 4(f )-(g), 5(f )-(m) and 6(e).

Construction of HPFP
Let us explain how to construct the HPFP introduced in
Step 3 above. The layers of the HPFP are referred to as
categories. The first category consists of SCCs with zero
indegree as the SCC V1,1 in Fig. 2. The n-th category
(n ≥ 2) consists of SCCs satisfying two conditions: every
link into SCCs in the n-th category comes from nodes in
the k-th categories (1 ≤ k ≤ n − 1) and SCCs in the n-th
category have at least one input link coming from nodes
in the (n-1)-th category. The HPFP is defined as the union
of the hierarchical categories, each of which is also parti-
tioned by SCCs. The HPFP has a simpler structure than
the partition of the original network as the HPFP is not a
partition of the original network but of the network sim-
plified by the fully-simplified update rules.
For instance, let us assume that there exists a Boolean

network in Fig. 2a, which has five SCCs in Fig. 2b.
Applying the methods in [30, 31], the Boolean network
is partitioned as in Fig. 2c. The goal of the partition in
[30, 31] is to make a framework for finding all attractors
of the original network without fixing a particular pheno-
type. However, we are interested in construction of other
partition (HPFP) for finding particular attractors which
represent a phenotype of interest. For simplicity, we as-
sume that there exist no external, secondary-external and
secondary-phenotype nodes. In addition, we assume that
x1 is a phenotype with the update equation

x�1 ¼ f 1 x2; ; x3ð Þ

and that the phenotype nodes are (x2, x3) with one
secondary-phenotype equation
0 = x3 = f2(x5, x7).
Hence, the nodes xi(1 ≤ i ≤ 3) and the links connected

to xi(1 ≤ i ≤ 3) are removed from Fig. 2c, thus changing
Fig. 2c into Fig. 2d. Therefore, the first category of the
HPFP in Fig. 2d comprises V1,1 = {x6, x7, x8, x9} and V1,2

= {x4}, which have a zero indegree. The SCCs V2,1

= {x10, x11} and V2,2 = {x5} in the second category are the
unique SCCs with links connected to the nodes in the
first category. Comparing the two hierarchical parti-
tions in Fig. 2c and d, we can find that the HPFP is
simpler than the partition that can be obtained from
previous methods [30, 31].

How to concatenate the local attractors of subnetworks
in the HPFP?
Let us explain, through an example, how to sequentially
concatenate the local attractors of subnetworks in cat-
egories of the HPFP in Fig. 3a for the construction of
the global attractors of the HPFP. The algorithm for the
concatenation is described in detail in Additional file 8.
Our explanation is focused on concatenation from the
HPFP, so that we do not take into account the external,
phenotype, secondary-external and secondary-phenotype
nodes, and secondary-phenotype equations. However,
when applying our approach to biological networks in
the Results section, these were taken into account. The
HPFP is given with the fully-simplified update rules in
Additional file 7(a). In the following, we describe the
sequential concatenation step by step (the details of
calculation in each step are given in Additional file 7).
Step 1. Find local attractors in the first category. There

exists only one subnetwork V1,1 = {x1, x2} in the first category
as it is the unique subnetwork with no input links. Then V1,1

has the update rules defined by x1 and x2 in Additional file
7(a), which yield three local attractors a〈1〉= 〚10, 01〛, a〈2〉 =
〚00〛, a〈3〉 = 〚11〛 in Additional file 7(b). Here the symbol 〚10,
01〛 denotes a cyclic attractor of length 2 and 〚00〛 a point
attractor in Fig. 3b. In the next, we find global attractors
containing the cyclic states a〈1〉 for x1 and x2. Similarly, the
process for obtaining global attractors that include a〈2〉
and a〈3〉 is presented in detail in Additional file 8.
Step 2. Find local attractors in the second category.

There exist two subnetworks V2,1 = {x3, x4} and V2,2

= {x5, x6, x7} in the second category with input signals
from the first category.
Step 2-1. Find local attractors of V2,1. Due to V2,1

in

= {x1}, the subnetwork V2,1 = {x3, x4} gets the input signal
〚1, 0〛 generated from the state values of x1 in the
attractor a〈1〉. Note that change of the starting value of
the input signal while preserving the order (1 and 0 with
period 2) cannot affect the local attractors, which is
proved in S.Theorem 1 in Additional file 8. Then we
have a unique local attractor of V2,1

in ∪V2,1 = {x1, x3, x4},
which is 〚101, 000, 100, 010〛 in Fig. 3c and Additional
file 7(c). Therefore, the local attractor of V2,1 = {x3, x4}
becomes 〚01, 00, 00, 10〛 in Fig. 3g.
Step 2-2. Find local attractors of V2,2. As in Step 2-1,

using the update rules for V2,2 = {x5, x6, x7} with the
input signal 〚0, 1〛 generated from V2,2

in = {x2}, we have a
unique local attractor of V2,2

in ∪ V2,2, which is 〚0000,
1010, 0101, 1000, 0001, 1001〛 in Fig. 3d and Additional
file 7(d). Therefore the local attractor of V2,2 = {x5, x6, x7}
becomes 〚000, 010, 101, 000, 001, 001〛 in Fig. 3g.
Step 3. Find local attractors in the last category. There

exist two subnetworks V3,1 = {x8, x9} and V3,2 = {x10, x11}
in the last category with input signals from the first and
second categories.
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Step 3-1. Find local attractors of V3,1. Using the update
rules for V3,1 = {x8, x9} with the input signal 〚100, 001, 100,
010, 100, 000, 100, 011, 100, 000, 100, 010〛 from V3,1

in = {x1,
x3, x6}, we have a unique attractor of V3,1

in ∪V3,1, which is
cyclic with length 12

〚
10000; 00100; 10000; 01000; 10000; 00000;
10000; 01100; 10000; 00000; 10000; 01000 〛

in Fig. 3e and Additional file 7(e). Therefore the local at-
tractor of V3,1 = {x8, x9} becomes 〚00〛 in Fig. 3g.
Step 3-2. Local attractors of V3,2. Using the update rules

for V3,2 = {x10, x11} with the input signal 〚0, 0, 1, 0, 1, 1〛 from
V3,2
in = {x7}, we have a unique attractor of V3,2

in ∪V3,2, which
is 〚000, 000, 100, 000, 100, 100〛 in Fig. 3f and Additional file
7(f). Therefore the local attractor of V3,2 = {x10, x11}
becomes 〚00〛 in Fig. 3g and Additional file 7(f).
Step 4. Construct the table with all the local attractors

obtained from a〈1〉. We construct the table in Fig. 3g, in

which the first column denotes the order of states of each
local attractor in the second column to the sixth column.
The second column denotes the local attractor 〚10, 01〛 of
V1,1 = {x1, x2}. Even though there are no states in the cells
of the second column from the order 3, the second
column is considered to be filled with states 10 and 01
with a period of 2. For instance, the states in the 3rd and
4th cells are 10 and 01, respectively. Similarly, the third
column is filled with states 01, 00, 00 and 10 with a period
of 4. Repeating this process completes the table.
Step 5. Construct the global attractor from the table.

The concatenation of states in the i-th row of the table be-
comes the i-th state of the global attractor of the HPFP.
Therefore, concatenating states from cells of the table in a
row yields the unique global attractor of the HPFP with a
period of 12, where the period is the least common mul-
tiple of periods of the five local attractors: 2, 4, 6, 1 and 1.
Finally, we obtain the unique global attractor by

sequentially concatenating the local attractors that include

Fig. 3 Concatenation of local attractors. a The HPFP has three categories and five SCCs V1,1, V2,1, V2,2, V3,1 and V3,2. Each arrow denotes the change
from one state to another state at the next time step. The update rules for the network in Additional file 7. b There exist three attractors [10,
01], [00] and [11] in V1,1. In this figure we consider the local attractors of subnetworks in the HPFP with starting signal [10, 01] generated from the
two nodes x1 and x2. c V2,1

in = {x1} denotes the set of nodes sending input signal into the SCC V2,1 = {x3, x4}, where the input signal is 1,0 with
period 2 and V2,1 has a unique attractor [01, 00, 00, 10]. d V2,2

in = {x2} and V2,2 = {x5, x6, x7}. The input signal coming from x2 into V2,2 is 0, 1 with
period 2. The SCC V2,2 has a unique attractor, which is cyclic with length 6. e V3,1

in = {x1, x3, x6} and V3,1 = {x8, x9}. The input signal coming from (x1,
x3, x6) into V3,1 is cyclic with period 12. The SCC V3,1 has a unique attractor which is acyclic. f V3,2

in = {x7} and V3,2 = {x10, x11}. The input signal
coming from x7 into V3,2 is cyclic with period 6. The SCC V3,2 has a unique attractor which is acyclic. g Table for all the local attractors of
subnetworks in the HPFP with the signal [10, 01] in V1,1. The second column denotes the local attractor [10, 01] of V1,1 = {x1, x2}, where each state
in the attractor has its position denoted by the order in the first column. h Sequential concatenation of the local attractors in the Table. This
yields the unique global attractor of the HPFP, which is cyclic with a period of 12 and has the local attractor 〚10, 01〛 in V1,1
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the local attractor a〈1〉 in Fig. 3h and Additional file 7(g),
and confirm that the concatenated states become the
global attractor by applying the original update rules in
Additional file 7(g).

Results
To demonstrate the effectiveness of our framework in
practice, we applied our method to three biological
network models for finding attractors responsible for
proliferation or apoptosis phenotypes: the first was a
Mitogen-activated protein kinase (MAPK) model [6]
with 53 nodes and 88 links, the second was a colitis-
associated colon cancer (CACC) model [10] with 70 nodes
and 152 links and the last was the simplified cancer path-
ways (SCP) model [9] with 96 nodes and 265 links. In
general, Boolean update rules are classified into two types:

one is defined with logic functions and the other with
threshold functions. The MAPK and CACC networks
have update rules that correspond to the first type. The
SCP network has update rules corresponding to the sec-
ond type.

MAPK network
The MAPK model has four stimuli (DNA damage, TGFBR
stimulus, EGFR stimulus and FGFR3 stimulus) and three
phenotypes (proliferation, apoptosis and growth arrest) as
in Fig. 4. The cascades in the MAPK network are strongly
interconnected and the maximum number of nodes of the
SCCs in the network is 37(69.8 %) as shown in Additional
files 2(a) and (b). Therefore, due to computational com-
plexity, the previous methods [30, 31] based on SCCs is
not useful for this MAPK network.

Fig. 4 MAPK network. The network denotes a Mitogen-activated protein kinase (MAPK) network with 53 nodes and 88 links in [6]. The pink and
blue nodes denote stimuli and phenotypes, respectively
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Proliferation attractors of the MAPK network
In order to find global attractors for proliferation of the
MAPK network, we used the same simulation condition
r30 in S3 Dataset of [6]: ERK perturbation with setting the
values of the four stimuli to zero. Inserting the fixed values
(ERK, TGFBR stimulus, EGFR stimulus, FGFR3 stimulus,
DNA damage) = (1,0,0,0,0) of the external nodes into the
update rules for the MAPK network in Additional file
2(a), we found the external condition: the external,
secondary-external nodes (ESENs) and the semi-simplified
update rules for nodes except ESENs in Additional file
2(c). Due to the update rule, Proliferation* = p70 & MYC
& !p21, inserting the phenotype values (p70, MYC, p21)
= (1,1,0) of the phenotype nodes into the semi-simplified
update rules, we found the phenotype condition: the
phenotype and secondary-phenotype nodes (PSPNs), the
fully-simplified update rules for 21 nodes and the two
secondary-phenotype equations

MAX j AKT ¼ 1; !AKT p53 ¼ 0

in Additional file 2(d). The fully-simplified update rules
yield the HPFP for proliferation in Fig. 5 where the
HPFP has 8 categories and the SCCs has four nodes at
most whereas the SCC in the original network has 37
nodes. The yellow boxes on the three nodes p53, MAX,
AKT in Fig. 5 denote the nodes included in the two
secondary-phenotype equations, where the three nodes
are referred to as “the equation nodes”.
The SCCs with more than one node in the HPFP are

V1,1 = {GRB2, PKC, EGFR, PLCG} and V4,1 = {p38, p53,
GADD45,MTK1}. The fully-simplified update rules for
(GRB2, PKC, EGFR, PLCG) yield that V1,1 has the unique
attractor 〚0100, 0000, 0010, 1011, 1101〛 in Additional file
2(e), where the computing time was 0.028871 s by using a
PC with 3.6GHz CPU and 32G RAM. The signal coming
from {PLCG} in V1,1 is transmitted to V2,1 = {RAS} with the
formula RAS* = PLCG and the signal from {RAS} becomes
the input signal to V3,1 = {MAP3K1_3} with MAP3K1_3* =
RAS. As a result, V3,1 has a unique attractor 〚1, 1, 0, 0, 0〛.
The unique input signal from {MAP3K1_2} to V4,1 yields a
unique attractor of V4,1, which is the point attractor 〚0000〛
for (p38, p53, GADD45, MTK1) in Additional file 2(f). In
this case, the computing time was 0.108352 s. Inserting the
state values of the point attractor into the fully-simplified
update rules in Additional file 2(d), we have

PTEN� ¼ p53 ¼ 0; AKT� ¼ !PTEN ¼ 1; MAX�
¼ p38 ¼ 0;

and then

MAXjAKT ¼ 1; !AKTp53 ¼ 0:

Hence the secondary-phenotype equations were satis-
fied for the local attractors of the seven subnetworks

Vi,1(1 ≤ i ≤ 4),V5,1 = {PTEN},V5,3 = {MAX},V6,1 = {AKT}.
Note that the remaining eight subnetworks in Fig. 5

do not affect the states of the equation nodes (p53,
MAX, AKT). Therefore, we can construct the table in
Fig. 3g and found a unique global attractor for prolifera-
tion, which is cyclic with a period of 5 in Additional file
2(g). We confirmed that the set of cyclic states becomes
a global attractor of the original network by applying the
original update rules in Additional file 2(g).

Apoptosis attractors of the MAPK network
To find global attractors for apoptosis phenotype in the
MAPK network, we used the simulation condition r4 in
S3 Dataset of [6], which is FGFR3 perturbation with
setting the values of the four stimuli to zero. The fully-
simplified update rules yield the HPFP for apoptosis in
Fig. 6, where the HPFP has 4 categories and each SCC
has two nodes at most. We obtained a unique global

Fig. 5 Simplified MAPK network for proliferation attractors. When
finding attractors for proliferation in the MAPK model, the original
update rules for MAPK network is divided into two parts. The first is
fixed state values of ESENs and PSPNs. The second is the simplified
update rules for nodes (N) except both ESENs and PSPNs. The
network in this figure is the hierarchically partitioned network with
the simplified update rules for the nodes N. There exist only two
SCCs V1,1 and V4,1 that have more than one node. The nodes in V1,1
and V4,1 are colored with green and red, respectively. The yellow
boxes denote the nodes used in the constraint
equations (MAX|AKT = 1, ! AKT & p53 = 0)
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attractor for apoptosis, which is cyclic with a period of
4 in Additional files 3 and 9.

CACC network
The CACC model has one input (APC) and two pheno-
types (proliferation and apoptosis) as in Fig. 7. The CACC
network model is strongly interconnected with the max-
imum number of nodes of the SCC in the network is 65
(92.9 %) as described in Additional file 4(a) and (b).

Proliferation attractors of the CACC network
Under the strong tumour-promoting microenvironment
(fixing DC at ON) for premalignant intestinal epithelial
cells (fixing APC at ON) as in [10], we applied the proposed
method to find global attractors for proliferation in the
CACC network with the update rules in Additional file
4(a). Inserting the external values (DC, APC) = (1,1) of the

external nodes into the CACC update rules in Additional
file 4(a), we found the external condition: the external and
secondary-external nodes (ESENs) and the semi-simplified
update rules for nodes except ESENs in Additional file 4(c).
Due to Proliferation* = (FOS & CYCLIND1) & !(P21 |
CASP3) with the secondary-external value FOS = 1, insert-
ing the values (CYCLIND1, P21, CASP3) = (1,0,0) into the
semi-simplified update rules, we found the phenotype con-
dition: the phenotype, secondary-phenotype nodes (PSPNs),
the fully-simplified update rules for three nodes (SOCS,
STAT3, JAK) and no secondary-phenotype equation in
Additional file 4(d). The fully-simplified update rules yield
the HPFP for proliferation in Fig. 8 and the HPFP has one
category with one SCC V1,1, which has three nodes. The
fully-simplified update rules for the three nodes (SOCS,
STAT3, JAK) yield that V1,1 has two attractors

010; 101; 111; 110; 100; 000; 001; 011

in Additional file 4(e). Therefore we found two global
attractors for proliferation in Additional file 4(f ) and (g),
which are confirmed by applying the CACC update rules
in Additional file 4(f ) and (g).

Apoptosis attractors of the CACC network
Under the same condition for proliferation attractors of
the CACC network above, the fully-simplified update
rules yield the HPFP for apoptosis in Fig. 9. We applied
our method to the CACC network and found that there
exists no global attractor for apoptosis in the CACC network
in Additional files 5 and 10. Since the simulation condition
(DC, APC) = (1,1) denotes the strong tumour-promoting
microenvironment (fixing DC at ON) for premalignant
intestinal epithelial cells (fixing APC at ON), the non-
existence of global attractors for apoptosis can be expected.

SCP network
The simplified cancer pathway model has six inputs
(Mutagen, GFs, Nutrients, TNfa, Hypoxia and Gli) and
one phenotype (apoptosis) as shown in Fig. 10. The
cascades in the original network are strongly
interconnected with the maximum number of nodes of
the SCC is 68 (70.8 %) as described in Additional file
6(a) and (b). The state vector (Mutagen, GFs,
Nutrients, TNfa, Hypoxia) = (0,0,1,0,1) describes the
normoxic microenvironment with the plenty of nutri-
ents and growth factors [9].
We considered the apoptosis phenotype under the

same microenvironment in [9]. Inserting the external
values (Mutagen, GFs, Nutrients, TNfa, Hypoxia,
Gli) = (0,0,1,0,1,0) into the SCP update rules in
Additional file 6(a), we found the external condition:
the external, secondary-external nodes (ESENs) and
the semi-simplified update rules for nodes except

Fig. 6 Simplified MAPK network for apoptosis attractors. When finding
attractors for apoptosis in the MAPK model, the original update rules
for MAPK network is divided into two parts. The first is fixed state
values of ESENs and PSPNs. The second is the simplified update rules
for nodes (N) except both ESENs and PSPNs. The network in this figure
is the hierarchically partitioned network for the nodes N with the
simplified update rules. There exist only two SCCs V1,1 and V3,1 that
have more than one node. The nodes in V1,1 and V3,1 are colored with
green and red, respectively. In this case there exist no constraints, so
that there are no yellow boxes as in Fig. 5
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ESENs in Additional file 6(c). The secondary-external value
Caspase8 = 0 yields

Apoptosis� ¼ sgn Caspase8þ Caspase9½ �
¼ sgn Caspase9½ �:

Note that Apoptosis =1 if and only if Caspase9 = 1, which
is also equivalent to (Caspase9, Cytoc/APAF1) = (1,1) and
the constraint inequality 0 < -AKT+ p53-BCL_2-Bcl_XL
since Caspase9* = Cytoc/APAF1 and Cytoc/APAF1* = sgn(-
AKT + p53-BCL_2-Bcl_XL). As a result of the external
condition, the set of ESENs satisfies the constraint inequal-
ity and becomes the set of all nodes in the SCP network in

Fig. 7 CACC network. The network denotes a colitis-associated colon cancer (CACC) network with 70 nodes and 152 links in [10]. The pink circle
denotes the input node, the adenomatous polyposis coli (APC) protein that represents premalignant intestinal epithelial cells when consistently
activated. The cyan nodes denote phenotypes

Fig. 8 Simplified CACC network for proliferation attractors. The
network denotes the simplified CACC network for nodes except
ESENs and PSPNs with the simplified update rules when finding
attractors for proliferation in the CACC model
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Additional file 6(c). Then there are no PSPNs, no
secondary-phenotype inequalities and no fully-simplified
update rules.
Therefore the vector of the fixed values of the 96

nodes (ESENs) is the unique attractor for apoptosis
under the microenvironment. We confirmed that the
concatenated state vector becomes the global attractor
by applying the SCP update rules to Additional file 6(e).

Resolving the two problems: large size and strong
interconnection
We summarized in Table 1 the aforementioned results
obtained for the MAPK, CACC and SCP networks. The
three biological networks have a large number of nodes
that are strongly interconnected. The first two networks
have nodes for representing proliferation and apoptosis
phenotypes, but the last has a node for only apoptosis.

The column with the title #External and phenotype
nodes in Table 1 shows that the number of nodes for a
given external environment and a phenotype of interest
are independent of the size and degree of interconnec-
tion. We found that the number of SCCs in the HPFP is
approximately proportional to the number of categories
as the number of categories gets increased. Even if the
original networks are strongly interconnected and the
number of categories and that of SCCs in the HPFP are
high, the number of nodes in SCCs in the HPFP is small
enough such that full search of the state space can be
performed to find local attractors and therefore we can
find global attractors for the phenotype in the original
networks by concatenating the local attractors.
In particular, in the case of the SCP network, the set of

ESENs becomes the set of all the 97 nodes in the SCP
network with no secondary-phenotype inequalities, which

Fig. 9 Simplified CACC network for apoptosis attractors. When finding attractors for apoptosis in the CACC model, the network denotes the
hierarchically partitioned CACC network for nodes except ESENs and PSPNs with the simplified update rules. There exist four SCCs with more
than one node, which are represented with different colors:V1,1 = {IFNG, CTL}, V1,2 = {SOCS, JAK, STAT3}, V4,1 = {CCL2, MAC, TNFA, TNFR, IKK, IKB,
NFKB}and V10,1 = {P53, PTEN}. The yellow boxes denote the nodes used in the constraint equations ((NFKB|STAT3)&(~ SMAC) = 0, CASP8|CASP9 = 1)
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Fig. 10 SCP network. The network denotes a simplified cancer pathways (SCP) network with 96 nodes and 265 links in [9]. The pink and cyan
nodes denote input and apoptosis phenotype, respectively

Table 1 The symbol #A denotes the number of A. And the symbol Max #Nodes in SCCs denotes the maximum of the numbers of
nodes in strongly connected components

Original network HPFP for nodes except ESENs and PSPNs

#Nodes Max #Nodes
in SCCs

Phenotype #External and
phenotype nodes

#Categories #SCCs Max #Nodes
in SCCs

MAPK 53 37 (69.8 %) Proliferation 8 8 15 4

Apoptosis 9 4 4 2

CACC 70 65 (92.9 %) Proliferation 6 1 1 3

Apoptosis 3 15 33 7

SCP 97 68 (70.8 %) Apoptosis 8 0 0 0
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explains why the number of categories, that of SCCs and
the maximum are all zero in Table 1. The SCP network
does not include a node for proliferation, thus we could
not find attractors for proliferation phenotype.

Comparison of our method with the reduction and
random sampling methods
Previous methods based on SCCs for finding all global
attractors cannot be applied to the three networks in
Table 1 due to the large size of networks. To deal with
such a problem, two methods are usually used: reduction
method and random sampling method, which were
compared with our method for the MAPK, CACC and
SCP networks.
Under the condition r30 in S3 Dataset of [6] used in

the Proliferation attractors of the MAPK network sec-
tion, the reduction method yields two attractors for pro-
liferation phenotype, which are cyclic with a period of 6
in S3 Dataset of [6]. However, we found that the MAPK
update rules under the same condition result in the
unique attractor for proliferation, which is cyclic with a
period of 5 in Additional file 2(g). Such different results
show that the reduced network obtained by the reduc-
tion method does not preserve the attractors of the ori-
ginal network, even though the periodic property of
attractors is preserved. In addition, under the condition
r4 in S3 Dataset of [6], such difference was also found
between S3 Dataset of [6] and Additional file 3(f ).
Reduced update rules are given for a reduced CACC

network in [10] and we used the update rules to find
attractors for proliferation of the reduced CACC net-
work in Additional file 11. We compared the prolifera-
tion attractors obtained by the reduced update rules
with the proliferation attractors obtained from the
original CACC network by using the proposed method.
As a result, we did not find such a difference between S3
Dataset of [6] and Additional file 3(f ). However, the
reduced method has a disadvantage that the attractors
obtained by reduced update rules for reduced networks
do not have the information on states of all nodes in the
original networks.
Under the condition (Mutagen, GFs, Nutrients, TNfa,

Hypoxia) = (0,0,1,0,1) in S1 Dataset of [9], the random
sampling method and our method yield a unique at-
tractor for apoptosis phenotype, which is a fixed point
attractor in S1 Dataset of [9] and Additional file 6(e).
Even though a random sampling method (i.e. randomly
sampling the initial states and tracing the converging
state trajectories) can provide an estimate of global
attractors of large-size networks while compromising
the computational complexity, such an approximation
cannot guarantee to find all global attractors for a
phenotype of interest. However, our method can always
guarantee the full search result even for a large network.

Validation of the proposed algorithm
To show that all attractors in a given network can be
found by applying our method, we applied our method to
two Boolean networks with known attractors. The first
network is shown in Fig. 3a and it has 11 nodes with the
update rules in Additional file 7(a), where the network has
neither input nor output nodes. This network is suitable
for the validation of concatenating local attractors ob-
tained from HPFP without considering ESENs and PSPNs.
By applying a full search algorithm to this network, we
could find all attractors and, as a result, we confirmed that
these attractors are exactly the same as we found by apply-
ing our method (see Additional file 12 for details).
For the validation of PSPNs as well as the concaten-

ation, the second network is adopted from [10] and it has
21 nodes. This network has two cyclic attractors of length 2
and 6, both representing cell proliferation, as shown in Fig. 3c
and Supplementary Table S6 in [10]. To find out all attrac-
tors representing cell proliferation in this network model, we
have applied our method to this network and could obtain
the same attractors (see Additional file 12 for details), as
shown in Fig. 3c and Supplementary Table S6 in [10].

Discussion
Previous approaches of partitioning a large Boolean net-
work model to resolve the computational complexity issue
preserve the regulatory links of the original network to
identify all the attractor states from the partitioned
network. The primary point we noticed is that we have to
simplify the state update rules and reduce the regulatory
links to obtain small subnetworks of practically comput-
able size. For this purpose, we focused only on a set of
attractors for a particular phenotype of interest and
developed a novel algorithm that can efficiently find out
the attractor states from the hierarchically partitioned sub-
networks obtained by simplifying the state update rules
and replacing some regulatory links with constraint
equations while preserving the particular attractor states.
In contrast with the previous approaches, the proposed ap-
proach can result in small and simplified subnetworks of
computable size. An important point is that we can always
find out all the attractors corresponding to the phenotype
of interest in the original large network by sequentially
concatenating the local attractors that are obtained from
the hierarchically partitioned subnetworks.
The limitation of our approach is that we cannot find

out all attractors at the same time using this approach.
However, in many practical case studies, only a few
particular phenotypes are of interest and therefore, by
applying the proposed approach to each particular
phenotype, we can find out all attractor states of interest.
Another limitation is that our approach is based on syn-
chronous update rules, so it is currently not applicable
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to the Boolean network models based on asynchronous
update rules. This remains as a future study.
From the case studies where we applied our approach

to the three large biological network examples as well as
small and medium size networks (Additional files 12 and
13), we found that the resulting subnetworks (i.e. SCCs)
are composed of seven nodes at most. Of course, we
cannot guarantee such a small size subnetwork in all
cases, but we can always obtain much smaller subnet-
works compared to previous approaches since our
approach simplifies the state update rules in a practical
way. Moreover, we can further reduce the subnetwork
size if any other biological information on the molecular
state of a node in the converging phenotypic feature is
available. As there are many other biological networks
that are different from the networks employed in this
study, it remains as a future study to further investigate
the power of our method by using extensive simulation-
based analysis of synthetic networks with respect to
various topological properties such as different size, level
of interconnections, etc.
When we hierarchically partition a network, we simplify

the state update rules by considering the fixed state values
of marker nodes in the attractor states. As a result, the
state space after the hierarchical partitioning becomes a
subset of the state space of the original network. So, we
cannot measure the basin of attraction to the particular
phenotype of the original network in our framework.
However, some modification of our framework might be
able to resolve the problem. This also remains as a future
study.

Conclusions
Although Boolean network modeling is becoming popu-
lar in modeling large-scale biological regulatory net-
works, looking for attractors for converging state
analysis is still challenging for large networks due to
computational complexity. There have been some at-
tempts to resolve this problem by partitioning the large
network into smaller subnetworks and reconstructing
the global attractors by concatenating the local attractors
obtained from each subnetwork, but the resultant sub-
networks were still too large in most cases and therefore
not much useful in practice. So, in this study, we have
developed a novel approach of identifying a set of global
attractors for a particular phenotype of interest by hier-
archically partitioning the original large network such
that the resulting subnetworks are small enough to guar-
antee that the full search of the local attractors of them
is possible. We have applied the proposed method to
several biological networks and confirmed its usefulness.
Throughout the hierarchical partitioning, we can ob-

tain the hierarchical partitioned structure of the original
network with the fixed state values of some nodes. Such

structural information on the network might be also
useful in identifying certain target nodes to control the
phenotypic behavior of a biological network. For instance,
we can use this information to find out control target
nodes, the perturbation of which results in preventing the
convergence of the dynamical network state to the
particular attractor state of interest. This is an important
subject for a future study.
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